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Motivation
– In modern machine learning applications, the label space can be enormous,

containing even millions of different labels (eXtreme Classification (XC)):
– content annotation for multimedia search,
– different types of recommendation: webpages-to-ads, ads-to-bid-words,

users-to-items, queries-to-items, or items-to-queries.
– In these practical applications, label distribution is often highly imbal-

anced, and relevant labels can be missing.
– To address this issue, Jain et al. [1] proposed to evaluate XC models in

terms of propensity-scored versions of popular measures.

Extreme multi-label classification (XMLC)
– Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

– Positive labels: x is associated with a subset of labels Lx ⊆ L (positive
labels). Set Lx is identified with the vector y, in which yj = 1⇔ j ∈ Lx.

– Conditional probability of label j: ηj(x) = P(yj = 1|x) =
∑

y:yj=1
P(y|x)

– Goal: find a classifier h(x) : X → Rm minimizing the expected loss:

R`(h) = E(x,y)∼P(x,y)(`(y,h(x))

– The optimal classifier: the Bayes classifier for a given loss function ` is:

h∗` = argmin
h

R`(h) .

Propensity model
– Correct labeling in case of an extremely large label set is difficult
⇒ Common assumption is that positive labels can be missing.

– Let y be the true and ỹ be the observed label vector such that:

P(ỹj = 1 | yj = 1) = pj , P(ỹj = 0 | yj = 1) = 1− pj ,
P(ỹj = 1 | yj = 0) = 0 , P(ỹj = 0 | yj = 0) = 1 ,

where pj ∈ [0, 1] is the propensity of observing a positive label when it is
indeed positive (the propensity does not depend on x).

– Both training and test sets do follow the propensity model.
– The observed conditional probability of label j:

η̃j(x) = P(ỹj = 1 |x) = pjP(yj = 1 |x) = pjηj(x) .

– The original conditional probability of label j (with inverse propensity
qj =

1
pj

):
ηj(x) = P(yj = 1 |x) = qjP(ỹj = 1 |x) = qjη̃j(x) .

Bayes optimal decisions for psp@k
– Propensity-scored precision@k (psp@k) [1]:

psp@k(ỹ,h@k(x)) =
1

k

∑
j∈L̂x

qjJỹj = 1K ,

where L̂x is a set of k labels predicted by h@k for x.
– Standard precision@k (p@k) is a special case of psp@k if qj = 1 for all j.
– The conditional risk for `psp@k = −psp@k:

Rpsp@k(h@k |x) = Eỹ`psp@k(ỹ,h@k(x)) = −
1

k

∑
j∈L̂x

qjη̃j(x) .

– Given propensities or their estimates in the time of prediction, optimal
strategy for psp@k: select k labels with the highest values of qjη̃j(x).

– Applying this strategy is not straightforward in case of XMLC, calculat-
ing probability estimates for the full set of labels is not feasible.

Probabilistic Label Trees (PLTs)
– Probabilistic Label Tree (PLT) [2] uses a tree, with set of nodes V , in which

each leaf lj ∈ L corresponds to one label j ∈ L, to factorize conditional
probabilities of labels:

ηlj(x) = ηj(x) = P(yj = 1|x) =
∏

v∈Path(yj)

η(x, v)

η(x, v0) =
P(y1 ∨ y2 ∨ y3 ∨ y4 = 1|x)

v0 :

η(x, v1) =
P(y1 ∨ y2 = 1|y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

v1 :

η(x, v3) =
P(y1=1|y1∨y2=1,x)

v3 (l1) :

y1

η(x, v4) =
P(y2=1|y1∨y2=1,x)

v4 (l2) :

y2

η(x, v2) =
P(y3 ∨ y4 = 1|y1 ∨ y2 ∨ y3 ∨ y4 = 1,x)

v2 :

η(x, v5) =
P(y3=1|y3∨y4=1,x)

v5 (l3) :

y3

η(x, v6) =
P(y4=1|y3∨y4=1,x)

v6 (l4) :

y4

– PLTs uses binary classifiers in the tree nodes to obtain η̂ – estimates of η.
– PLTs has been recently implemented in several state-of-the-art algorithms:

PARABEL [3], EXTREMETEXT [4], BONSAI [5], ATTENTIONXML [6], NAP-
KINXC [7].

Prediction in PLTs
– UNIFORM-COST-SEARCH- or BEAM-SEARCH-based inference can be used

to efficiently find k labels with highest estimates of ηj(x).
– Example of PLT’s top-1 inference:

η̂(x, v0) = η̂v0(x) = 1.0

v0 :

η̂(x, v1) = 0.8 ,
η̂v1(x) = η̂(x, v1)η̂v0(x) = 0.8

v1 :

η̂(x, v3) = 0.05 ,
η̂v3(x)= η̂(x, v3)η̂v1(x)=0.04

v3 :

η̂1(x) = 0.04

η̂(x, v4) = 0.75 ,
η̂v4(x)= η̂(x, v4)η̂v1(x)=0.6

v4 :

η̂2(x) = 0.6

η̂(x, v2) = 0.5 ,
η̂v2(x) = η̂(x, v2)η̂v0(x) = 0.5

v2 :

