

A NO-REGRET GENERALIZATION OF HIERARCHICAL SOFTMAX TO EXTREME MULTI-LABEL CLASSIFICATION

Marek Wydmuch Kalina Jasinska Krzysztof Dembczyński Institute of Computing Science, Poznań University of Technology, Poland

Motivation

- In several machine learning applications, the label space can be enormous, containing even millions of different classes.
- Learning problems of this scale are referred to as **extreme classification**.
- Typical examples include:
 - Image and video annotation for multimedia search,
 - Tagging of text documents for categorization of Wikipedia articles,
 - Recommendation of bid words for online ads,
 - Prediction of the next word in a sentence.
- To tackle extreme classification problems in an efficient way, one can organize labels into a tree as in **hierarchical softmax** (HSM).
- To adapt HSM to **extreme multi-label classification** (XMLC), several very popular tools, such as fastText [1] and Learned Tree [6], apply the **pick-one-label** heuristic, which does not lead to a **consistent** solution.
- **Probabilistic label trees** are a **no-regret generalization** of HSM to XMLC.

XMLC under precision@k

-Multi-label classification:

 $\boldsymbol{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d \xrightarrow{\boldsymbol{h}(\boldsymbol{x})} \boldsymbol{y} = (y_1, y_2, \dots, y_m) \in \{0, 1\}^m$

- Marginal probability of a label: $\eta_j(\boldsymbol{x}) = \mathbf{P}(y_j = 1 | \boldsymbol{x}) = \sum_{\boldsymbol{y}: y_j = 1} \mathbf{P}(\boldsymbol{y} | \boldsymbol{x})$ - Goal: find a classifier $\boldsymbol{h}(\boldsymbol{x}) : \mathcal{X} \to \mathcal{R}^m$ minimizing the expected loss:

$$L_{\ell}(\boldsymbol{h}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathbf{P}(\boldsymbol{x}, \boldsymbol{y})}(\ell(\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{x})))$$

– The **regret** of a classifier h with respect to ℓ

$$\operatorname{reg}_{\ell}(\boldsymbol{h}) = L_{\ell}(\boldsymbol{h}) - L_{\ell}(\boldsymbol{h}_{\ell}^{*}) = L_{\ell}(\boldsymbol{h}) - L_{\ell}^{*}$$

– Precision@k is defined as:

$$p@k(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{h}) = \frac{1}{k} \sum_{j \in \hat{\mathcal{Y}}_k} \llbracket y_j = 1 \rrbracket,$$

where $\hat{\mathcal{Y}}_k$ is a set of k labels predicted by \boldsymbol{h} for \boldsymbol{x} .

– Conditional risk for precision@k:

$$L_{p@k}(\boldsymbol{h} \mid \boldsymbol{x}) = \mathbb{E}\left(\ell_{p@k}(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{h})\right) = 1 - \frac{1}{k} \sum_{j \in \hat{\mathcal{Y}}_k} \eta_j(\boldsymbol{x}),$$

-The optimal strategy: predict k labels with the highest $\eta_j(x)$.

$$\eta'_j(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \mathcal{Y}} \frac{y_j}{\sum_{j'=1}^m y_{j'}} \mathbf{P}(\boldsymbol{y} \mid \boldsymbol{x})$$

– **Inconsistent** (non-zero regret) for label-wise logistic loss and precision@k

$oldsymbol{y}$	$\mathbf{P}(\boldsymbol{y} \boldsymbol{x})$	True $\eta_j(\boldsymbol{x})$ Estimated $\eta'_j(\boldsymbol{x})$
(1, 0, 0)	0.1	$\eta_1(x) = 0.6 \eta_1'(x) = 0.35$
(1, 1, 0)	0.5	$\eta_2({m x}) = 0.5 \eta_2'({m x}) = 0.25$
(0, 0, 1)	0.4	$\eta_3({m x}) = 0.4 \eta_3'({m x}) = 0.4$

-Given conditionally independent labels, $P(y | x) = \prod_{j=1}^{m} P(y_i | x)$, HSM with pick-one-label heuristic is consistent for the precision@k loss.

Mikhail Kuznetsov Róbert

Yahoo! Research, New York, USA

Probabilistic label trees

- **PLTs** [3] are a **no-regret** generalization of HSM to **multi-label** problems.
- -Extended code $\boldsymbol{z} = (1, z_1, \dots, z_l).$
- Factorization of the marginal probability:

$$(oldsymbol{x}) = \mathbf{P}(oldsymbol{z} \,|\, oldsymbol{x}) = \prod_{i=0}^l \mathbf{P}(z_i \,|\, oldsymbol{z}^{i-1}, oldsymbol{x}) \,.$$

$$\begin{array}{c} \mathbf{P}(z_{0}=1 \mid \boldsymbol{x}) = 1 \\ \hline \mathbf{P}(z_{1}=0 \mid z_{0}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{1}=0 \mid z_{0}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=0, \boldsymbol{x}) = 0.1 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{0}=1, z_{1}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{2}=0 \mid z_{1}=1, z_{1}=1, z_{1}=1, z_{1}=1, \boldsymbol{x}) = 0.5 \\ \hline \mathbf{P}(z_{1}=1, z_{1}=1, z_{1$$

– Different **normalization** than in HSM:

$$\sum_{c} \mathbf{P}(z_i = c \,|\, \boldsymbol{z}^{i-1}, \boldsymbol{x}) \ge 1$$

– PLTs applied to a multi-class distribution boil down to HSM.

