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Abstract—This paper presents the first two editions of Visual
Doom AI Competition , held in 2016 and 2017. The challenge
was to create bots that compete in a multi-player deathmatch
in a first-person shooter (FPS) game, Doom. The bots had to
make their decisions based solely on visual information, i.e., a
raw screen buffer. To play well, the bots needed to understand
their surroundings, navigate, explore, and handle the opponents
at the same time. These aspects, together with the competitive
multi-agent aspect of the game, make the competition a unique
platform for evaluating the state of the art reinforcement learning
algorithms. The paper discusses the rules, solutions, results,
and statistics that give insight into the agents’ behaviors. Best-
performing agents are described in more detail. The results of the
competition lead to the conclusion that, although reinforcement
learning can produce capable Doom bots, they still are not yet
able to successfully compete against humans in this game. The
paper also revisits the ViZDoom environment, which is a flexible,
easy to use, and efficient 3D platform for research for vision-based
reinforcement learning, based on a well-recognized first-person
perspective game Doom.

Index Terms—Video Games, Visual-based Reinforcement
Learning, Deep Reinforcement Learning, First-person Perspec-
tive Games, FPS, Visual Learning, Neural Networks

I. INTRODUCTION

Since the beginning of the development of AI systems,
games have been natural benchmarks for AI algorithms be-
cause they provide well-defined rules and allow for easy
evaluation of the agent’s performance. The number of games
solved by AI algorithms has increased rapidly in recent years,
and algorithms like AlphaGo [29], [30] beat the best human
players in more and more complex board games that have
been previously deemed too sophisticated for computers. We
have also witnessed major successes in applying Deep Rein-
forcement Learning to play arcade games [21], [20], [25], for
some of which machines, yet again, surpass humans. However,
AI agents faced with complex first-person-perspective, 3D
environments do not yet come even close to human perfor-
mance. The disparity is most striking when simultaneous use
of multiple skills is required, e.g., navigation, localization,
memory, self-awareness, exploration, or precision. Obtaining
these skills is particularly important considering the potential
applicability of self-learning systems for robots acting in the
real world.

Despite the limited real-world applicability still, a large
body of the research in reinforcement learning has concen-
trated on 2D Atari-like games and abstract classical games.
This is caused, in part, by the scarcity of suitable environments
and established benchmarks for harder environments.

Introduced in early 2016, Doom-based ViZDoom [14] was
the first published environment that aimed to provide a com-
plex 3D first-person perspective platform for Reinforcement
Learning (RL) research. ViZDoom was created as a response
to the sparsity of studies on RL in complex 3D environ-
ments from raw visual information. The flexibility of the
platform has led to dozens of research works in RL that
used it as an experimental platform. It has also triggered
the development of other realistic 3D worlds and platforms
suitable for machine learning research, which have appeared
since the initial release of ViZDoom, such as Quake-based
DeepMind’s Lab [2] and Minecraft-based Project Malmo [13],
which follow similar principles as ViZDoom. Related are
also environments that focus on the task of house navigation
using raw visual information with very realistic renderers:
House3D [36], AI2-THOR [16], HoME [5], CHALET [38],
UnrealCV [27], however, most of this environments focus only
on that particular task and lack extensibility and flexibility.

An effective way to promote research in such complex
environments as ViZDoom is to organize open competitions.
In this paper, we describe the first two editions of the Visual
Doom AI Competition (VDAIC) that were held during the
Conference on Computational Intelligence and Games 2016
and 2017. The unique feature of this annual competition is that
the submitted bots compete in multi-player matches having
the screen buffer as the only source of information about
the environment. This task requires effective exploration and
navigation through a 3D environment, gathering resources,
dodging missiles and bullets, and, last but not least, accurate
shooting. Such setting also implies sparse and often delayed
rewards, which is a challenging case for most of the popular
RL methods. The competition seems to be one of a kind, for
the time, as it combines 3D vision with the multi-player aspect.
The competition can be termed as belonging to ‘AI e-sport’,
trying to merge the trending e-sports and events such as the
driverless car racing.

II. THE VIZDOOM RESEARCH PLATFORM

A. Design Requirements
The ViZDoom reinforcement learning research platform has

been developed to fulfill the following requirements:
1) based on popular open-source 3D FPS game (ability to

modify and publish the code),
2) lightweight (portability and the ability to run multiple

instances on a single machine with minimal computa-
tional resources),
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3) fast (the game engine should not be the learning bottle-
neck by being capable of generating samples hundreds
or thousands of times faster than real-time),

4) total control over the game’s processing (so that the
game can wait for the bot decisions or the agent can
learn by observing a human playing),

5) customizable resolution and rendering parameters,
6) multi-player games capabilities (agent vs. agent, agent

vs. human and cooperation),
7) easy-to-use tools to create custom scenarios,
8) scripting language to be able to create diverse tasks,
9) ability to bind different programming languages (prefer-

ably written in C++),
10) multi-platform.

In order to meet the above-listed criteria, we have analyzed
several recognizable FPS game engines: Doom, Doom 3,
Quake III, Half-Life 2, Unreal Tournament and Cube. Doom
(see Fig. 1) with its low system requirements, simple archi-
tecture, multi-platform and single and multi-player modes met
most of the conditions (see [14] for a detailed analysis) and
allowed to implement features that would be barely achievable
in other game engines, e.g., off-screen rendering, efficiency,
and easy-to-create custom scenarios. The game is highly
recognizable and runs on the three major operating systems. It
was also designed to work in 320×240 resolution and despite
the fact that modern implementations allow higher resolutions,
it still utilizes low-resolution textures, which positively im-
pacts its resource requirements.

The nowadays unique feature of Doom is its software ren-
derer. This is especially important for reinforcement learning
algorithms, which are distributed on CPUs rather than on
GPUs. Yet another advantage of the CPU rendering is that
Doom can effortlessly be run without a desktop environment
(e.g., remotely, in a terminal) and accessing the screen buffer
does not require transferring it from the graphics card.

Technically, ViZDoom is based on the modernized, open-
source version of Doom’s original engine, ZDoom1, which
has been actively supported and developed since 1998. The
large community gathered around the game and the engine has
provided a lot of tools that facilitate creating custom scenarios.

B. Features

ViZDoom provides features that can be exploited in a wide
range of AI and, in particular, machine learning experiments.
It allows for different control modes, custom scenarios and ac-
cess to additional information concerning the scene, including
per-pixel depth (depth buffer), visible objects, and a top-down
view map. In the following sections, we list the most important
features of ViZDoom 1.1.5, which substantially extend the
features of the initial 1.0 version [14].

