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Abstract

Extreme multi-label classification (XMLC) is the task of selecting a small subset of
relevant labels from a very large set of possible labels. As such, it is characterized
by long-tail labels, i.e., most labels have very few positive instances. With standard
performance measures such as precision@k, a classifier can ignore tail labels and
still report good performance. However, it is often argued that correct predictions in
the tail are more “interesting” or “rewarding,” but the community has not yet settled
on a metric capturing this intuitive concept. The existing propensity-scored metrics
fall short on this goal by confounding the problems of long-tail and missing labels.
In this paper, we analyze generalized metrics budgeted “at k” as an alternative
solution. To tackle the challenging problem of optimizing these metrics, we
formulate it in the expected test utility (ETU) framework, which aims to optimize
the expected performance on a fixed test set. We derive optimal prediction rules and
construct computationally efficient approximations with provable regret guarantees
and robustness against model misspecification. Our algorithm, based on block
coordinate ascent, scales effortlessly to XMLC problems and obtains promising
results in terms of long-tail performance.

1 Introduction

Extreme multi-label classification (XMLC) is a challenging task with a wide spectrum of real-life
applications, such as tagging of text documents [10], content annotation for multimedia search [14],
or different type of recommendation [5, 1, 33, 44, 53, 28, 7]. Because of the nature of its applications,
the typical approach in XMLC is to predict exactly k labels (e.g., corresponding to k slots in the
user interface) which optimize a standard performance metric such as precision or (normalized)
discounted cumulative gain. Given the enormous number of labels in XMLC tasks, which can reach
millions or more, it is not surprising that many of them are very sparse, and hence make the label
distribution strongly long-tailed [2]. It has been noticed that algorithms can achieve high performance
on the standard metrics, but never predict any tail labels [42]. Therefore, there is a need to develop
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Table 1: Performance measures (%) on AmazonCat-13k of a classifier trained on the full set of labels
and a classifier trained with only 1k head labels.

Metric full labels head labels
@1 @3 @5 @1 (diff.) @3 (diff.) @5 (diff.)

Precision 93.03 78.51 63.74 93.08 (+0.05%) 76.42 (-2.66%) 58.21 (-8.67%)
nDCG 93.03 87.25 85.35 93.08 (+0.05%) 85.75 (-1.71%) 80.91 (-5.19%)
PS-Precision 49.76 62.63 70.35 49.07 (-1.39%) 57.71 (-7.84%) 57.41 (-18.40%)

Macro-Precision 13.28 32.65 44.16 4.31 (-67.54%) 5.28 (-83.82%) 4.32 (-90.21%)
Macro-Recall 1.38 11.06 30.57 0.47 (-65.61%) 2.69 (-75.71%) 4.10 (-86.59%)
Macro-F1 2.26 14.67 32.84 0.74 (-67.37%) 3.10 (-78.88%) 3.77 (-88.51%)
Coverage 15.19 40.53 60.88 5.11 (-66.32%) 7.37 (-81.82%) 7.52 (-87.65%)

a metric that prefers “rewarding” [48], “diverse” [3], and “rare and informative” [34] labels over
frequently-occurring head labels. Currently, the XMLC community attempts to capture this need
using propensity-scored performance metrics [15]. These metrics give increased weight to tail labels,
but have been derived from the perspective of missing labels, and as such they are not really solving
the problem of tail labels [41].

In Table 1 we compare different metrics for budgeted at k predictions. We train a PLT model [17] on
the full AMAZONCAT-13K dataset [27] and a reduced version with the 1000 most popular labels only.
The test is performed for both models on the full set of labels. The standard metrics are only slightly
perturbed by reducing the label space to the head labels. This holds even for propensity-scored
precision, which decreases by just 1%-20% despite discarding over 90% of the label space. In
contrast, macro measures and coverage decrease between 60% and 90% if tail labels are ignored.
These results show that budgeted-at-k macro measures might be very attractive in the context of
long tails. Macro-averaging treats all the labels equally important, preventing the labels with a
small number of positive examples to be ignored. Furthermore, the budget of k labels "requires" the
presence of long-tail labels in a compact set of predicted labels.

While we can easily use these measures to evaluate and compare different methods, we also would like
to make predictions that directly optimize these metrics. The existing approaches to macro-averaged
metrics consider the unconstrained case, in which label-wise optimization is possible [47, 11, 23,
16, 22, 26]. Each binary problem can be then solved under one of two frameworks for optimizing
complex performance measures, namely population utility (PU) or expected test utility (ETU) [49, 12].
The former aims at optimizing the performance on the population level. The latter optimizes the
performance directly on a given test set. Interestingly, in both frameworks the optimal solution is
based on thresholding conditional label probabilities [12], but the resulting thresholds are different
with the discrepancy diminishing with the size of the test set. The threshold tuning for PU is usually
performed on a validation set [47, 26], while the exact optimization for ETU is performed on a
test set. It requires cubic time in a general case and quadratic time in some special cases [49, 32].
Approximate solutions can be obtained in linear time [25, 12].

These approaches cannot be directly applied if prediction of exactly k labels for each instance is
required. In such case, the optimization problems for different labels are tightly coupled through this
constraint, making the final problem much more difficult. Despite the fact that optimization of com-
plex performance metrics is a well-established problem, considered not only in binary and multi-label
classification as discussed above, but also in multi-class classification [30, 31], the results presented
in this paper go beyond the state-of-the-art as budgeted-at-k predictions have not yet been analyzed
in this context. Let us underline that the requirement of k predictions is natural for recommendation
systems, in which exactly k slots are available in the user interface to display recommendations. Even
in situations where this does not apply, requiring the prediction to be “at k” can be advantageous,
as it prevents trivial solutions such as predicting nothing (for precision) or everything (for recall).