Regret bounds

– Bound for the **absolute difference** between the **true** and the **estimated marginal probability** for label *j*

$$|\eta_j(\boldsymbol{x}) - \hat{\eta}_j(\boldsymbol{x})| \le \sum_{i=0}^l \mathbf{P}(\boldsymbol{z}^{i-1} | \boldsymbol{x}) \sqrt{\frac{2}{\lambda}} \sqrt{\operatorname{reg}_{\ell}(f_{\boldsymbol{z}^i} | \boldsymbol{z}^{i-1}, \boldsymbol{x})},$$

– Bound for the **regret** with respect to **precision**@*k*

$$\operatorname{reg}_{p@k}(\boldsymbol{h} \mid \boldsymbol{x}) = \frac{1}{k} \sum_{i \in \mathcal{Y}_k} \eta_i(\boldsymbol{x}) - \frac{1}{k} \sum_{j \in \hat{\mathcal{Y}}_k} \eta_j(\boldsymbol{x}) \le 2 \max_l |\eta_l(\boldsymbol{x}) - \hat{\eta}_l(\boldsymbol{x})|$$

Implementation (extremeText)

- Based on fastText.
- Tree structures: random, Huffman tree or build via top-down hierarchical balanced clustering.
- –linear models in the nodes.
- Online training with features embedding (hidden, dense representation).
- -L2 regularization for all parameters of the model (for embedding and internal node classifiers).
- Hidden representation obtained by weighted average of the feature vectors of proportion to the tf-idf scores of features.
- Depth first search prediction for fast online prediction.

Source code: https://github.com/mwydmuch/extremeText

Róbert Busa-Fekete New York, USA

Experimental results

Results on WikiLSHTC, Wiki-500K and Amazon-670K

Dataset	Metrics	fastText	LearnedTrees	extremeText	Parabel [5]	XML-CNN [2]
WikiLSHTC	P@1	41.13	50.15	58.73	61.53	+
$N_{train} = 1778351$	P@3	24.09	31.95	39.24	40.07	+
$N_{test} = 587084$	P@5	17.44	23.59	29.26	29.25	+
d = 617899	T_{train}	207	212m	550m	34m	+
m = 325056	T_{test}/N_{test}	1.25ms	4.76ms	0.81ms	0.92ms*	+
	model size	6.5G	6.5G	3.3G	1.1G*	+
Wiki-500K	P@1	32.73	37.18	64.48	66.12	59.85
$N_{train} = 1813391$	P@3	19.02	21.62	45.84	47.02	39.28
$N_{test} = 783743$	P@5	14.46	16.01	35.46	36.45	29.81
d = 2381304	T_{train}	496m	531m	1253m	168m	7032m*
m = 501070	T_{test}/N_{test}	2.05ms	6.43ms	1.07ms	4.68ms*	21.06ms*
	model size	11G	11G	5.5G	2.0G*	3.7G*
Amazon-670K	P@1	25.47	27.67	39.90	41.59	35.39
$N_{train} = 490449$	P@3	21.47	20.96	35.36	37.18	33.74
$N_{test} = 153025$	P@5	18.61	17.72	32.04	33.85	32.64
d = 135909	T_{train}	162m	182m	241m	8m	3134m*
m = 670091	T_{test}/N_{test}	7.84ms	5.13ms	1.72ms	0.68ms*	16.18ms*
	model size	3.2G	3.2G	1.5G	0.7G*	1.5G*

N – number of samples, *T* – CPU time, *m* – number of labels, *d* – number of features, * – result of offline prediction, * – calculated on GPU, \dagger – cannot be calculated due to lack of a text version of a dataset

Ablation analysis for Amazon-670K

Acknowledgements: Kalina Jasinska is supported by the Polish National Science Center under grant no. 2017/25/N/ST6/00747. The work of Krzysztof Dembczyski was supported by the Polish Ministry of Science and Higher Education under grant no. 09/91/DSPB/0651. Computational experiments have been performed in Poznan Supercomputing and Networking Center.

Kalina Jasinska is supported by:

allegro

Marek Wydmuch is supported by:

- [1] P. Bojanowski T. Mikolov A. Joulin, E. Grave. Bag of tricks for efficient text classification. *CoRR*, 2016
- [2] Y. Wu Y. Yang J. Liu, W. Chang. Deep learning for extreme multi-label text classification. In SIGIR, 2018
- [3] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hüllermeier. Extreme Fmeasure maximization using sparse probability estimates. In *ICML*, 2016
- [4] F Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In AISTATS, 2005
- [5] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In *The Web Conf*, 2018
- [6] D. Sontag Y. Jernite, A. Choromanska. Simultaneous learning of trees and representations for extreme classification and density estimation. In *ICML*, 2017