1) Control Modes: ViZDoom provides four control modes:
i) synchronous player, ii) synchronous spectator, iii) asyn-
chronous player, and iv) asynchronous spectator.

1zdoom.org

Figure 1. A sample screen from Doom showing the first-person perspective.

In asynchronous modes, the game runs at constant 35 frames
per second and if the agent reacts too slowly, it can miss one or
more frames. Conversely, if it makes a decision too quickly, it
is blocked until the next frame arrives from the engine. Thus,
for the purpose of reinforcement learning research, it is more
efficient to use synchronous modes, in which the game engine
waits for the decision maker. This way, the learning system
can learn at its pace, and it is not limited by any temporal
constraints.

Importantly, for experimental reproducibility and debugging
purposes, the synchronous modes run fully deterministically.

In the player modes, it is the agent who makes actions
during the game. In contrast, in the spectator modes, a human
player is in control, and the agent only observes the player’s
actions.

ViZDoom provides support both for single- and multi-player
games, which accept up to sixteen agents playing simultane-
ously on the same map communicating over a network. As of
the 1.1 version of ViZDoom, multi-player games can be run
in all modes (including the synchronous ones). Multi-player
can involve deathmatch, team deathmatch, or fully cooperative
scenarios.

2) Scenarios: One of the most important features of ViZ-
Doom is the ability to execute custom scenarios, which are
not limited to just playing Doom. This includes creating
appropriate maps (“what the world looks like”), programming
the environment’s mechanics (“when and how things happen”),
defining terminal conditions (e.g., “killing a certain monster”,
“getting to a certain place”, “getting killed”), and rewards (e.g.,
for “killing a monster”, “getting hurt”, “picking up an object”).
This mechanism opens endless experimentation possibilities.
In particular, it allows researchers to create scenarios of dif-
ficulty on par with capabilities of the state-of-the-art learning
algorithms.

Creation of scenarios and maps is possible thanks to easy-
to-use software tools developed by the Doom community.
The two recommended free tools are Doom Builder 22 and
SLADE 33. Both visual editors make it easy to define custom

2http://www.doombuilder.com
3http://slade.mancubus.net
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maps and coding the game mechanics in Action Code Script
for both single- and multi-player games. They also enable to
conveniently test a scenario without leaving the editor.

While any rewards and constraints can be implemented by
using the scripting language, ViZDoom provides a direct way
for setting most typical kinds of rewards (e.g., for “living”
or “dying”), constraints regarding the elementary actions/keys
that can be used by agent, or temporal constraints such as
the maximum episode duration. Scenarios do not affect any
rendering options (e.g., screen resolution, or the crosshair
visibility), which can be customized in configuration files or
via the API.

ViZDoom comes with more than a dozen predefined scenar-
ios allowing for the training of fundamental skills like shooting
or navigation.

3) Automatic Objects Labeling: The objects in the current
view can be automatically labeled and provided as a separate
input channel together with additional information about them
(cf. Fig. 2). The environment also provides access to a list
of labeled objects (bounding boxes, their names, positions,
orientations, and directions of movement). This feature can be
used for supervised learning research.

4) Depth Buffer: ViZDoom provides access to the ren-
derer’s depth buffer (see Fig. 2), which may be used to
simulate the distance sensors common in mobile robots and
help an agent to understand the received visual information.
This feature gives an opportunity to test whether an agent
can autonomously learn the whereabouts of the objects in the
environment.

5) Top-Down View Map: ViZDoom can also render a top-
down representation (a map) of the episode’s environment. The
map can be set up to display the entire environment or only
the part already discovered by the agent. In addition, it can
show objects including their facings and sizes. This feature
can be used to test whether the agents can efficiently navigate
in a complex 3D space, which is a common scenario in mobile
robotics research. Optionally, it allows turning ViZDoom into
a 2D environment, which eliminates the need for an auxiliary
2D environment for simpler scenarios.

6) Off-Screen Rendering and Frame Skipping: To facilitate
computationally heavy machine learning experiments, ViZ-
Doom is equipped with an off-screen rendering and frame
skipping features. The off-screen rendering decreases the
performance burden of displaying the game on the screen
and makes it possible to run experiments on the servers (no
graphical interface required). Frame skipping, on the other
hand, allows omitting to render some frames completely since
typically an effective bot does not need to see every single
frame.

7) ViZDoom’s Performance: Our performance tests show
that ViZDoom can render up to 2500 frames per second on
average in most of the scenarios in 320× 240 and even 7000
frames per second in the low-resolution of 160 × 120 on a
modern CPU (single threaded).

The main factors affecting the ViZDoom performance are
the rendering resolution, and computing the additional buffers

(depth, labels, and the top-down view map). In the case of low
resolutions, the time needed to render one frame is negligible
compared to the backpropagation time of any reasonably
complex neural network. It is also worth mentioning that one
instance of ViZDoom requires only a dozen MBs of RAM,
which allows running many instances simultaneously.

8) Recording and replaying episodes: Last but not least,
the ViZDoom games can be effortlessly recorded and saved to
disk to be later replayed. During playback, all buffers, rewards,
game variables, and the player’s actions can be accessed just
like in the spectator mode, which becomes useful for learning
from demonstration. Moreover, the rendering settings (e.g., the
resolution, textures, etc.) can be changed at the replay time.
This is useful for preparing high-resolution demonstration
movies.

C. Application Programming Interface (API)

ViZDoom API is flexible and easy-to-use. It was designed to
conveniently support reinforcement learning and learning from
demonstration experiments, and, therefore, it provides full
control over the underlying Doom process. In particular, it is
possible to retrieve the game’s screen buffer and make actions
that correspond to keyboard buttons (or their combinations)
and mouse actions. Some of game state variables such as the
player’s health or ammunition are available directly.

The ViZDoom’s API was written in C++. The API offers
a myriad of configuration options such as control modes and
rendering options. In addition to the C++ support, bindings
for Python, Lua, Java and Julia have been provided. A sample
code using the Python API with a randomly behaving bot is
shown in Fig. 3.

III. VISUAL RL RESEARCH PLATFORMS

The growing interest in Machine Learning and Reinforce-
ment Learning that had given rise to ViZDoom has recently
triggered development of a number of other environments
designed for RL experimentations.

DeepMind Lab [2] and Project Malmo [13] are the closest
counterparts of ViZDoom since they both involve the first-
person perspective. Similarly to ViZDoom, they are based
on popular games. Project Malmo has been developed on
top of Minecraft while DeepMind Lab uses Quake 3 Arena,
which was also considered for the ViZDoom project. It has
been, however, rejected due to limited scripting capabilities
and a developer unfriendly server-client architecture, which
also limits the performance of the environment. DeepMind
Lab vastly extends scripting capabilities of Quake and adds
custom resources for the project that overhauls the look of
the environment, which makes DeepMind Lab more detached
from its base game compared to ViZDoom.

