

Kalina Jasinska-Kobus^{1,2} Marek Wydmuch[⊥] ¹*Poznan University of Technology, Poland* ²*ML* Research at Allegro.pl, Poland

Motivation

- In modern machine learning applications, the label space can be enormous, containing even millions of different labels (**eXtreme Classification (XC)**):
- content annotation for multimedia search,
- different types of recommendation: webpages-to-ads, ads-to-bid-words, users-to-items, queries-to-items, or items-to-queries.
- In these practical applications, label distribution is often highly imbalanced, and relevant labels can be missing.
- -To address this issue, Jain et al. [1] proposed to evaluate XC models in terms of propensity-scored versions of popular measures.

Extreme multi-label classification (XMLC)

-Multi-label classification:

 $\boldsymbol{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d \xrightarrow{\boldsymbol{h}(\boldsymbol{x})} \boldsymbol{y} = (y_1, y_2, \dots, y_m) \in \{0, 1\}^m$

– **Positive labels**: x is associated with a subset of labels $\mathcal{L}_x \subseteq \mathcal{L}$ (positive labels). Set \mathcal{L}_{x} is identified with the vector y, in which $y_{j} = 1 \Leftrightarrow j \in \mathcal{L}_{x}$.

- -Conditional probability of label *j*: $\eta_j(\boldsymbol{x}) = \mathbf{P}(y_j = 1 | \boldsymbol{x}) = \sum_{\boldsymbol{y}: y_j = 1} \mathbf{P}(\boldsymbol{y} | \boldsymbol{x})$
- -Goal: find a classifier $h(x) : \mathcal{X} \to \mathcal{R}^m$ minimizing the expected loss:

$$R_{\ell}(\boldsymbol{h}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathbf{P}(\boldsymbol{x}, \boldsymbol{y})}(\ell(\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{x})))$$

– The optimal classifier: the Bayes classifier for a given loss function ℓ is:

$$\boldsymbol{h}_{\ell}^{*} = rgmin_{\boldsymbol{h}} R_{\ell}(\boldsymbol{h})$$
.

Propensity model

- -Correct labeling in case of an extremely large label set is difficult
- \Rightarrow Common assumption is that positive labels can be missing.

-Let y be the true and \tilde{y} be the observed label vector such that:

$$\mathbf{P}(\tilde{y}_j = 1 \mid y_j = 1) = p_j, \ \mathbf{P}(\tilde{y}_j = 0 \mid y_j = 1) = 1 - p_j, \\ \mathbf{P}(\tilde{y}_j = 1 \mid y_j = 0) = 0, \ \mathbf{P}(\tilde{y}_j = 0 \mid y_j = 0) = 1,$$

where $p_j \in [0, 1]$ is the propensity of observing a positive label when it is indeed positive (the propensity does not depend on x).

- Both training and test sets do follow the propensity model.
- The observed conditional probability of label *j*:

$$\tilde{\eta}_j(\boldsymbol{x}) = \mathbf{P}(\tilde{y}_j = 1 | \boldsymbol{x}) = p_j \mathbf{P}(y_j = 1 | \boldsymbol{x}) = p_j \eta_j(\boldsymbol{x}).$$

– The original conditional probability of label *j* (with **inverse propensity** $q_j = \frac{1}{p_j}$

$$\eta_j(\boldsymbol{x}) = \mathbf{P}(y_j = 1 \mid \boldsymbol{x}) = q_j \mathbf{P}(\tilde{y}_j = 1 \mid \boldsymbol{x}) = q_j \tilde{\eta}_j(\boldsymbol{x}).$$

PROPENSITY-SCORED PROBABILISTIC LABEL TREES

Bayes optimal decisions for psp@k

– **Propensity-scored precision**@k (psp@k) [1]:

$$psp@k(\tilde{\boldsymbol{y}}, \boldsymbol{h}_{@k}(\boldsymbol{x})) = \frac{1}{k} \sum_{j \in \hat{\mathcal{L}}_{\boldsymbol{x}}} q_j \llbracket \tilde{y}_j = 1 \rrbracket,$$

where $\hat{\mathcal{L}}_{\boldsymbol{x}}$ is a set of *k* labels predicted by $\boldsymbol{h}_{@k}$ for \boldsymbol{x} .