In this paper, we investigate optimal solutions for the class of utility functions that can be linearly
decomposed over labels into binary utilities, which includes both instance-wise weighted measures
and macro-averages. We solve the problem in the ETU framework which is well-suited, for example,
to recommendation tasks in which recommendations for all users or items are rebuilt in regular
intervals. In this case, we can first obtain probability estimates of individual labels for each instance
in the test set, and then provide optimal predictions for a given metric based on these estimates. We
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derive optimal prediction rules and construct computationally efficient approximations with provable
guarantees, formally quantifying the influence of the estimation error of the label probabilities
on the suboptimality of the resulting classifier. This result is expressed in the form of a regret
bound [4, 30, 22, 13]. It turns out that for most metrics of interest, a small estimation error results
in at most a small drop of the performance, which confirms our method is viable for applications.
Our general algorithm, based on block coordinate ascent, scales effortlessly to XMLC problems and
obtains promising empirical results.

2 Setup and notation

Let x 2 X denote an input instance, and y 2 {0, 1}m =: Y the vector indicating the relevant labels,
distributed according toP(y|x). We consider the prediction problem in the expected test utility (ETU)
framework, that is, we assume that we are given a known set of n instances X = [x1, . . . ,xn ]T 2 X

n

with unknown labels, on which we have to make predictions.1 Our goal is to assign each instance xi

a set of exactly k (out of m) labels represented as a k-hot vector ŷi 2 Yk := {y 2 Y : kyk1 = k},
and we let Ŷ = [ŷ1, . . . , ŷn ]T denote the entire n ⇥m prediction matrix for a set of instances X .

In the ETU framework, we treat X as given and only make an assumption about the labeling process
for the test sample: the labels yi 2 Y corresponding to xi 2 X do not depend on any other instances,
that is P(Y |X) =

Qn
i=1

P(yi|xi), where we use Y = [y1, . . . ,yn ]T 2 Y
n to denote the entire

label matrix. We assume the quality of predictions Ŷ is jointly evaluated against the observed labels
Y by a task utility  (Y , Ŷ ), and define the optimal (Bayes) prediction Ŷ ? as the one maximizing
the expected task utility  ETU:

Ŷ ? = argmax
Ŷ 2Yn

k

EY |X [ (Y , Ŷ )] =: argmax
Ŷ 2Yn

k

 ETU(Ŷ ) . (1)

We consider task utilities  (Y , Ŷ ) that linearly decompose over labels, i.e., there exists  j such that

 (Y , Ŷ ) =
mX

j=1

 
j(y:j , ŷ:j) . (2)

We allow the functions  j to be non-linear themselves and different for each label j. This is a large
class of functions, which encompasses weighted instance-wise and macro-averaged utilities, the two
groups of functions which we thoroughly analyze in the next sections.

Let us next define the binary confusion matrix C(y, ŷ) for a vector y of n ground truth labels and a
corresponding vector ŷ of binary predictions:

C(y, ŷ) :=

✓
1

n

Pn
i=1

(1� yi)(1� ŷi)
1

n

Pn
i=1

(1� yi)ŷi
1

n

Pn
i=1

yi(1� ŷi)
1

n

Pn
i=1

yiŷi

◆
. (3)

By indexing from 0, the entry c00 corresponds to true negatives, c01 to false positives, c10 to
false negatives, and c11 to true positives.We define the multi-label confusion tensor

2 C(Y , Ŷ ) :=
[C(y:1, ŷ:1), . . . ,C(y:m , ŷ:m)] being the concatenation of binary confusion matrices of all m labels.

Assuming the utility function (2) to be invariant under instance reordering, i.e., its value does not
change if rows of both matrices are re-ordered using the same permutation, we can define  in terms
of confusion matrices, instead of ground-truth labels and predictions (shown in Appendix A.1):

 (Y , Ŷ ) =  (C(Y , Ŷ )) =
mX

j=1

 
j(C(y:j , ŷ:j)) . (4)

Finally, we assume that we have access to a label probability estimator (LPE) ⌘̂(x) that estimates the
marginal probability of each label given the instance, ⌘(x) = (⌘1(x), . . . , ⌘m(x)) := Ey|x[y]. Such
an LPE can be attained by fitting a model on an additional training set of n 0 examples (xi,yi)n

0

i=1

using a proper composite loss function [37], which is a common approach in XMLC, e.g., [18].
1We use calligraphic letters for sets S , bold font for vectors v with entries vi, bold capital letters for matrices

Y with entries yij , rows yi, and columns y:j . 1[S] denotes the indicator of event S, and [s] := {1, . . . , s}
2Notice that the confusion matrix can be computed either for multi-label predictions for a given instance x or

binary predictions for label j obtained on a set of instances X . In the following, we focus on the latter.
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3 Performance measures for tail labels

3.1 Instance-wise weighted utility functions

By assigning utility (or cost) to each correct/wrong prediction for each label, we can construct an
instance-wise weighted utility uw : Y ⇥ Y �! R�0 with labels y 2 Y and predictions ŷ 2 Y as

uw(y, ŷ) =
mX

j=1

w
j
00

(1� yj)(1� ŷj) + w
j
01

(1� yj)ŷj + w
j
10

yj(1� ŷj) + w
j
11

yj ŷj . (5)

We use w
j
00

, w
j
01

, w
j
10

, and w
j
11

to express the utility of true negatives, false positives, false negatives,
and true positives, respectively. The corresponding task loss results from summing over all instances.
By interchanging the order of summation, we can see that it is of form (4):

 (Y ,Ŷ ) =
nX

i=1

uw(yi, ŷi) =
mX

j=1

w
j
00

c
j
00

+w
j
01

c
j
01

+w
j
10

c
j
10

+w
j
11

c
j
11

=
mX

j=1

 
j(C(y:j , ŷ:j)) . (6)

In other words, the instance-wise weighted utilities can be seen as linear confusion-based metrics.
By choosing w

j
00

= w
j
11

= m�1 and w
j
01

= w
j
10

= 0, the expression (5) reduces to the @k-variant
of the Hamming utility. Similarly, w

j
11

= k
�1 and w

j
00

= w
j
01

= w
j
10

= 0 yield precision@k.

