

Extreme Multi-Label Classification (XMLC)

- -Multi-label classification: $\boldsymbol{x} \in \mathcal{X} \rightarrow \boldsymbol{y} \in \mathcal{Y} := \{0, 1\}^m$,
- -with extreme number of labels ($m \ge 10^5$),
- and label vector \boldsymbol{y} being very sparse ($\|\boldsymbol{y}\|_1 \ll m$).
- Many problems are naturally The labels follow a **long-tail budgeted** at *k*, i.e., one needs to make exactly *k* predictions $(\|\hat{y}\|_1 = k).$
 - distribution.
 - The rare labels are considered more "rewarding".

The problem with common performance metrics

- Commonly used metrics (e.g., Precision@k, Propensity-Scored Precision@k) are **insensitive** to tail labels performance.
- There is a need to use **new metrics** for that purpose.
- Experiment: evaluating a classifier trained with 1000 most popular labels, but tested on the full set (AmazonCat-13k):

Metric	full labels			head labels						
	@1	@3	@5	@1 (diff.)	@3 (diff.)	@5 (diff.)				
Precision	93	79	64	93 (+0.1%)	76 (-2.7%)	58 (-8.7%)				
PS-Precision	50	63	70	49 (-1.4%)	58 (-7.8%)	57 (-18%)				
Macro-Precision	13	33	44	4.3 (-68%)	5.3 (-84%)	4.3 (-90%)				
Macro-Recall	1.4	11	31	0.5 (-66%)	2.7 (-76%)	4.1 (-87%)				
Macro-F1	2.3	15	33	0.7 (-67%)	3.1 (-79%)	3.8 (-89%)				
Coverage	15	41	61	5.1 (-66%)	7.4 (-82%)	7.5 (-88%)				

Macro-averaged performance measures are sensitive to tail labels performance!

Generalized test utilities for long-tail performance IN EXTREME MULTI-LABEL CLASSIFICATION

Marek Wydmuch² Erik Schultheis¹ Wojtek Kotłowski² ¹*Aalto University, Helsinki, Finland* ²*Poznan University of Technology, Poland*

Generalized performance measures at k

Instead of calculating and averaging performance instance-wise, calculate per-label ψ^j and average over labels (label-wise):

$$\Psi @k(oldsymbol{Y}, \hat{oldsymbol{Y}}) = \sum_{j=1}^m \psi^j(oldsymbol{y}_{:j}, \hat{oldsymbol{y}}_{:j})$$
 .

- Can balance contribution from all labels.
- Reduces to macro-average if ψ^j are equal.
- -Covers also (instance) Precision@k and PS-Precision@k.

Generalized performance measures can be written as a function of label-wise confusion matrix:

$$\mathbf{C}(oldsymbol{Y}, \hat{oldsymbol{Y}}) \coloneqq [oldsymbol{C}(oldsymbol{y}_{:1}, \hat{oldsymbol{y}}_{:1}), \dots, oldsymbol{C}(oldsymbol{y}_{:m}, \hat{oldsymbol{y}}_{:m})]$$

$$F_{1} \qquad \begin{array}{c} \text{tp+in} & p \\ \frac{2\text{tp}}{2\text{tp+fn+fp}} & \frac{2t}{p+q} \\ \text{Coverage} \quad \mathbb{1}[\text{tp} > 0] & \mathbb{1}[t \\ \text{Iaccard, G-Mean, etc.} \end{array}$$

This matrix is a vector of **binary confusion matrices** for each label:

$$C(\boldsymbol{y}, \hat{\boldsymbol{y}}) \coloneqq \begin{pmatrix} \operatorname{tn} \coloneqq \frac{1}{n} \sum_{i=1}^{n} (1 - y_i)(1 - \hat{y}_i) & \operatorname{fp} \coloneqq \frac{1}{n} \sum_{i=1}^{n} (1 - y_i) \hat{y}_i \\ \operatorname{tn} \coloneqq \frac{1}{n} \sum_{i=1}^{n} y_i(1 - \hat{y}_i) & \operatorname{tp} \coloneqq \frac{1}{n} \sum_{i=1}^{n} y_i \hat{y}_i \end{pmatrix} \cdot$$
eparameterization: $t = \operatorname{tp}, \qquad q = \operatorname{tp} + \operatorname{fp}, \qquad p = \operatorname{tp} + \operatorname{fn}.$
true positive rate predicted positive rate positive rate positive rate

Expected Test-Utility Framework

Two **conflicting** statistical frameworks:

Re

Expected Test-Utility (ETU): Given **Population Utility (PU):** Given a **dis**a specific set of instances with un- tribution of instances, how well can known, stochastic labels, how well we expect a classifier to perform on can we expect a classifier to perform: the population level, i.e., for an infi-

$$\Psi_{ETU} = \mathbb{E}_{\boldsymbol{Y}|\boldsymbol{X}}[\Psi(\mathbf{C}(\boldsymbol{Y}, \hat{\boldsymbol{Y}}))]$$

nite sample:

$$\Psi_{PU} = \Psi \left(\mathbb{E}_{\boldsymbol{y}} [\mathbf{C}(\boldsymbol{y}, \hat{\boldsymbol{y}})] \right) .$$

The ETU framework is relevant, e.g., if recommendations for the entire catalog of products are re-generated on a daily basis.