-Standard precision@k (p@k) is a special case of psp@k if $q_j = 1$ for all j.

- The conditional risk for $\ell_{psp@k} = -psp@k$:

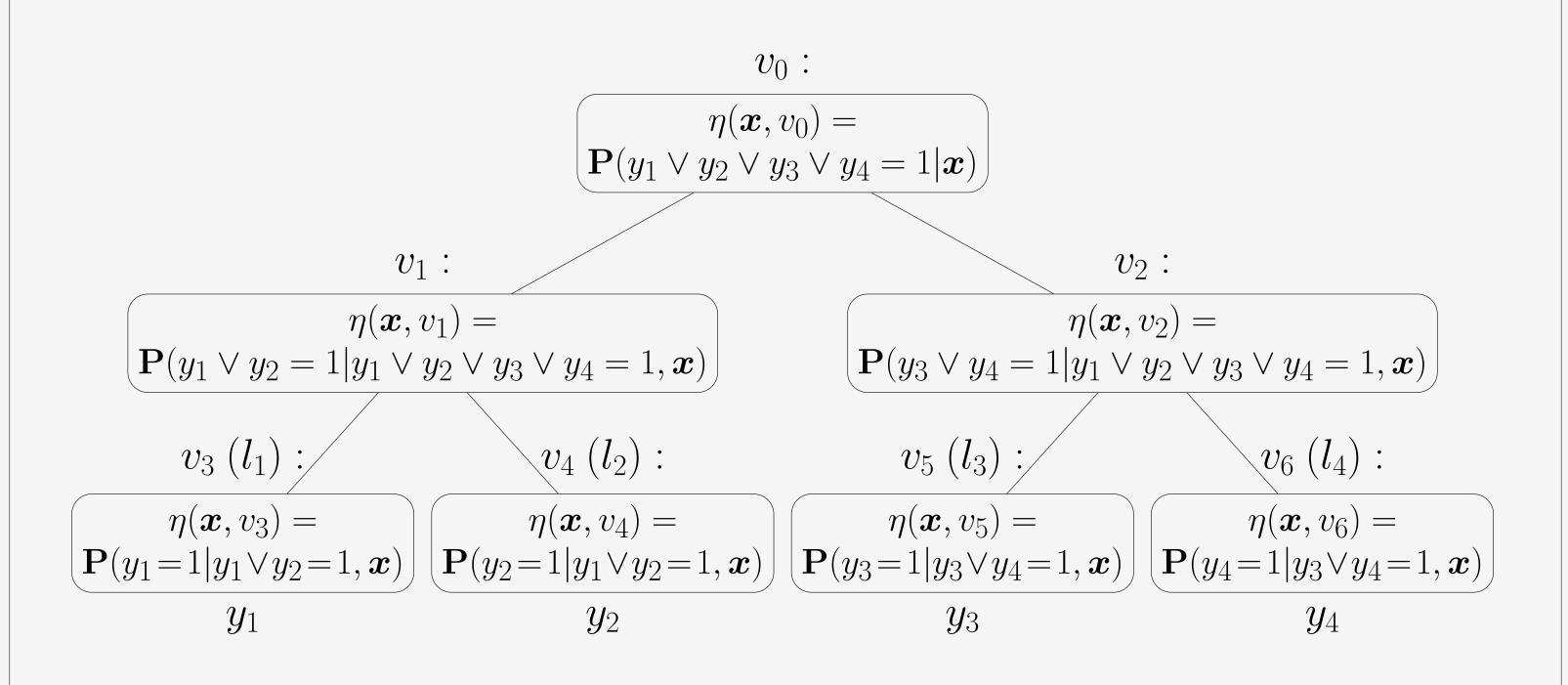
$$R_{psp@k}(\boldsymbol{h}_{@k} | \boldsymbol{x}) = \mathbb{E}_{\tilde{\boldsymbol{y}}} \ell_{psp@k}(\tilde{\boldsymbol{y}}, \boldsymbol{h}_{@k}(\boldsymbol{x})) = -\frac{1}{k} \sum_{j \in \hat{\mathcal{L}}_{\boldsymbol{x}}} q_j \tilde{\eta}_j(\boldsymbol{x}).$$

- -Given propensities or their estimates in the time of prediction, optimal strategy for psp@k: select k labels with the highest values of $q_j \tilde{\eta}_j(\boldsymbol{x})$.
- -Applying this strategy is not straightforward in case of XMLC, calculating probability estimates for the full set of labels is not feasible.