All three platforms allow for defining custom scenarios.
Project Malmo, is particularly flexible in this respect, giving
a lot of freedom by providing a full access to the state of the
environment during runtime. Unfortunately, in contrast to ViZ-
Doom, there is no visual editor available for Project Malmo.



Figure 2. Apart from the regular screen buffer, ViZDoom provides access to a buffer with labeled objects, a depth buffer, and a top-down view map. Note
that for competitions, during the evaluations, the agents were provided with only the standard (left-most) view.

1 import vizdoom as vzd
2 from random import choice
3 game = vzd.DoomGame()
4 game.load_config("custom_config.cfg")
5 game.add_game_args("+name RandomBot")
6 game.init()
7 # Three sample actions: turn left/right and shoot
8 actions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
9 while not game.is_episode_finished():

10 if game.is_player_dead():
11 game.respawn_player()
12 # Retrieve the state
13 state = game.get_state()
14 screen = state.screen_buffer
15 health, ammo = state.game_variables
16 game.make_action(choice(actions))

Figure 3. A sample random agent in Python.

DeepMind Lab’s scripting allows for building complex envi-
ronments on top of it (e.g., Psychlab [18]). For creating custom
geometry, original Quake 3 Arena visual editor can be adopted
but it is burdensome in use. On the other hand, ViZDoom
is compatible with accessible Doom’s community tools that
allow for creating levels and scripting them. However, due to
the engine limitations, creating some types of scenarios may
require more work compared to the two previous environments
(e.g., scenarios with a lot of randomized level geometry).

All three platforms provide an RL friendly API in a few
programming languages and provide depth buffer access but
only ViZDoom makes it possible to obtain the detailed infor-
mation about objects visible on the screen, the depth buffer,
and offers a top-down view map.

UnrealCV [26] is yet another interesting project that offers
a high-quality 3D rendering. It provides an API for Unreal
Engine 4, that enables users to obtain the environment state,
including not only the rendered image but also a whole set
of different auxiliary scene information such as the depth
buffer or the scene objects. UnrealCV is not a self-contained
environment with existing game mechanics and resources,
it must be attached to an Unreal Engine-based game. This
characteristic allows creating custom scenarios as separate
games directly in Unreal Engine Editor using its robust visual
scripting tools. However, since UnrealCV is designed to be a
universal tool for computer vision research, it does not provide
any RL-specific abstraction layer in its API.

Unity ML-Agents4 is the most recent project, which is
still in development (currently in beta). It follows a similar
principle as UnrealCV providing a Python API for scenarios
that can be created using the Unity engine. However, like
Project Malmo, it aims to be a more general RL platform
with a flexible API. It allows a user to create a wide range of
scenarios, including learning from a visual information.

While the ViZDoom graphic is the most simplistic among
all major first-person perspective environments, it also makes
it very lightweight, allowing to run multiple instances of
the environment using only the small amount of available
computational resources. Among the available environments,
it is the most computationally efficient, which is an important
practical experimentation aspect. A detailed comparison of
environments can be found in Table I.

IV. VISUAL DOOM AI COMPETITIONS (VDAIC)

A. Motivation

Doom has been considered one of the most influential titles
in the game industry since it had popularized the first-person
shooter (FPS) genre and pioneered immersive 3D graphics.
Even though more than 25 years have passed since Doom’s
release, the methods for developing AI bots have not improved
qualitatively in newer FPS productions. In particular, bots still
need to “cheat” by accessing the game’s internal data such
as maps, locations of objects and positions of (player or non-
player) characters and various metadata. In contrast, a human
can play FPS games using a computer screen as the sole
source of information, although the sound effects might also
be helpful. In order to encourage development of bots that act
only on raw visual information and to evaluate the state of the
art of visual reinforcement learning, two AI bot competitions
have been organized at the IEEE Conference on Computational
Intelligence and Games 2016 and 2017.

B. Other AI competitions

There have been many game-based AI contests in the
past [32]. The recent AI competition examples include General
Video Game (GVGAI) [24], Starcraft [6], Pac-Mac [35],
and the Text-Based Adventure [1]. Each of the competitions
provides a different set of features and constraints.

4https://unity3d.com/machine-learning

https://unity3d.com/machine-learning


Table I
OVERVIEW OF 3D FIRST-PERSON PERSPECTIVE RL PLATFORMS.

Feature ViZDoom DeepMind Lab Project Malmo OpenAI Universe UnrealCV Unity ML-Agents

Base Game/Engine Doom/ZDoom Quake 3/ioquake3 Minecraft Many Unreal Engine 4 Unity
Public release date March 2016 December 2016 May 2016 December 2016 October 2016 September 2017

Open-source 3 3 3 † 3 ‡
Language C++ C Java Python C++ C#, Python

API languages Python, Lua, C++, Java, Julia Python, Lua Python, Lua, C++, C#, Java Python Python, MatLab Python

Windows 3 3 3 3 3
Linux 3 3 3 3 3 3

Mac OS 3 3 3 3 3 3

Game customization capabilities 3 3 Limited - 3 3
Scenario editing tools Visual Editors Text + Visual Editor XML defined - Unreal Engine 4 Editor Unity Editor

Scenario scripting language Action Code Script Lua Controlled via API - Unreal Engine 4 Blueprints C#, JavaScript

Framerate at 320× 240 2500 (CPU) 100 (CPU)/800 (GPU) 120 (GPU) 60 (GPU, locked) Depends Depends
Depth buffer 3 3 3 3

Auto object labeling 3 3
Top-down map 3

Low level API 3 3 3 3
RL friendly abstraction layer 3 3 3 3 3

Multi-player support 3 3 3

System requirements Low Medium Medium High∗ High Medium∗

∗ – platform allows creating scenarios with varying graphical level and thus requirements, † – platform is open-source, however code of the most base games
are closed, ‡ – platfrom is open-source, however Unity engine code is closed.

Most of the contests give access to high-level representa-
tions of game states, which are usually discrete. VDAIC is
uncommon here since it requires playing only and directly
from raw high-dimensional pixel information representing a
3D scene (screen buffer).

Many competitions concentrate on planning. For instance,
GVGAI provides an API that allows to sample from a forward
model of a game. This turned the competition into an excellent
benchmark for variants of Monte Carlo Tree Search.