Another example is the popular propensity-scoring approach [15], commonly used as a tail-
performance metric in XMLC. Here, the weights are computed based on training data through

w
j,prop
11

= k
�1

�
1 + (log n 0

� 1)(b + 1)a(n 0
⇡̂j + b)�a

�
, (7)

where n 0 is the number of training instances, ⇡̂j is the empirical prior of label j, and parameters a and
b are (potentially) dataset-dependent. This form of weighting has been derived from a missing-labels
perspective, so its application to tail labels is not fully justified [41]. Also, it introduces two more
hyperparameters, which makes the interpretation and comparison of its values rather difficult. It is
not less heuristical than other approaches like power-law or logarithmic weighting, given by:

w
j,pl
11
/ ⇡̂

��
j , w

j,log
11
/ � log (⇡̂j) . (8)

3.2 Macro-average of non-decomposable utilities

Macro-averaging usually concerns non-decomposable binary utilities such as the F-measure. In this
case, we set up  j(·, ·) = m�1

 (·, ·) for all labels j in (2), yielding:

 (Y , Ŷ ) = m�1

mX

j=1

 (y:j , ŷ:j) = m�1

mX

j=1

 (C(y:j , ŷ:j)) . (9)

By using  pr(C) := c11/(c11 + c01), this becomes macro-precision, for  rec(C) := c11/(c11 + c10)
we get macro-recall, and for  F� (C) := (�+1)c11/((1+�)c11+�2

c10+c01) the macro-F-measure.

Another measure that is promising for the evaluation of long-tailed performance is coverage. It is
sometimes used as an auxiliary measure in XMLC [15, 3, 42, 41]. This metric detects for how many
different labels the classifier is able to make at least one correct prediction. In our framework, this is
achieved by using an indicator function on the true positives,  cov(C) := 1[c11 > 0].

4 Optimal predictions

Let us start with the observation that the label probabilities ⌘ are sufficient to make optimal predictions.
With the assumption that P(Y |X) =

Qn
i=1

P(yi|xi), we obtain (cf. Appendix A.2):

EY |X [ (Y , Ŷ )] =
mX

j=1

X

y02{0,1}n

⇣ nY

i=1

⌘j(xi)y
0
i + (1� ⌘j(xi))(1� y

0
i)
⌘
 
j(y0

, ŷ:j) . (10)

This equation lays out a daunting optimization task, as is requires summing over 2n summands y0. In
case of binary classification, there exist methods to solve the problem exactly in O(n3), or in O(n2)
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in some special cases [32]. By using semi-empirical quantities (defined below), [12] provides an
approximate algorithm that runs in O(n). Following this approach, we construct a semi-empirical
ETU approximation. If this approximation results in a linear function of the predictions, the problem
decomposes over instances and can be solved easily. Otherwise, we use an algorithm that leads to
locally optimal predictions. A minor modification of this algorithm can be used for coverage.

4.1 Semi-empirical ETU approximation

Since the entries of the confusion matrix are linearly dependent, it suffices to use three independent
combinations. More precisely, we parameterize the confusion matrix by the true positives t = c11,
predicted positives q = c11 +c01, and ground-truth positives p = c11 +c10, and use t = (t1, . . . , tm),
q = (q1, . . . , qm), and p = (p1, . . . , pm) to reformulate the ETU objective:

 ETU(Ŷ ) = EY |X [ (C(Y , Ŷ ))] = EY |X [ (t, q,p)] = EY |X

h mX

j=1

 
j(tj , qj , pj)

i
. (11)

In order to compute  ETU, one needs to take into account every possible combination of confusion-
matrix values, and calculate the corresponding value of  , which is then averaged according to the
respective probabilities. A computationally easier approach is to take the expectation over the labels
first, leading to semi-empirical quantities:

t̃ := EY |X [t] , q̃ := EY |X [q] = q , p̃ := EY |X [p] , (12)
where q̃ = q follows because the number of predicted positives depends only on the predictions Ŷ .
This allows us to define the semi-empirical ETU risk

 ̃ETU(Ŷ ) :=  (t̃, q, p̃) ⇡ EY |X [ (t, q,p)] =  ETU(Ŷ ) . (13)
In particular, the third argument to  , p̃, is a constant that does not depend on predictions.

Note that, if  is linear in all arguments depending on the random variable Y , then the approximation
is exact, due to the linearity of expectations. Aside from instance-wise measures, which we showed
to be linear above, the approximation is also exact for the more general class of functions of the form

 (t, q, p) = ft(q) · t + fq(q) + fp(q) · p . (14)

An important example is macro-precision, with ft(q) = q
�1 and fq = fp = 0. In the general case,

 ̃ETU as a surrogate for  ETU leads only to O(1/
p
n) error as will be shown in Theorem 5.2, while

substantially simplifying the optimization process.

4.2 Linear confusion-matrix measures

We start the discussion on optimization of (13) with a special case in which  ̃ETU is linear in the

prediction-dependent arguments t, q, that is, if
 (t, q, p) = ft(p) · t + fq(p) · q , (15)

i.e., both ft(p) and fq(p) depend on p only, and fp(p) · p can be dropped as it is a constant.