Probabilistic Label Trees (PLTs)

– **Probabilistic Label Tree (PLT)** [2] uses a tree, with set of nodes *V*, in which each leaf $l_i \in L$ corresponds to one label $j \in \mathcal{L}$, to factorize conditional probabilities of labels:

$$\eta_{l_j}(\boldsymbol{x}) = \eta_j(\boldsymbol{x}) = \mathbf{P}(y_j = 1 | \boldsymbol{x}) = \prod_{v \in \text{Path}(y_j)} \eta(\boldsymbol{x}, v)$$



– PLTs uses binary classifiers in the tree nodes to obtain $\hat{\eta}$ – estimates of η . – PLTs has been recently implemented in several state-of-the-art algorithms: PARABEL [3], EXTREMETEXT [4], BONSAI [5], ATTENTIONXML [6], NAP-KINXC [7].

Krzysztof Dembczyński^{1,4} Rohit Babbar³ ⁴Yahoo! Research, New York, USA ³*Aalto University, Helsinki, Finland*

Prediction in PLTs – UNIFORM-COST-SEARCH- or BEAM-SEARCH-based inference can be used to efficiently find k labels with highest estimates of $\eta_i(\boldsymbol{x})$. – Example of PLT's top-1 inference: $\left(\hat{\eta}(\boldsymbol{x}, v_0) = \hat{\eta}_{v_0}(\boldsymbol{x}) = 1.0\right)$ v_1 : v_2 : $\hat{\eta}(\boldsymbol{x}, v_2) = 0.5 \,,$ $\hat{\eta}(\boldsymbol{x}, v_1) = 0.8 \,,$ $\hat{\eta}_{v_1}(\boldsymbol{x}) = \hat{\eta}(\boldsymbol{x}, v_1)\hat{\eta}_{v_0}(\boldsymbol{x}) = 0.8$ $\hat{\eta}_{v_2}(\boldsymbol{x}) = \hat{\eta}(\boldsymbol{x}, v_2)\hat{\eta}_{v_0}(\boldsymbol{x}) = 0.5$ v_5 : v_3 : $\hat{\eta}(\boldsymbol{x}, v_4) = 0.75 \,,$ $\hat{\eta}(\boldsymbol{x}, v_3) = 0.05 \,,$ $\hat{\eta}(\boldsymbol{x}, v_5) = 0.7\,,$ $\hat{\eta}(\boldsymbol{x}, v_6) = 0.1 \,,$ $\hat{\eta}_{v_6}(\bm{x}) = \hat{\eta}(\bm{x}, v_6) \hat{\eta}_{v_2}(\bm{x}) = 0.05$ $\hat{\eta}_1(oldsymbol{x}) = 0.04$ $\hat{\eta}_3(\boldsymbol{x}) = 0.35$ $\hat{\eta}_2(oldsymbol{x}) = oldsymbol{0.6}$ $\hat{\eta}_4(oldsymbol{x})=0.05$

Propensity-scored PLTs (PS-PLTs)

- -Since inverse propensities $q_i \ge 1$, we need to introduce a new A^* -SEARCH**based inference** to find labels with highest values of $q_i \tilde{\eta}_i(\boldsymbol{x})$.
- Notice that:

$$q_j \hat{\tilde{\eta}}_j(\boldsymbol{x}) = \exp\left(-\left(-\log q_j - \sum_{v \in \text{Path}(l_j)} \log \hat{\tilde{\eta}}(\boldsymbol{x}, v)\right)\right) = \exp\left(-f(l_j, \boldsymbol{x})\right),$$

where $f(l_j, \boldsymbol{x})$ is a cost function for label *j*.