The Starcraft AI competition shares the real-time aspect
of VDAIC but, similarly to GVGAI, it focuses on planning
basing on high-level state representations. This is reflected in
the proposed solutions [6], which involve state search and
hand-crafted strategies. Few competitions like Learning to
Run [15] and the learning track of GVGAI target model-free
environments (typical RL settings). However, both of them
still provide access to relatively high-level observations.

It is apparent that the Visual Doom AI Competition has been
unique and has filled a gap in the landscape of AI challenges
by requiring bots to both perceive and plan in real-time in a
3D multi-agent environment.

C. Edition 2016

1) Rules : The task of the competition was to develop a bot
that competes in a multi-player deathmatch game with the aim
to maximize the number of frags, which, by Doom’s definition,
is the number of killed opponents decreased by the number
of committed suicides (bot dies due to a damages inflicted
by its own actions). The participants of the competition were
allowed to prepare their bots offline and use any training
method, external resources like custom maps, and all features
of the environment (e.g., depth buffer, custom game variables,
Doom’s built-in bots). However, during the contest, bots were
allowed to use only the screen buffer (the left-most view
in Fig. 2) and information available on the HUD such as

ammunition supply, health points left, etc. Participants could
configure the screen format (resolution, colors) and rendering
options (crosshair, blood, HUD visibility, etc.). All features
of the environment providing the bots information typically
inaccessible to human players were blocked. The participants
were allowed to choose between two sets of textures: the
original ones and freeware substitutes.

For evaluation, the asynchronous multi-player mode was
used (a real-time game with 35 frames per second). Each
bot had a single computer at its exclusive disposal (Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz, 16GB RAM with Nvidia
GTX 960 4GB). Participants could choose either Ubuntu 16.04
or Windows 10 and provide their code in Python, C++, or Java.

The competition consisted of two independent tracks (see
Section IV-C2). Each of them consisted of 12 matches lasting
10 minutes (2 hours of gameplay per track in total). Bots
started every match and were respawned immediately after
death at one of the respawn points, selected as far as possible
from the other players. Additionally, bots were invulnerable
to attacks for the first two seconds after a respawning.

2) Tracks:
a) Track 1: Limited Deathmatch on a Known Map: The

agents competed on a single map, known in advance. The
only available weapon was a rocket launcher, with which the
agents were initially equipped. The map consisted mostly of
relatively constricted spaces, which allow killing an opponent
by hitting a nearby wall with a rocket (blast damage). For
the same reason, it was relatively easy to kill oneself. The
map contained resources such as ammunition, medikits, and
armors. Due to the fact that the number of participants (9)
exceeded the ViZDoom’s 1.0 upper limit of 8 players per
game, a fair matchmaking scheme was developed. For each
of the first 9 matches, a single bot was excluded. For the
remaining 3 matches, 2 bots that had performed worst in the
first 9 matches were excluded.



Table II
RESULTS OF THE 2016 COMPETITION: TRACK 1. ‘FRAGS’ IS THE NUMBER

OF OPPONENT KILLS DECREASED BY THE NUMBER OF SUICIDES OF THE
AGENT. ‘F/D’ DENOTES FRAGS/DEATH. ‘DEATHS’ INCLUDE SUICIDES.

Place Bot Frags F/D ratio Kills Suicides Deaths

1 F1 559 1.35 597 38 413
2 Arnold 413 1.90 532 119 217
3 Clyde 393 0.77 476 83 509
4 TUHO 312 0.67 424 112 465
5 5vision 142 0.28 206 64 497
6 ColbyMules 131 0.25 222 91 516
7 AbyssII 118 0.21 217 99 542
8 WallDestroyerXxx -130 -0.41 13 143 315
9 Ivomi -578 -0.68 149 727 838

b) Track 2: Full Deathmatch on Unknown Maps: The
agents competed four times on each of the three previously
unseen maps (see Fig. 4), and were initially equipped with
pistols. The maps were relatively spacious and contained open
spaces, which made accurate aiming more relevant than in
Track 1. The maps contained various weapons and items
such as ammunition, medikits, and armors. A sample map
was provided. All maps were prepared by authors of the
competition.

Notice that Track 2 has been considerably harder than
Track 1. During the evaluation, agents were faced with com-
pletely new maps, so they could not learn the environment
by heart during the training as in Track 1. And while it is
enough to move randomly and aim well to be fairly effective
for Track 1, a competent player for Track 2 should make
strategic decisions such as where to go, which weapon to use,
explore or wait, etc.

3) Results: The results of the competition are shown in
Tables II and III, for Track 1 and 2, respectively. For future
reference, all matches were recorded and are available publicly
(see Appendix).

a) Track 1: The bots in 7 out of 9 submissions were
competent enough to systematically eliminate the opponents.
Among them, four bots stand out by scoring more than 300
frags: F1, Arnold, Clyde and TUHO. The difference between
the second (Arnold) and the third (Clyde) place was minuscule
(413 vs. 393 frags) and it is questionable whether the order
remained the same if games were repeated. There is no doubt,
however, that F1 was the best bot beating the forerunner
(Arnold) by a large margin. F1 was also characterized by the
least number of suicides. Note, however, that generally, the
number of suicides is high for all the agents. Interestingly,
despite the fact that F1 scored the best, it was Arnold who
was gunned down the least often.

b) Track 2: In Track 2, IntelAct was the best bot, sig-
nificantly surpassing its competitors on all maps. Arnold, who
finished in the second place, was killed the least frequently.
Compared to Track 1, the numbers of kills and suicides (see
Tables II and III) are significantly lower, which is due to less
usage of rocket launchers that are dangerous not only for the
opponent but also for the owner.

4) Notable Solutions: Table IV contains a list of bots
submitted to the competition. Below, the training methods for
the main bots are briefly described:

• F1 (Yuxin Wu, Yuandong Tian) - the winning bot of
Track 1 was trained with a variant of the A3C al-
gorithm [20] with curriculum learning [3]. The agent
was first trained on an easier task (weak opponents,
smaller map) to gradually face harder problems (stronger
opponents, bigger maps). Additionally, some behaviors
were hardcoded (e.g., increased movement speed when
not firing) [37].

• IntelAct (Alexey Dosovitskiy, Vladlen Koltun) - the best
agent in Track 2 was trained with Direct Future Prediction
(DFP, [9]). The algorithm is similar to DQN [21] but
instead of maximizing the expected reward, the agent
tries to predict future measurement vector (e.g., health,
ammunition) for each action based on the current mea-
surement vector and the environment state. The agent’s
actual goal is defined as a linear combination of the
future measurements and can be changed on the fly
without retraining. Except for weapon selection, which
was hardcoded, all behaviors were learned from playing
against bots on a number of different maps. The core idea
of DFP is related to UNREAL [12] as, in addition to the
reward, it predicts auxiliary signals.