Aside from instance-wise weighted utilities (cf. Appendix A.3), which are linear in all arguments, this
form also holds for weights dependent on the (empirical) label priors, e.g., power law weights of the
form ft(p) = p

�↵ and fq = 0, which reduce to macro-recall for ↵ = 1. If one defines the weights with
respect to externally determined label priors, i.e., approximations toE[yj ], which are fixed and thus in-
dependent of the test sample X , then the power-law metrics turn into instance-wise weighted utilities.

From (6) we know that we can reformulate the optimization problem using an instance-wise weighted
utility uw with weights:

w
j
11

= ft(pj) + fq(pj) , w
j
01

= fq(pj) , w
j
10

= 0 , w
j
00

= 0 . (16)
Hence, the optimal predictions can be derived for each instance x 2 X separately, leading to

ŷ⇤ = argmaxŷ2Yk
Ey|x[uw(y, ŷ)]. (17)

Plugging in the definition of uw from (5), and collecting terms, the expected loss is of the form

Ey|x[uw(y, ŷ)] =
mX

j=1

Ey|x

h
w

j
11

yj ŷj + w
j
01

(1� yj)ŷj

i
=

mX

j=1

ŷj (⌘j(x)ft(pj) + fq(pj)) , (18)
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where we call gj(x) := ⌘j(x)ft(pj) + fq(pj) the gain of predicting label j for a given instance x.
The optimal prediction is to select the k labels with the largest values gj(x),

ŷ⇤ = argmax
ŷ2Ŷk

mX

j=1

gj(x)ŷj = select-top-k(g(x)) . (19)

Here, select-top-k(g) denotes an operation that maps a vector of scores to a binary vector that contains
1s only at the positions of the k largest elements of g.

4.3 General non-decomposable macro measures

Algorithm 1 BCA(X, ⌘̂, k, ✏)

1: ŷi  select-random-k(m) for all i 2 [n]
2: t̃  1

n

Pn
i=1 ⌘̂(xi)� ŷi

3: q  1
n

Pn
i=1 ŷi, p̃ 1

n

Pn
i=1 ⌘̂(xi)

4: uold  �1, unew   (t̃, q, p̃)
5: while unew > uold + ✏ do
6: for s 2 shuffle([n]) do
7: t̃ t̃� 1

n ⌘̂(xs)� ŷs, q  q � 1
n ŷs

8: for j 2 [m] do
9:  j(1)  

�
t̃j+ 1

n ⌘̂j(xs), qj+ 1
n , p̃j

�

10:  j(0)  (t̃j , qj , p̃j)
11: gj   j(1)�  j(0)

12: ŷs  select-top-k(g)
13: t̃ t̃+ 1

n ⌘̂(xs)� ŷs, q  q + 1
n ŷs

14: uold  unew, unew   (t̃, q, p̃)

15: return Ŷ

Finally, we turn to the general problem for
budgeted-at-k macro-measures based on non-
linear  . As this can be a very hard discrete
optimization problem in general, we use an it-
erative approach based on block-coordinate as-

cent that constructs a sequence of predictions,
Ŷ 0

, Ŷ 1
, . . ., with non-decreasing utility, so that

we end up with a solution that is locally optimal.

Assume the predictions are fixed for all instances
except xs, where they are given by z. In that
case, we can write the semi-empirical quantities
from (12) as

t̃ = 1

n

⇣
⌘j(xs)zj +

X

i2[n]\{s}

⌘j(xs)ŷij

⌘
, (20)

with analog expansions for q and p̃. Plugging
into (13) leads to the following optimization:

max
z2Yk

mX

j=1

 
j
⇣

1

n⌘j(xs)zj + 1

n

X

i2[n]\{s}

⌘j(xi)ŷij ,
1

nzj + 1

n

X

i2[n]\{s}

ŷij ,
1

n

nX

i=1

⌘j(xi)
⌘

. (21)

As everything except zj 2 {0, 1} is given, we can interpret  j as a linear function of zj , and define
a gain vector with elements gj =  

j(1) �  
j(0). The optimal prediction z⇤ is then given by

z⇤ = select-top-k(g) , in a similar form as in case of linear confusion-matrix measures. We get Ŷ t+1

by replacing the s
th row of Ŷ t with z⇤, and know that  ̃ETU(Ŷ t+1) �  ̃ETU(Ŷ t). Then we switch

to the next instance s s + 1, and repeat this process until no more progress is made.

The algorithm starts by predicting k random labels for each instance. To speed up the computations
we cache two quantities, t̃

t
j and q

t
j , for each label:

t̃
0

j := 1

n

Pn
i=1

⌘j(xi)ŷ0

ij , t̃
t+1

j := t̃
t
j + 1

n⌘j(xs)(ŷ
t+1

sj � ŷ
t
sj) ,

q
0

j := 1

n

Pn
i=1

ŷ
0

ij , q
t+1

j := q
t
j + 1

n

�
ŷ
t+1

sj � ŷ
t
sj

�
.

(22)

With this, we can compute (21) in O(m) time using the following formulas:
 
j(1) :=  

j
�
t̃
t
j + 1

n⌘j(xs)(1� ŷ
t
sj), q

t
j + 1

n (1� ŷ
t
sj), p̃j

�
,

 
j(0) :=  

j
�
t̃
t
j �

1

n⌘j(xs)ŷt
sj , q

t
j �

1

n ŷ
t
sj , p̃j

�
.