Rohit Babbar^{1,3} ³University of Bath, UK

Krzysztof Dembczyński^{2,4} ⁴Yahoo Research, New York, USA

Optimal predictions under ETU

Instance conditioned marginal probability of a label: $\eta_j(\boldsymbol{x}) \coloneqq \mathbb{P}[y_j = 1 \mid \boldsymbol{x}]$.

Semi-empirical ETU approximation

A **computationally easier approach** by taking the expectation over the labels:

 $\widetilde{\Psi}_{\mathrm{ETU}} \coloneqq \Psi \left(\mathbb{E}_{Y|X}[t], \mathbb{E}_{Y|X}[q], \mathbb{E}_{Y|X}[p] \right) \approx \mathbb{E}_{Y|X}[\Psi(t, q, p)] = \Psi_{\mathrm{ETU}}.$

- If Ψ is linear in all arguments depending on $Y \implies$ approximation is **exact**
- (e.g., instance-wise weighted metrics and macro-precision).
- -Generally, $\tilde{\Psi}_{\text{ETU}}$ as a surrogate leads only to $\mathcal{O}(1/\sqrt{n})$ error.

Block Coordinate Ascent (BCA) algorithm

- -Optimizing $\tilde{\Psi}_{\text{ETU}}$ can be a very hard discrete optimization problem.
- **Block-coordinate ascent** constructs a sequence of predictions with non-decreasing utility to find local optima.
- -Allows for using sparse η and \hat{Y} to scale to XMLC problems.
- -We provide regret bounds quantifying influence of semi-empirical approximation and label probability estimation error.

Initialization of BCA algorithm:

(1/4) Subtract the instance from the confusion matrix $\tilde{t} \leftarrow \tilde{t} - \frac{1}{n}\hat{\eta}(\boldsymbol{x}_s) \odot \hat{\boldsymbol{y}}_s, \ \boldsymbol{q} \leftarrow \boldsymbol{q} - \frac{1}{n}\hat{\boldsymbol{y}}_s$	(4/4) Update the confusion matrix based on the new prediction $\tilde{t} \leftarrow \tilde{t} + \frac{1}{n}\hat{\eta}(x_s) \odot \hat{y}_s, \ q \leftarrow q + \frac{1}{n}\hat{y}_s$						
C^1 C^2 C^3 C^4 $\eta_{:1}$ $\eta_{:2}$ $\eta_{:3}$ $\eta_{:4}$ $y_{:1}$ $y_{:2}$ $y_{:3}$ $y_{:4}$	C^1 C^2 C^3 C^4 $\eta_{:1}$ $\eta_{:2}$ $\eta_{:3}$ $\eta_{:4}$ $y_{:1}$ $y_{:2}$ $y_{:3}$ $y_{:4}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$g \mid 0.05 0.13 0.15 0.01$	$g \mid 0.05 0.13 0.15 0.01$						

NeurIPS '23, December 10–16, 2023, New Orleans, USA

Experimental results

- –We compare BCA with popular re-weighting strategies on XMLC benchmarks.
- Results obtained using LIGHTXML as a label-probability estimator:

	WikipediaLarge-500K						Amazon-670K						
Inference	Instar	nce $@3$		Macro @3			Instance @3			Macro @3			
strategy	Prec	Rec	Prec	Rec	F1	Cov	Prec	Rec	Prec	Rec	F1	Cov	
Top-K	56.0	45.7	20.2	18.9	17.1	32.2	41.7	24.1	10.8	9.7	9.5	14.4	
PS-K	54.9	45.6	23.3	22.7	20.4	37.8	41.1	23.8	11.9	10.5	10.4	15.5	
Pow-K	51.8	43.9	23.7	23.7	21.1	39.4	40.9	23.7	12.0	10.7	10.5	15.6	
Log-K	54.8	45.2	21.4	20.2	18.4	34.3	41.5	24.0	11.3	10.1	10.0	15.0	
MACRO-P _{BCA}	25.2	21.8	37.7	20.2	23.4	45.1	33.8	19.8	17.3	10.5	12.1	17.8	
$Macro-R_{bca}$	43.4	39.6	25.4	27.6	23.7	46.3	39.4	22.9	13.7	11.2	11.5	17.1	
$Macro-F1_{bca}$	43.8	36.4	35.4	23.7	26.0	46.4	37.3	21.7	16.5	10.8	12.2	17.6	
COV_{BCA}	27.3	24.6	25.9	26.8	21.6	50.2	35.4	20.3	14.0	10.9	11.2	17.7	

Interpolated metrics

- Optimizing macro-measures incurs a **significant drop** in instance-wise measures.
- -To achieve the desired trade-off between tail and head label performance a straight-forward **combination** between standard instance-wise precision@k, and a marco-average @k metric can be used, e.g.:

$$\Psi(\mathbf{C}(\boldsymbol{Y}, \hat{\boldsymbol{Y}})) = (1 - \alpha) \Psi_{\text{Instance-Precision}@k}(\mathbf{C}(\boldsymbol{Y}, \hat{\boldsymbol{Y}})) + \alpha \Psi_{\text{Macro-F1}@k}(\mathbf{C}(\boldsymbol{Y}, \hat{\boldsymbol{Y}}))$$

A combination of a macro-metric and instance precision-at-*k* can achieve good results on both metrics simultaneously!