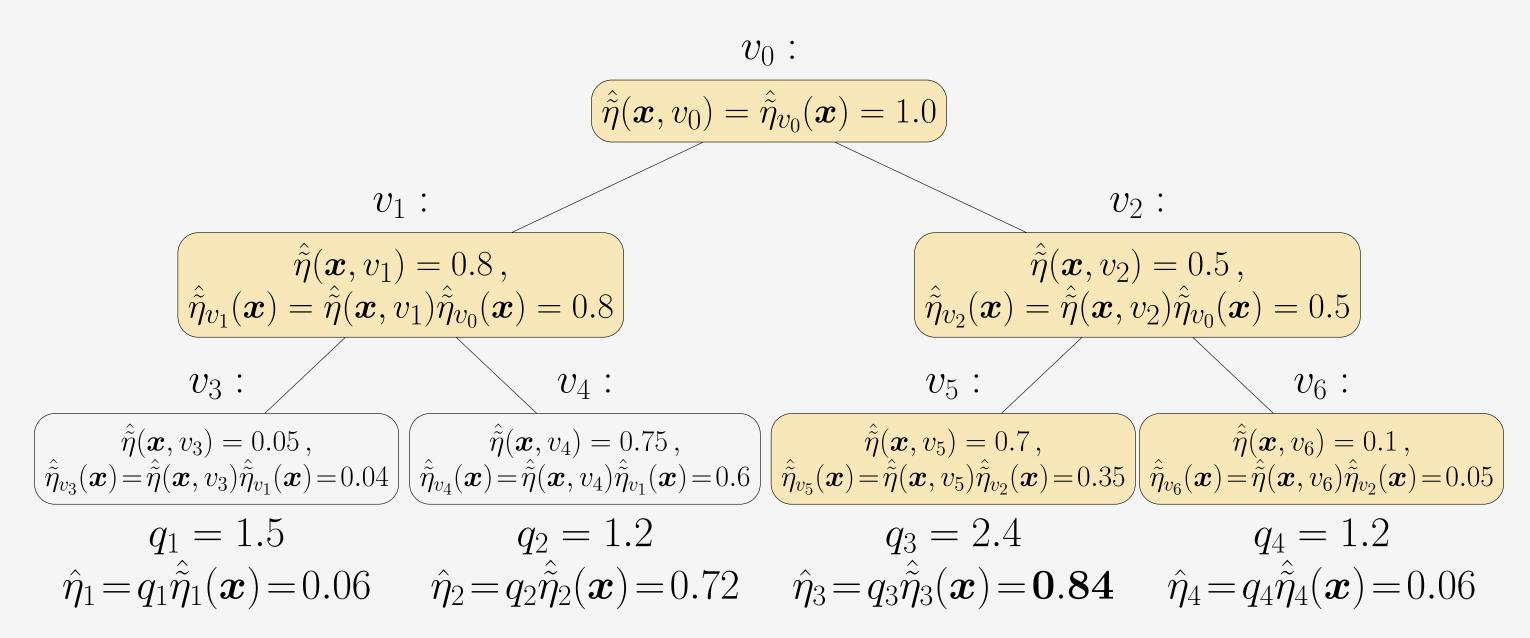
 $-A^*$ -SEARCH inference is guided by:

$$\hat{f}(v, \boldsymbol{x}) = g(v, \boldsymbol{x}) + h(v, \boldsymbol{x}) = -\log \max_{j \in \mathcal{L}_v} q_j - \sum_{v' \in \text{Path}(v)} \log \hat{\tilde{\eta}}(\boldsymbol{x}, v'),$$

where $g(v, \boldsymbol{x})$ is a cost of reaching tree node v from the root and $h(v, \boldsymbol{x})$ is a heuristic estimating the cost of reaching the best leaf node from node *v*.

– PS-PLT inference algorithm is admissible and optimally efficient.