(23)

The block coordinate ascent (BCA) procedure is shown in more detail in Algorithm 1. Obviously, the
actual implementation cannot use the unknown values ⌘, but instead has to rely on the LPE estimates
⌘̂(xi). The stopping criterion for the algorithm is whether, after going over a whole set of instances,
the improvement in the objective value over the previous value is lower than ✏, which ensures that the
algorithm terminates for every bounded utility in O(1/✏). In practice, even with small ✏, the algorithm
usually terminates after a few iterations. The time and space complexity of the single iteration are both
O(nm). If  is a linear function, corresponding to an instance-wise weighted utility (6) such as macro-
recall, the algorithm recovers the optimal solution in the first iteration, stopping after the second.

In general, Algorithm 1 requires multiple iterations. This can be computationally expensive and
requires all of the data to be available at once. We thus propose a greedy algorithm that takes into
account only statistics of previously seen instances while performing a single pass over the dataset,
which allows for semi-online optimization. The greedy algorithm is outlined in Appendix B.4.
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4.4 Optimization of coverage

One measure for which the ETU approximation is not exact is coverage as  cov(t, q, p) := 1[t > 0]
is nonlinear. In this case, we can do better than Algorithm 1, by reformulating  ETU for coverage as

 ETU(Ŷ ) = EY |X

h
m�1

mX

j=1

1[tj > 0]
i

= 1�m�1

mX

j=1

nY

i=1

(1� ⌘j(xi)ŷij) , (24)

and performing block coordinate ascent directly on this expression, as detailed in Appendix B.3.

5 Regret bounds

Computing optimal predictions relies on an access to the conditional marginal probabilities ⌘(x). In
practice, however, ⌘(x) are unknown, and are replaced by the LPE ⌘̂(x) to do inference (plug-in

approach). Furthermore, we replaced the ETU objective  ETU with an approximation  ̃ETU. As
generally ⌘̂(x) 6= ⌘(x) and  ETU 6=  ̃ETU, this procedure may result in sub-optimal predictions, the
errors of which we would like to control.

If we are able to control the change of the utility under small changes in its arguments, we can
show that the suboptimality of the plug-in predictor relative to the optimal predictor (called  -regret)
decreases with increasing test size n and decreasing probability estimation error.

To this end we assume that each  j is a p-Lipschitz function, which allows us to bound the approxi-
mation error.
Definition 5.1 (p-Lipschitz [13]). A binary classification metric  (t, q, p) is said to be p-Lipschitz if

| (t, q, p)�  (t0, q0, p0)|  Lt(p)|t� t
0
| + Lq(p)|q � q

0
| + Lp(p)|p� p

0
|, (25)

for any q, q
0
2 [0, 1], p, p

0
2 (0, 1), 0  t  min(p, q), and 0  t

0
 min(p0, q0). The constants

Lt(p), Lq(p), Lp(p) are allowed to depend on p, in contrast to the standard Lipschitz functions.

As shown in Appendix C.3, most of metrics of interest satisfy p-Lipschitz assumption, including
the linear confusion-matrix measures (6) with fixed weights (e.g., Hamming utility, precision),
macro-recall, macro-F-measure, etc., with macro-precision and coverage being notable exceptions.
Theorem 5.2. Let each  

j
be p-Lipschitz with constants L

j
t (p), Lj

q(p), Lj
p(p). For any Ŷ it holds:

| ETU(Ŷ ;X)�  ̃ETU(Ŷ ;X)| 
1

2
p
n

⇣ mX

j=1

(Lj
t (p̃j) + L

j
p(p̃j))

⌘
. (26)

Thus, using  ̃ETU as a surrogate for  ETU leads only to O(1/
p
n) error, diminishing with the test

size, while substantially simplifying the optimization process.

Given a decomposable metric of the form (4), let Ỹ † be the plug-in prediction matrix optimizing the
semi-empirical ETU with plugged-in probability estimates,  

�
Ey⇠⌘̂(X)[t], q,Ey⇠⌘̂(X)[p]

�
.

Theorem 5.3. Let Ỹ †
be defined as above. Under the assumptions of Theorem 5.2:

 ETU(Ŷ ?;X)�  ETU
�
Ỹ †;X

�


m
p
n

B + 2

p
m

n
B

nX

i=1

k⌘(xi)� ⌘̂(xi)k2, (27)

where B :=
q
m�1

Pm
j=1

(Lj
t (p̃j) + L

j
p(pj))2 is the quadratic mean of the Lipschitz constants.

A similar statement, presented in Appendix C.4, can be made for the unapproximated ETU case.

Thus, the methods described in Section 4 can be used with probability estimates replacing the true
marginals, and as long as the estimator is reliable, the resulting predictions will have small  -regret.
This also justifies the plug-in approach used in the experiments in Section 7.

6 Efficient inference

The optimization algorithms introduced so far need to obtain ⌘̂j(xi) for all labels and instances first.
Then, the BCA inference is of O(nm) time and O(nm) space complexity for a single iteration. This
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is problematic in the setting of XMLC, where many methods aim to predict probabilities only for top
labels in time sublinear in m . Fortunately, this characteristic of XMLC algorithms can be combined
with the introduced algorithms to efficiently obtain an approximate solution. Instead of predicting
all ⌘, we can predict probabilities only for top-k0 labels with highest ⌘̂j , where k ⌧ k

0
⌧ m . For

all other labels we then assume ⌘̂j = 0. Under the natural assumption that  is non-decreasing in
true positives and non-increasing in predicted positives, we can leverage the sparsity and consider
labels with non-zero ⌘̂j only (using sparse vectors to represent ⌘̂(xi)) to reduce the time and space
complexity to O(n(k0 + k log k)) and O(n(k0 + k)), respectively. As in real-world datasets the
number of relevant labels kyk1 is much lower than m , and most ⌘j(xi) are close to 0, with reasonably
selected k

0, according to Theorem 5.3, we should only slightly increase the regret. A pseudocode for
the sparse variant of Algorithm 1 can be found in Appendix D.