• Arnold (Guillaume Lample, Devendra Singh Chaplot)
took the second place in both tracks (two sets of pa-
rameters and the same code). The training algorithm [17]
contained two modules: navigation, obtained with DQN,
and aiming, trained with Deep Recurrent Q-Learning
(DRQN [10]). Additionally, the aiming network contains
an additional output with a binary classifier indicating
whether there is an enemy visible on the screen. Based on
the classifier decision, either the navigation or the aiming
network decided upon the next action. The navigation net-
work was rewarded for speed and penalized for stepping
on lava whereas the aiming network was rewarded for
killing, picking up objects, and penalized for losing health
or ammunition. It is worth noting that Arnold crouched
constantly, which gave him a significant advantage over
the opponents. This is reflected in his high frags to deaths
ratio especially for Track 2 (see Tables II and III). Arnold
was trained on a set of maps created by the solution’s
authors, starting with maps full of weak enemies.

• Clyde (Dino Ratcliffe), the bot that took the third place
in Track 1, was trained with the vanilla A3C algorithm
rewarded for killing, collecting items and penalized for
suicides. For more details cf. [28].

• TUHO (Anssi ‘Miffyli’ Kanervisto, Ville Hautamäki),
the bot that took the third place in Track 2 was trained
similarly to Arnold. TUHO used two independent mod-
ules. The navigation module was trained with a Dueling
DQN [34], rewarded for speed while the aiming net-
work featured a classical Haar detector [33] trained on
manually labeled examples. If an enemy was detected



Figure 4. The map used for evaluation in the Track 1 (left), and three maps used in Track 2 in the 2016 edition of Visual Doom AI Competition.

Table III
RESULTS OF THE 2016 COMPETITION: TRACK 2. ‘M’ DENOTES MAP AND ‘T’ DENOTES A TOTAL STATISTIC.

Place Bot Total Frags F/D ratio Kills Suicides Deaths

M1 M2 M3 T M1 M2 M3 T M1 M2 M3 T

1 IntelAct 256 3.08 113 49 135 297 19 17 5 41 47 24 12 83
2 Arnold 164 32.8 76 37 53 167 2 1 0 3 3 1 1 5
3 TUHO 51 0.66 51 9 13 73 7 15 0 22 31 29 17 77
4 ColbyMules 18 0.13 8 5 13 26 1 7 0 8 60 27 44 129
5 5vision 12 0.09 12 10 4 26 3 8 3 14 45 37 47 131
6 Ivomi -2 -0.01 6 5 2 13 2 13 0 15 69 33 35 137
7 WallDestroyerXxx -9 -0.06 2 0 0 2 0 5 6 11 48 30 78 156

Table IV
ALGORITHMS AND FRAMEWORKS USED IN THE 2016 COMPETITION

Bot Framework used Algorithm

IntelAct Tensorflow Direct Future Prediction
(DFP)

F1 Tensorflow +
Tensorpack

A3C, curriculum learning

Arnold Theano DQN, DRQN
Clyde Tensorflow A3C
TUHO Theano + Lasagne DQN + Haar Detector
5vision Theano + Lasagne DARQN [31]

ColbyMules Neon unknown
AbyssII Tensorflow A3C
Ivomi Theano + Lasagne DQN

WallDestroyerXxx Chainer unknown

in the frame, the agent turned appropriately and fired.
The navigation network was used otherwise. TUHO was
trained only on the two supplied maps and two other
maps bundled with ViZDoom.

5) Discussion: Although the top bots were quite competent
and easily coped with the Doom’s built-in bots, no agent came
close to the human’s competence level. The bots were decent at
tactical decisions (aiming and shooting) but poor on a strategic
level (defense, escaping, navigation, exploration). This was

especially visible for Track 2, where the maps were larger and
required a situational awareness – bots often circled around the
same location, waiting for targets to appear.

No agent has been capable of vertical aiming. That is why
Arnold, which hardcoded crouching, avoided many projectiles,
achieving exceptionally a high frags/death ratio. Other bots,
probably, had never seen a crouching player during their
training and therefore were not able to react appropriately.

It was also observed that strafing (moving from side to side
without turning) was not used very effectively (if at all) and
agents did not make any attempts to dodge missiles – a feat
performed easily by humans. Bots did not seem to use any
memory as well, as they did not try to chase bots escaping
from their field of view.

Most of the submitted agents were trained with the state-of-
the-art (as of 2016) RL algorithms such as A3C and DQN but
the most successful ones additionally addressed the problem of
sparse, delayed rewards by auxiliary signals (IntelAct, Arnold)
or curriculum training (F1).

6) Logistics: Before the contest evaluation itself, three,
optional warm-up rounds were organized to accustom the
participants to the submission and evaluation process and give
them a possibility to check their bots effectiveness against each
other. The performance of solutions was tested on known maps



and the results in the form of tabular data and video recordings
were made publicly available.

The participants were supposed to submit their code along
with a list of required dependencies to install. In terms of
logistics, testing the submissions was a quite a strenuous
process for our small team due to various compatibility issues
and program dependencies especially for solutions employing
less standard frameworks. This caused an enormous time
overhead and created a need for more automated verification
process. That is why it was decided that Docker containers [19]
would be used for the subsequent edition of the competition,
relieving the organizers from dealing with the dependency and
compatibility issues.

D. Edition 2017

1) Changes Compared to the Edition 2016: The rules and
logistics of the 2017 competition did not differ much from the
ones of the previous edition. The changes were as follows:

• The new version of ViZDoom (1.1.2) was used as the
competition environment; all new features described in
Section II were allowed for the training or preparation of
the bots. The raised player limit (from 8 to 16) made it
possible to fit all the submitted bots in a single game.

• Each track consisted of 10 matches, each lasting 10
minutes.

• Track 2 consisted of 5 previously unseen maps (see
Fig. 5), each one was used for 2 matches. Maps were
chosen randomly from four highly rated Doom multi-
player map packs, each containing a number of maps
varying from 6 to 32 (which gives, in total, 88 maps), that
were selected from a more substantial list of map packs
suggested by the ZDoom community. Thus, the selected
maps were characterized by good quality and thoughtful
design. They were also much smaller compared to the
maps used in the Track 2 of the 2016 competition, leading
to the more frequent interaction between the agents.

• The respawn time (an obligatory waiting after death) of
10 seconds was introduced to encourage gameplay that
also focuses on the survival instead of reckless killing and
to limit the number of frags obtained on weaker bots.

• The crouching action was disabled as it gives an enor-
mous advantage over non-crouching players while being
achievable by hardcoding of a single key press (which
was implemented in one of 2016’s submissions). A situ-
ation in which an agent learned to crouch effectively on
its own would arguably be an achievement but that was
not the case.