– Example of PS-PLT's top-1 inference:



Aalto University

Experimental results

- Comparison on benchmark datasets from the XMLC repository [8].
- True propensities are unknown for the benchmark datasets.
- Propensities modeled as proposed by Jain et al. [1]:

$$p_j = \mathbf{P}(\tilde{y}_j = 1 \mid y_j = 1) = \frac{1}{1 + Ce^{-A\log(N_j + B)}},$$

where N_j is the number of data points annotated with label j in the observed ground truth dataset of size *N*, parameters *A* and *B* are specific for each dataset, and $C = (\log N - 1)(B + 1)^{A}$.

-PS-PLTs compared to SOTA on propensity-scored and standard precision $\mathbb{Q}{1,3,5}$ [%], and on CPU train [h] and prediction times [ms]:

Algorithm	psp@1	psp@3	psp@5	p@1	p@3	p@5	t_{train}	t/N_{test}
	WikipediaLarge-500K, $A = 0.5, B = 0.4$							
PROXML [9]	33.10	35.00	39.40	68.80	48.90	37.90	\approx 1595920	≈ 496
PW-DISMEC [10]	30.31	31.56	33.52	66.38	45.69	35.85	≈ 16272	≈ 457
PFASTREXML [1]	29.20	27.60	27.70	59.50	40.20	30.70	51.07	15.24
Parabel [3]	28.80	31.90	34.60	67.50	48.70	37.70	7.83	3.84
PLT [7]	26.11	30.76	33.98	67.48	48.19	37.65	62.39	14.58
PS-PLT (ours)	33.69	35.34	37.63	<u>67.52</u>	<u>48.71</u>	<u>38.09</u>		30.02
	Amazon-670K, $A = 0.6, B = 2.6$							
ProXML	30.80	32.80	35.10	43.50	38.70	35.30	\approx 75160	≈ 111
PW-DISMEC	30.60	33.27	35.51	41.70	37.81	34.92	≈ 810	≈ 103
PFASTREXML	29.30	30.80	32.43	39.46	35.81	33.05	3.01	9.96
PARABEL	25.43	29.43	32.85	<u>44.89</u>	<u>39.80</u>	36.00	0.46	1.73
PLT	26.01	29.80	33.31	44.47	39.73	<u>36.25</u>	(9')	5.25
PS-PLT	30.67	<u>32.94</u>	<u>34.96</u>	43.25	39.28	36.06		9.56

Source code: https://github.com/mwydmuch/napkinXC

References

[1] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for recommendation, tagging, ranking and other missing label applications. KDD, 2016

[2] Kalina Jasinska, Krzysztof Dembczynski, Róbert Busa-Fekete, Karlson Pfannschmidt, Timo Klerx, and Eyke Hüllermeier. Extreme F-measure maximization using sparse probability estimates. ICML, 2016

[3] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In WWW, 2018

[4] Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and Krzysztof Dembczynski. A no-regret generalization of hierarchical softmax to extreme multi-label classification. In *NeurIPS*, 2018

[5] Sujay Khandagale, Han Xiao, and Rohit Babbar. Bonsai - diverse and shallow trees for extreme multi-label classification. 2019

[6] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and Shanfeng Zhu. AttentionXML: Label tree-based attention-aware deep model for high-performance extreme multi-label text classification. In NeurIPS. 2019

[7] Kalina Jasinska-Kobus, Marek Wydmuch, Krzysztof Dembczyński, Mikhail Kuznetsov, and Róbert Busa-Fekete. Probabilistic label trees for extreme multi-label classification. 2020

[8] Kush Bhatia, Kunal Dahiya, Himanshu Jain, Anshul Mittal, Yashoteja Prabhu, and Manik Varma. The extreme classification repository: Multi-label datasets and code, 2016

[9] Rohit Babbar and Bernhard Schölkopf. Data scarcity, robustness and extreme multi-label classification. *Machine Learning*, 108, 2019

[10] Mohammadreza Qaraei, Erik Schultheis, Priyanshu Gupta, and Rohit Babbar. Convex surrogates for unbiased loss functions in extreme classification with missing labels. In WWW, 2021