Alternatively, we can leverage probabilistic label trees (PLTs) [16], a popular approach in XMLC
[35, 45, 19, 50, 7], to efficiently search for “interesting” labels. Originally, PLTs find top labels with
the highest ⌘̂j . In [46], an A

⇤-search algorithm has been introduced for finding k labels with highest
value of gj⌘j(x), where gj 2 [0,1) is a gain assigned to label j. In Appendix F, we present a more
general version of this procedure that can be used to efficiently obtain an exact solution of presented
BCA or Greedy algorithms for some of the metrics considered in this work.

7 Experiments

To empirically test the introduced framework, we use popular benchmarks from the XMLC reposi-
tory [6]. We train the LIGHTXML [18] model (with suggested default hyper-parameters) on provided
training sets to obtain ⌘̂ for all test instances. We then plug these estimates into different inference
strategies and report the results across the discussed measures. To run the optimization algorithm
efficiently, we use k

0 = 100 or k
0 = 1000 to pre-select for each instance the top k

0 labels with the
highest ⌘̂j as described in Section 6.3

We use the following inference strategies:

• TOP-K– the optimal strategy for precision@k: selection of k labels with the highest ⌘j
(default prediction strategy in many XMLC methods).

• PS-K– the optimal strategy for propensity-scored precision@k: selection of k labels with the
highest w

j,prop
11

⌘j , with w
j,prop
11

given by the empirical model of Jain et al. [15] (Equation 7)
with values a and b recommended by the authors.

• POW-K, LOG-K– the optimal strategy for power-law and log weighted instance-wise utilities:
selection of k labels with the highest w

j,pl
11
⌘j or w

j,log
11

⌘j . For power-law, we use � = 0.5.
• MACRO-PBCA, MACRO-RBCA, MACRO-F1BCA, COVBCA– the block coordinate ascent (Algo-

rithm 1) for optimizing macro-precision, -recall, -F1, and coverage,

10 20 30 40 50
Macro-F1@3

70

80

In
st

an
ce

-P
@

3

PS-K

Log-K

Macro-F1BCA

Top-K

Pow-K�=0.25

Pow-K�=0.5

Figure 1: Results of an inference strategy with
a mixed utility on AMAZONCAT-13K and k =
3. The green line shows the results for different
interpolations between two measures.

We expect a strategy suited for a given metric
to obtain the best results on this metric. Never-
theless, this might not always be the case, as in
the derivation of our algorithms, we needed to
apply different types of approximation to scale
them to XMLC problems. We are mainly in-
terested in the performance on the general non-
decomposable macro measures since they seem
to be well-tailored to long tails, and their opti-
mization is the most challenging. The results
are presented in Table 2. Notice that in almost
all cases, the specialized inference strategies
are indeed the best on the measure they aim to
optimize and achieve substantial gains on corre-
sponding metrics compared to the basic TOP-K inference. The other weighted strategies, PS-K,
POW-K, LOG-K, usually provide a much smaller improvement over TOP-K and never beat strategies
designed for specific macro measures. As the reported performance depends on three things: the
inherent difficulty of the data, the success of the inference algorithm, and the quality of the provided

3A code to reproduce all the experiments: https://github.com/mwydmuch/xCOLUMNs
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Table 2: Results of different inference strategies on @k measures with k 2 {3, 5, 10}. Notation:
P—precision, R—recall, F1—F1-measure, Cov—Coverage. The green color indicates cells in
which the strategy matches the metric. The best results are in bold and the second best are in italic.

Inference Instance @3 Macro @3 Instance @5 Macro @5 Instance @10 Macro @10
strategy P R P R F1 Cov P R P R F1 Cov P R P R F1 Cov

EURLEX-4K, k0 = 100

TOP-K 74.20 44.21 24.85 16.45 18.63 31.27 62.31 60.59 27.43 25.99 25.50 39.76 39.29 75.11 22.15 36.59 26.01 47.55
PS-K 69.01 41.06 30.12 23.72 25.08 40.29 60.77 59.17 29.10 29.89 28.17 44.03 38.98 74.54 21.36 38.27 25.78 49.47
POW-K �=0.5 65.35 38.95 30.49 25.26 25.93 42.11 58.53 57.10 28.88 31.25 28.53 45.48 38.48 73.66 20.77 38.85 25.43 50.13
LOG-K 71.03 42.30 29.04 22.10 23.76 37.99 61.51 59.87 28.48 28.47 27.26 42.32 39.12 74.80 21.60 37.49 25.83 48.61

MACRO-PBCA 41.13 24.29 38.78 16.77 20.63 40.60 31.05 30.33 38.70 18.46 21.59 41.66 18.45 35.65 37.94 20.28 21.82 42.89
MACRO-RBCA 41.47 24.61 30.36 25.16 24.37 44.26 38.32 37.54 28.97 31.27 27.05 49.04 29.80 57.58 22.99 38.14 25.99 52.15

MACRO-F1BCA 61.96 36.94 34.42 25.13 27.59 44.52 56.18 54.70 33.82 29.52 30.13 45.93 33.55 64.29 32.78 32.21 30.47 47.56
COVBCA 24.00 14.03 31.46 21.30 19.05 47.19 16.40 15.95 29.86 24.53 18.81 50.09 9.31 18.05 26.99 28.28 17.41 52.84