• Matches were initiated by a dedicated host program (for
recording purposes) and all agent’s processes were run
from Docker containers [19], submitted by the partici-
pants.

• The winning bots of the 2016 competition were added to
each track as baselines; they were also made available to
the participants for training or evaluation.

• In the previous edition of the competition, most of the
participants did not join the warm-up rounds which

Table V
RESULTS OF THE 2017 COMPETITION: TRACK 1. ‘F/D’ DENOTES

FRAGS/DEATH. DEATHS INCLUDE SUICIDES.

Place Bot Frags F/D ratio Kills Suicides Deaths

1 Marvin 248 1.16 315 67 213
2 Arnold2 245 0.84 314 69 291
3 Axon 215 0.77 252 37 278
4 TBoy 198 0.60 229 31 330
5 F1 164 0.57 179 15 290
6 YanShi 158 0.58 246 88 273
7 DoomNet 139 0.50 179 40 280
8 Turmio 132 0.47 209 77 280
9 AlphaDoom 109 0.39 139 30 281

made it even more difficult for the organizers and also
participants to estimate quantity and quality of the final
submissions. That is why in 2017, an obligatory elimina-
tion round was introduced. Only teams that had partici-
pated in the elimination rounds and presented sufficiently
competent bots were allowed to enter the final round.

2) Results: The results of the competition were shown in
Tables V and VI for Track 1 and 2, respectively. For this
edition of the competition, the engine was extended to extract
additional information about agents performance, specifically:
the average movement speed (given in km/h, assuming that
128 of game units correspond to 3 meters in the real world),
the number of performed attacks, their average shooting preci-
sion and detection precision. The shooting precision was cal-
culated as the number of attacks that did damage to an enemy
(by a direct hit, a blast from an exploding rocket, or exploding
barrel) divided by the number of all performed attacks. The
detection precision is the number of attacks performed when
another player was visible to the agent divided by the number
of all performed attacks. The engine also counted the number
of hits and damage taken (in game’s health points) by the
agents and the number of picked up items. The statistics are
presented in Tables VII and VIII.

a) Track 1: The level of the submitted bots was signifi-
cantly higher in 2017 than in 2016. There were no weak bots
in Track 1. The spread of the frag count was rather small:
the worst bot scored 109 while the best one 248. The track
was won by Marvin, which scored 248 frags, only 3 more than
the runner-up, Arnold2, and 33 more then Axon. Interestingly,
Marvin did not stand out with his accuracy or ability to avoid
rockets; it focused on gathering resources: medkits and armors,
which greatly increased his chances of survival. Marvin was
hit the largest number of times but, at the same time, it was
killed the least frequently. Arnold2, on the other hand, was
better at aiming (shooting and detection precision).

Notice also that F1, the winner of Track 1 of the previous
competition, took the fifth place with 164 frags and is again
characterized by the least number of suicides, which, in
general, did not decrease compared to the 2016 competition
and is still high for all the agents.

b) Track 2: The level of bots improved also in Track 2.
All of the bots scored more than 50 frags, which means that



Figure 5. The five maps used for evaluation in Track 2 in 2017 competition.

Table VI
RESULTS OF THE 2017 COMPETITION: TRACK 2. ‘M’ DENOTES MAP AND ‘T’ DENOTES A TOTAL STATISTIC.

Place Bot Total Frags F/D ratio Kills Suicides Deaths

M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T

1 Arnold4 275 1.25 35 49 50 84 57 275 0 0 0 0 0 0 36 48 42 44 50 220
2 YanShi 273 1.47 56 67 55 56 41 275 1 1 0 0 0 2 28 33 39 40 46 186
3 IntelAct 221 0.89 53 46 51 51 39 241 10 1 6 0 3 20 36 48 53 48 62 247
4 Marvin 193 0.99 36 38 52 46 44 216 4 3 4 0 12 23 34 44 39 41 47 195
5 Turmio 164 0.82 12 58 26 45 50 181 5 2 7 0 3 17 46 40 39 41 44 200
6 TBoy 139 0.58 26 16 33 13 58 146 7 0 0 0 0 7 50 48 46 49 47 240
7 DoomNet 62 0.28 7 20 9 19 29 84 4 8 6 0 4 22 36 38 42 51 54 221

all could move, aim, and shoot opponents. Similarly to the
result of Track 1, the gap between the first two bots was tiny.
The competition was won by Arnold4, who scored 275 frags
and was closely followed up by YanShi, who scored 273.

Arnold4 was the most accurate bot in the whole competition
and the only bot that did not commit any suicide. This turned
out to be crucial to win against YanShi, who had the same
number of 275 kills but committed two suicides. YanShi,
however, achieved the highest frags/death ratio by being the
best at avoiding being killed and had the highest detection
precision. These two were definitely the best compared to the
other agents. The next runner-up, IntelAct, the winner of Track
2 in the previous competition, scored substantially fewer, 221
frags. Fewer items on the maps in Track 2 possibly contributed
to the lower position of Marvin, which ended up in the fourth
place with 193 frags.

3) Notable Solutions:
• Marvin (Ben Bell) won Track 1 and took the fourth

place in Track 2. It was a version of the A3C algorithm,
pre-trained with replays of human games collected by
the authors of the bot and subsequently trained with
traditional self-play against the built-in bots. The pol-
icy network had separate outputs for actions related to
moving and aiming, which also included aiming at the
vertical axis. Additionally, a separate policy for aiming
was handcrafted to overwrite the network’s decisions if
it was unsure of the correct aiming action.

• Arnold2 & Arnold4 (Guillaume Lample, Devendra

Singh Chaplot) – slightly modified versions of the 2016
runner-up Arnold; they differ from the original mostly
by the lack of separate DQN network for navigation,
support for strafing and disabled crouching. The latter
two changes might explain agent’s progress – proper
strafing makes the game considerably easier and the
lack of crouching encourages to develop more globally
useful behaviors. To address agent’s low mobility, which
had been originally alleviated by a separate navigation
network, Arnold 2 and 4 were hardcoded to run straight
after being stationary for too long (about 1 second). Both
Arnold 2 and 4 use the same approach and differ only in
track-specific details (e.g., manual weapon selection).

• Axon (Cheng Ge; Qiu Lu Zhang; Yu Zheng) – the bot
that took the third place in Track 1 was trained using
the the A3C algorithm in a few steps: first the policy
network was trained on a small dataset generated by
human players, then it was trained on various small tasks
to learn specific skills like navigation or aiming. Finally,
the agent competed against the F1 agent on different
maps. The policy network utilized five scales: i) original
image, ii) three images covering middle parts of the
screen and iii) one image zoomed on the crosshair.