η̂(x, v5) = 0.7 ,
η̂v5(x)= η̂(x, v5)η̂v2(x)=0.35

v5 :

η̂3(x) = 0.35

η̂(x, v6) = 0.1 ,
η̂v6(x)= η̂(x, v6)η̂v2(x)=0.05

v6 :

η̂4(x) = 0.05

Propensity-scored PLTs (PS-PLTs)
– Since inverse propensities qj ≥ 1, we need to introduce a new A∗-SEARCH-

based inference to find labels with highest values of qj ˆ̃ηj(x).
– Notice that:

qj ˆ̃ηj(x) = exp
(
−
(
− log qj −

∑
v∈Path(lj)

log ˆ̃η(x, v)
))

= exp
(
− f (lj,x)

)
,

where f (lj,x) is a cost function for label j.
–A∗-SEARCH inference is guided by:

f̂ (v,x) = g(v,x) + h(v,x) =

h(v,x)︷ ︸︸ ︷
− log max

j∈Lv
qj

g(v,x)︷ ︸︸ ︷
−

∑
v′∈Path(v)

log ˆ̃η(x, v′) ,

where g(v,x) is a cost of reaching tree node v from the root and h(v,x) is a
heuristic estimating the cost of reaching the best leaf node from node v.

– PS-PLT inference algorithm is admissible and optimally efficient.
– Example of PS-PLT’s top-1 inference:

ˆ̃η(x, v0) = ˆ̃ηv0(x) = 1.0

v0 :

ˆ̃η(x, v1) = 0.8 ,
ˆ̃ηv1(x) =

ˆ̃η(x, v1)ˆ̃ηv0(x) = 0.8

v1 :

ˆ̃η(x, v3) = 0.05 ,
ˆ̃ηv3(x)=

ˆ̃η(x, v3)ˆ̃ηv1(x)=0.04

v3 :

q1 = 1.5
η̂1=q1 ˆ̃η1(x)=0.06

ˆ̃η(x, v4) = 0.75 ,
ˆ̃ηv4(x)=

ˆ̃η(x, v4)ˆ̃ηv1(x)=0.6

v4 :

q2 = 1.2
η̂2=q2 ˆ̃η2(x)=0.72

ˆ̃η(x, v2) = 0.5 ,
ˆ̃ηv2(x) =

ˆ̃η(x, v2)ˆ̃ηv0(x) = 0.5

v2 :

ˆ̃η(x, v5) = 0.7 ,
ˆ̃ηv5(x)=

ˆ̃η(x, v5)ˆ̃ηv2(x)=0.35

v5 :

q3 = 2.4
η̂3=q3 ˆ̃η3(x)=0.84

ˆ̃η(x, v6) = 0.1 ,
ˆ̃ηv6(x)=

ˆ̃η(x, v6)ˆ̃ηv2(x)=0.05

v6 :

q4 = 1.2
η̂4=q4 ˆ̃η4(x)=0.06

Experimental results
– Comparison on benchmark datasets from the XMLC repository [8].
– True propensities are unknown for the benchmark datasets.
– Propensities modeled as proposed by Jain et al. [1]:

pj = P(ỹj = 1 | yj = 1) =
1

1 + Ce−A log(Nj+B)
,

whereNj is the number of data points annotated with label j in the observed
ground truth dataset of size N , parameters A and B are specific for each
dataset, and C = (logN − 1)(B + 1)A.

– PS-PLTs compared to SOTA on propensity-scored and standard
precision@{1, 3, 5} [%], and on CPU train [h] and prediction times [ms]:

Algorithm psp@1 psp@3 psp@5 p@1 p@3 p@5 ttrain t/Ntest

WikipediaLarge-500K, A = 0.5, B = 0.4

PROXML [9] 33.10 35.00 39.40 68.80 48.90 37.90 ≈1595920 ≈496
PW-DISMEC [10] 30.31 31.56 33.52 66.38 45.69 35.85 ≈16272 ≈457

PFASTREXML [1] 29.20 27.60 27.70 59.50 40.20 30.70 51.07 15.24
PARABEL [3] 28.80 31.90 34.60 67.50 48.70 37.70 7.83 3.84
PLT [7] 26.11 30.76 33.98 67.48 48.19 37.65

62.39
14.58

PS-PLT (ours) 33.69 35.34 37.63 67.52 48.71 38.09 30.02

Amazon-670K, A = 0.6, B = 2.6

PROXML 30.80 32.80 35.10 43.50 38.70 35.30 ≈75160 ≈111
PW-DISMEC 30.60 33.27 35.51 41.70 37.81 34.92 ≈810 ≈103

PFASTREXML 29.30 30.80 32.43 39.46 35.81 33.05 3.01 9.96
PARABEL 25.43 29.43 32.85 44.89 39.80 36.00 0.46 1.73
PLT 26.01 29.80 33.31 44.47 39.73 36.25

1.92
5.25

PS-PLT 30.67 32.94 34.96 43.25 39.28 36.06 9.56

Source code: https://github.com/mwydmuch/napkinXC
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