AMAZONCAT-13K, k0 = 100

TOP-K 83.35 63.01 25.71 11.37 13.83 33.05 68.01 79.01 33.92 31.34 29.28 52.60 41.72 89.41 24.63 51.76 28.84 68.61
PS-K 79.09 60.15 43.89 38.64 38.56 62.06 66.63 77.89 38.41 45.00 38.34 65.82 41.50 89.11 22.56 58.69 28.59 74.29
POW-K �=0.5 66.52 50.75 38.18 46.42 39.26 67.76 56.94 68.14 31.65 54.06 36.90 71.95 37.86 83.91 19.26 64.05 26.29 77.27
LOG-K 75.30 56.79 41.09 33.92 35.04 56.05 64.07 75.21 37.40 41.86 36.78 61.84 40.66 88.05 23.09 55.85 28.91 71.37

MACRO-PBCA 54.97 41.61 64.27 29.22 35.76 76.18 41.53 49.66 63.81 30.43 35.99 76.75 25.32 57.33 61.84 33.06 35.08 78.17
MACRO-RBCA 47.74 37.13 31.40 58.32 34.68 80.71 38.93 48.26 25.17 65.47 30.37 82.91 26.50 61.99 17.53 72.63 23.22 84.84

MACRO-F1BCA 70.61 53.86 51.95 48.22 47.93 77.83 60.70 71.93 50.89 52.32 49.48 79.63 37.80 82.24 49.43 55.17 49.21 81.39
COVBCA 4.53 2.29 34.93 35.16 15.91 82.67 3.20 2.63 29.40 39.05 14.23 84.39 2.13 3.36 19.02 44.28 10.74 85.40

WIKI-31K, k0 = 100

TOP-K 77.17 13.48 2.01 0.50 0.72 2.54 68.31 19.59 2.66 0.92 1.24 3.72 52.00 29.05 3.55 2.07 2.34 6.14
PS-K 67.95 11.89 3.89 1.47 1.93 5.47 62.65 18.07 4.21 2.14 2.56 6.54 50.16 28.20 4.64 3.62 3.61 9.01
POW-K �=0.5 55.06 9.59 4.49 2.14 2.59 6.98 50.12 14.40 4.83 3.13 3.37 8.53 40.15 22.57 5.07 5.10 4.47 11.37
LOG-K 65.20 11.34 3.40 1.24 1.66 4.84 57.74 16.49 3.74 1.86 2.25 5.99 43.82 24.37 4.24 3.46 3.37 8.61

MACRO-PBCA 32.86 5.66 9.13 2.55 3.38 9.21 30.52 8.56 9.68 2.86 3.74 9.82 24.81 13.62 9.79 2.98 3.85 10.04
MACRO-RBCA 13.78 2.36 4.77 3.24 3.10 7.26 14.01 3.96 5.79 4.71 4.05 10.72 13.88 7.79 5.72 7.21 5.02 15.72

MACRO-F1BCA 37.32 6.52 7.81 3.15 4.10 10.42 38.98 11.24 8.30 4.14 5.08 11.88 39.31 22.28 8.18 5.11 5.78 13.07
COVBCA 27.00 4.63 6.24 3.18 3.41 11.04 20.80 5.88 6.42 4.60 4.18 13.23 13.95 7.78 6.23 6.88 4.81 16.39

WIKIPEDIALARGE-500K, k0 = 1000

TOP-K 56.02 45.70 20.15 18.87 17.14 32.24 43.12 54.28 20.51 25.86 19.84 40.62 27.01 63.13 17.16 34.79 19.57 50.15
PS-K 54.91 45.61 23.33 22.68 20.41 37.85 42.86 54.51 21.84 29.15 21.77 45.03 27.05 63.43 16.70 37.58 19.87 53.67
POW-K �=0.5 51.81 43.94 23.73 23.67 21.13 39.36 40.55 52.72 21.87 30.03 22.18 46.21 26.09 62.26 16.48 38.17 19.85 54.38
LOG-K 54.82 45.21 21.43 20.18 18.38 34.28 42.66 54.09 20.97 26.81 20.49 41.86 26.97 63.19 17.08 35.51 19.69 51.04

MACRO-PBCA 25.19 21.81 37.69 20.18 23.44 45.08 16.25 22.54 37.88 21.12 24.10 46.23 8.48 22.97 37.77 21.46 24.19 46.65
MACRO-RBCA 43.40 39.60 25.35 27.55 23.72 46.30 33.58 47.34 22.08 33.56 23.63 51.91 21.81 56.27 15.92 40.97 20.07 58.42

MACRO-F1BCA 43.82 36.40 35.42 23.69 26.01 46.36 32.96 41.21 35.79 26.19 27.64 49.20 19.32 44.17 35.55 27.43 28.15 50.67
COVBCA 27.31 24.55 25.92 26.76 21.60 50.16 19.46 28.06 23.14 32.13 21.08 55.40 11.59 32.09 18.45 38.56 18.08 61.15

AMAZON-670K, k0 = 1000

TOP-K 41.71 24.08 10.77 9.68 9.51 14.35 37.71 35.23 14.26 15.16 13.76 20.41 25.35 46.74 14.83 21.56 16.20 26.85
PS-K 41.05 23.77 11.86 10.54 10.42 15.50 37.54 35.13 14.86 15.73 14.31 21.16 25.28 46.65 14.89 21.85 16.34 27.22
POW-K �=0.5 40.90 23.71 11.99 10.65 10.53 15.64 37.47 35.07 14.98 15.84 14.42 21.30 25.24 46.60 14.90 21.92 16.36 27.30
LOG-K 41.54 24.00 11.34 10.10 9.98 14.94 37.69 35.22 14.48 15.37 13.97 20.68 25.35 46.75 14.85 21.64 16.24 26.94