• YanShi (Dong Yan, Shiyu Huang, Chongxuan Li, Yichi
Zhou) took the second place in Track 2. Their bot explic-
itly separated the perception and planning problems. It
consisted of two modules. The first one combined Region
Proposal Network (RPN) [11], which detects resources



Table VII
ADDITIONAL STATISTICS FOR THE 2017 COMPETITION: TRACK 1

Place Bot Avg. sp. (km/h) Attacks Shooting Precision (%) Detection Precision (%) Hits taken Dmg. taken (hp) Ammo Midkits Armors

1 Marvin 37.7 1654 23.5 51.6 1266 34445 164 354 272
2 Arnold2 40.5 1148 32.8 64.3 674 46681 239 216 35
3 Axon 28.9 918 27.3 47.9 556 42616 120 125 11
4 TBoy 17.6 1901 13.9 35.4 637 51206 16 39 8
5 F1 25.3 587 29.5 49.8 583 46407 124 113 9
6 YanShi 9.7 1404 22.6 41.3 536 41572 32 41 2
7 DoomNet 42.9 690 29.7 63.8 642 44820 873 163 57
8 Turmio 23.0 928 27.8 56.5 577 43066 142 87 5
9 AlphaDoom 25.9 971 17.5 53.2 672 43118 126 104 49

Table VIII
ADDITIONAL STATISTICS FOR THE 2017 COMPETITION: TRACK 2. ‘M’ DENOTES MAP AND ‘T’ DENOTES A TOTAL STATISTIC.

Place Bot Avg. speed (km/h) Attacks Shooting Precision (%) Detection Precision (%)

M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T

1 Arnold4 34.7 28.9 32.0 30.0 25.4 30.2 495 449 544 660 258 2403 24 26.9 31.6 36.5 38.4 31.3 51.7 53.9 59.4 58.3 47.9 55.2
2 YanShi 28.0 25.1 24.8 26.8 22.7 25.7 1039 1324 897 1767 745 5772 26.8 21.9 28.2 26.7 30.2 26.3 79.8 75.6 77.8 76.1 72.2 76.4
3 IntelAct 36.0 26.2 29.6 31.2 28.0 30.8 536 346 490 1128 323 2823 26.1 29.5 31.2 32.9 31.3 30.7 54.6 57.1 58.2 68.2 46.6 60.0
4 Marvin 32.8 32.1 32.6 34.9 28.0 32.0 1323 475 545 1232 307 3882 9.7 17.9 29.4 19.7 26.7 18.0 33.6 39.1 54.1 44.6 40.3 41.1
5 Turmio 4.7 19.2 11.6 14.9 9.9 11.9 873 267 512 605 187 2444 2.1 37.5 12.1 39.4 45.5 20.6 8.0 52.1 29.9 76.0 43.6 37.0
6 TBoy 17.0 17.6 16.1 2.52 15.3 13.3 459 910 658 1618 197 3842 15.0 10.3 20.1 8.2 49.7 13.6 49.3 51.4 52.8 36.5 53.1 45.2
7 DoomNet 13.5 16.0 18.2 12.6 25.9 17.3 161 409 323 2006 159 3058 7.5 8.6 12.1 8.4 23.9 9.5 34.8 33.7 59.7 38.7 45.6 40.4

Place Bot Hits taken Dmg. taken (hp) Ammo & Weapons Medikits & Armors

M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T M1 M2 M3 M4 M5 T

1 Arnold4 357 462 419 463 501 2202 3838 5521 4558 4635 5318 23870 143 255 68 207 138 811 0 7 4 0 2 13
2 YanShi 282 370 417 433 487 1989 2984 3957 4230 4285 4899 20355 119 309 64 229 144 865 0 12 5 0 6 23
3 IntelAct 290 504 497 533 576 2400 4362 5533 6171 5225 7011 28302 172 278 79 234 166 929 2 13 6 0 5 26
4 Marvin 309 415 349 440 324 1837 3818 5051 4431 4405 4757 22462 117 268 62 247 85 779 0 11 10 0 9 30
5 Turmio 313 353 343 438 425 1872 3939 4408 4373 4325 4845 21890 46 159 58 156 88 507 0 4 2 0 0 6
6 TBoy 394 488 480 504 480 2346 5901 5390 5058 4965 5513 26827 141 365 67 75 134 782 1 12 11 0 16 40
7 DoomNet 286 334 368 542 493 2023 4167 4458 4641 5375 6309 24950 99 235 73 125 141 673 0 8 6 0 5 19

Table IX
FRAMEWORKS AND ALGORITHMS USED IN 2017 COMPETITION

Bot Framework used Algorithm

Marvin Tensorflow A3C, learning from human
demonstration

Arnold2 &
Arnold4

PyTorch DQN, DRQN

Axon Tensorflow A3C
YanShi(Track1) Tensorflow +

Tensorpack
DFP + SLAM + MCTS +
manually specified rules

YanShi(Track2) Tensorflow +
Tensorpack

A3C + SLAM + MCTS +
manually specified rules

Turmio Tensorflow A3C + Haar Detector
TBoy Tensorflow A3C + random-grouped-

curriculum-learning
DoomNet PyTorch AAC

AlphaDoom MXNet A3C

and enemies and was trained with additional supervision
using labeled images from the ViZDoom engine. The
network was combined with a Simultaneous Localization
And Mapping (SLAM) algorithm, Monte Carlo Tree
Search (MCTS), and a set of hardcoded rules. The output
from the first part was combined with the second part
that utilized the code of the agents of the year 2016:
F1 agent (for Track 1) and IntelAct (for Track 2). Like

Marvin, YanShi handles vertical aiming by implementing
an aimbot based on the output of the RPN network.
Manually specified set of rules contains fast rotation using
mouse movement to scan the environment, dodge and
prevent getting stuck in the corner of the map.

4) Discussion: The average level of the agents was ar-
guably higher in the 2017 competition than in the previous
year. This is evidenced by the fact that the agents from
the previous competition (F1, IntelAct) were defeated by the
new submissions. Surprisingly, the largest improvement is
visible in Track 1, where the new champion scored 50% more
points than the former one, who ended up on the fifth place.
Nevertheless, the bots are still weaker than humans especially
on much harder Track 2. One of the authors of the paper
can consistently defeat all of them by a considerable margin,
although it requires some effort and focus..