MACRO-PBCA 33.79 19.75 17.27 10.53 12.12 17.75 27.52 26.09 21.09 14.38 15.96 21.96 15.02 28.23 23.21 16.36 17.90 24.13
MACRO-RBCA 39.42 22.92 13.71 11.17 11.47 17.12 36.43 34.19 16.48 16.35 15.40 22.61 24.72 45.70 16.30 22.23 17.46 28.08

MACRO-F1BCA 37.34 21.70 16.49 10.75 12.17 17.65 31.97 30.04 20.39 15.15 16.37 22.25 18.48 34.28 22.79 17.95 18.89 25.12
COVBCA 35.38 20.32 14.04 10.85 11.23 17.70 30.27 28.39 16.44 15.94 14.85 22.93 20.08 37.23 16.20 21.52 16.61 28.15

marginal probabilities, the results might diverge from expectations in some cases. In Appendix E,
we provide more details and conduct further experiments to investigate the impact of randomness,
stopping conditions, quality of probability estimates, and shortlisting on the results. We also present
similar experiments with probabilistic label trees used as an LPE.

Unfortunately, our results show that optimization of macro-measures comes with the cost of a
significant drop in performance on instance-wise measures. Ideally, we would like to improve
the performance on tail labels without sacrificing too much of general performance. To achieve
such a trade-off, we can use straight-forward interpolation of instance-wise precision-at-k, as it
is covered by our framework, and a selected macro-measure, since the considered class of utility
functions is closed under linear combinations. Such an objective can be optimized by the proposed
block-coordinate algorithm without any modification. As an example, we plot in Table 7 the
results of optimizing a linear combination of instance-wise precision and the macro-F1 measure:
 (Y , Ŷ ) = (1 � ↵) Instance-P(Y , Ŷ ) + ↵ Macro-F1(Y , Ŷ ), using different values of ↵ 2 [0, 1].
In Appendix E.5, we provide more plots for different utilities, datasets, and values of k. All the plots
show that the instance-vs-macro curve has a nice concave shape that dominates simple baselines.
In particular, the initial significant improvement on macro-measures comes with a minor drop in
instance-measures, and only if one wants to optimize more strongly for macro-measures, the drop on
instance-wise measures becomes more severe.
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8 Discussion

The advantage of the ETU framework is that one can use multiple inference strategies without
re-training a model. This is especially useful in cases where it is not a-priori clear which performance
measure should be optimized, or predictions for different purposes are needed at the same time. On
the other hand, as this framework optimizes the performance directly on a given test set, it is not
designed to make predictions for single instances independently. The ETU framework has mainly
been studied in the case of binary classification problems. We are not aware of any work that focuses
on optimizing the complex performance metrics in the ETU framework for multi-label classification.
One could try to generalize the results from binary classification, but the existing algorithms might
not scale well to the extreme number of labels and they do not take the budget of k labels into account.

Our paper gives novel and non-trivial results regarding this challenging optimization problem. We
have thoroughly analyzed the ETU framework for a wide class of performance metrics, derived
optimal prediction rules and constructed their computationally efficient approximations with provable
regret guarantees and being robust against model misspecification. Our algorithm, based on block
coordinate descent, scales effortlessly to XMLC problems and obtains promising empirical results.

Table 3: Four different classes of utilities

Linear in Approx. Algorithm

t, q, p No Instance-wise
t, q Yes Instance-wise
t, p No Block-Coordinate
— Yes Block-Coordinate

Overall, we identified four categories of utili-
ties, that differ in the complexity of the opti-
mization algorithm—whether to use instance-
wise optimization as in Section 4.2, or the block
coordinate-ascent (Algorithm 1)— and the guar-
antees for the result—whether semi-empirical
quantities (Section 4.1) lead to an optimal so-
lution, or a suboptimal with error bounded by
Theorem 5.2. These are given as follows and
summarized in Table 3:

• Fully linear: Optimal predictions for metrics that are linear in all entries of the confusion
matrix, as (6), can be solved exactly in an instance-wise manner. Examples are classical
metrics such as instance-wise precision@k, or propensity-scored precision@k.

• Linear in predictions: Approximately optimal predictions for metrics that are linear in the
predictions as given in (15) can be obtained using instance-wise optimization, by switching
from  ETU to  ̃ETU. An example is macro recall@k.

• Linear in labels: If a metric is linear in the label variables as given in (14), then  ̃ETU ⌘
 ETU. However, the resulting combinatorial optimization problem for  ̃ETU is still complex
enough, and we can solve it only locally. An example is macro precision@k.

• Nonlinear metrics: If none of the above apply, we have  ̃ETU 6=  ETU, and have to
solve it locally using block-coordinate ascent. This is the case of macro F -measure@k, or
coverage@k.

The macro-averaged metrics budgeted at k are attractive for measuring the long-tail performance.
Macro-averaging treats all the labels as equally important, while the budget of k predictions requires
the prediction algorithm to choose the labels “wisely." We believe that this approach is substantially
better than the one based on propensity-scored metrics. It is important to make the distinction between
a metric used as a surrogate for training or inference, and its use as a performance metric in itself.
While the former might be well justified for many metrics, the latter not necessarily as a metric might
not have a clear interpretation of the calculated numbers.

Finally, the proposed framework is a plug-in approach that works on estimates of marginal
probabilities and can be seamlessly applied to many existing state-of-the-art XMLC algorithms
that are able to output such predictions, including XR-Transformer [51], CascadeXML [20], and
algorithmic approaches for dealing with missing labels [40, 36]. It can also be combined with
recently proposed methods that try to improve predictive performance on the tail labels by, e.g.,
leveraging labels features to estimate labels-correlations [29, 39, 9, 52] or to do data augmentation
and generate new training points for tail labels [43, 21, 8].
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