In the 2017’s competition, there were several important
advancements such as agents capable of effective strafing
and vertical aiming. Nonetheless, agents did not exhibit more
sophisticated tactics such as aiming at legs (much higher
chance of blast damage), which is an obvious and popular
technique for human players. A3C was the method of choice
for RL while learning from demonstration (Marvin, Axon) has
started to become a common practice to bootstrap learning and
address the problem of sparse, delayed rewards.



In addition to the algorithmic improvements, the synchro-
nized multi-player support in ViZDoom 1.1 allowed faster
training for the 2017’s competition. New features and avail-
ability of the winning solutions from the previous competition
also opened new possibilities, allowing for a broader range of
supervised methods and training agents against other solutions
(YanShi), not only the built-in bots.

Disappointingly, bots committed a similar number of sui-
cides in 2017 as in 2016 (Track 1). This is directly connected
to the low precision of the performed attacks and inability
to understand the surroundings. As a result, the agents often
shoot at walls, wounding, and often killing themselves. While
human players have varying shooting precision, their detection
precision is usually close to 100% (i.e., they do not fire when
they do not see the enemy). For most agents, the detection
precision decreases on the unknown maps of Track 2 and
varies significantly depending on the type of environment. It
was observed that, for example, specific textures caused some
(apparently, untrained) bots to fire madly at walls.

Due to small map sizes, the agents encountered each other
often. It was also noticed that the agents have little (if any)
memory — they often ignore and just pass by each other,
without trying to chase the enemy, which would be natural
for human players.

5) Logistics: In the 2017 competition, the solutions were
submitted in the form of Docker images, which made the
preparation of software environments easier, removed most of
the compatibility issues and unified the evaluation procedure.
Nevertheless, the need for manual building and troubleshoot-
ing some of the submissions remained. This has shown that
there is a need for a more automated process, preferably one
where solutions can be submitted on a daily basis and are
automatically verified and tested giving immediate feedback
to the participants.

V. CONCLUSIONS

This paper presented the first two editions of Visual Doom
AI Competition, held in 2016 and 2017. The challenge was
to create bots that compete in a multi-player deathmatch in
a first-person shooter (FPS) game, Doom. The bots were to
act based on the raw pixel information only. The contests got
a large media coverage5 and attracted teams from leading AI
labs around the world.

The winning bots used a variety of state-of-the-art (at that
time) RL algorithms (e.g., A3C, DRQN, DFP). The bots sub-
mitted in 2017 got stronger by fine-tuning the algorithms and
using more supervision (human-replays, curriculum learning).
It was also common to separately learn to navigate and to
fight. The bots are definitely competent but still worse than
human players, who can easily exploit their weaknesses. Thus,
a deathmatch from a raw visual input in this FPS game remains
an open problem with a lot of research opportunities.

5e.g., https://www.theverge.com/2016/4/22/11486164/
ai-visual-doom-competition-cig-2016 or https://www.engadget.com/2016/08/
18/vizdoom-research-framework-cig-competition/

Let us also notice that the deathmatch scenario is a relatively
easy problem compared to a task of going through the original
single-player Doom levels. It would involve not only appropri-
ate reaction for the current situation but also localization and
navigation skills on considerably more complex maps with
numerous switches and appropriate keys for different kinds of
doors, which need to be found to progress. Therefore, the AI
for FPS games using the raw visual input is yet to be solved
and we predict that the Visual Doom AI competition will
remain a difficult challenge in the nearest future. To further
motivate research towards solving this challenging problem,
in the upcoming edition of the competition (2018), the form
of Track 1 has been changed. The new task is to develop bots
that are capable of finishing randomly generated single-player
levels, ranging from trivial to sophisticated ones, that contain
all the elements of the original game.

The paper also revisited ViZDoom (version 1.1.5), a Doom-
based platform for research in vision-based RL that was used
for the competitions. The framework is easy-to-use, highly
flexible, multi-platform, lightweight, and efficient. In contrast
to other popular visual learning environments such as Atari
2600, ViZDoom provides a 3D, semi-realistic, first-person
perspective virtual world. ViZDoom’s API gives the user full
control of the environment. Multiple modes of operation facili-
tate experimentation with different learning paradigms such as
RL, adversarial training, apprenticeship learning, learning by
demonstration, and, even the ‘ordinary’, supervised learning.
The strength and versatility of the environment lie in its
customizability via a mechanism of scenarios, which can be
conveniently programmed with open-source tools. The utility
of ViZDoom for research has been proven by a large body of
research for which it has been used (e.g., [7], [8], [23], [4],
[22]).
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APPENDIX

Online Resources
1) ViZDoom: https://github.com/mwydmuch/ViZDoom
2) Submissions in 2016 (docker files):

https://github.com/mihahauke/VDAIC2017
3) Submissions in 2017 (docker files):

http://www.cs.put.poznan.pl/mkempka/misc/vdaic2017
4) Map packs used in 2017:

https://github.com/mihahauke/VDAIC2017
5) Videos from 2016:

https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=tDRdgpkleXI
https://www.youtube.com/watch?v=Qv4esGWOg7w

6) Videos from 2017:
https://www.youtube.com/watch?v=3VU6d_5ze8k
https://www.youtube.com/watch?v=hNyrZ5Oo8kU

https://github.com/mwydmuch/ViZDoom
https://github.com/mihahauke/VDAIC2017
http://www.cs.put.poznan.pl/mkempka/misc/vdaic2017
https://github.com/mihahauke/VDAIC2017
https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=tDRdgpkleXI
https://www.youtube.com/watch?v=Qv4esGWOg7w
https://www.youtube.com/watch?v=3VU6d_5ze8k
https://www.youtube.com/watch?v=hNyrZ5Oo8kU

	I Introduction
	II The ViZDoom Research Platform
	II-A Design Requirements
	II-B Features
	II-B1 Control Modes
	II-B2 Scenarios
	II-B3 Automatic Objects Labeling
	II-B4 Depth Buffer
	II-B5 Top-Down View Map
	II-B6 Off-Screen Rendering and Frame Skipping
	II-B7 ViZDoom's Performance
	II-B8 Recording and replaying episodes

	II-C Application Programming Interface (API)

	III Visual RL Research Platforms
	IV Visual Doom AI Competitions (VDAIC) 
	IV-A Motivation
	IV-B Other AI competitions
	IV-C Edition 2016
	IV-C1 Rules 
	IV-C2 Tracks
	IV-C3 Results
	IV-C4 Notable Solutions
	IV-C5 Discussion
	IV-C6 Logistics

	IV-D Edition 2017
	IV-D1 Changes Compared to the Edition 2016
	IV-D2 Results
	IV-D3 Notable Solutions
	IV-D4 Discussion
	IV-D5 Logistics


	V Conclusions
	References
	Appendix

