
ViZDoom: A Doom-based AI Research Platform
for Visual Reinforcement Learning

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek & Wojciech Jaśkowski
Institute of Computing Science, Poznan University of Technology, Poznań, Poland

wjaskowski@cs.put.poznan.pl

Abstract—The recent advances in deep neural networks have
led to effective vision-based reinforcement learning methods that
have been employed to obtain human-level controllers in Atari
2600 games from pixel data. Atari 2600 games, however, do
not resemble real-world tasks since they involve non-realistic
2D environments and the third-person perspective. Here, we
propose a novel test-bed platform for reinforcement learning
research from raw visual information which employs the first-
person perspective in a semi-realistic 3D world. The software,
called ViZDoom, is based on the classical first-person shooter
video game, Doom. It allows developing bots that play the game
using the screen buffer. ViZDoom is lightweight, fast, and highly
customizable via a convenient mechanism of user scenarios. In
the experimental part, we test the environment by trying to
learn bots for two scenarios: a basic move-and-shoot task and
a more complex maze-navigation problem. Using convolutional
deep neural networks with Q-learning and experience replay,
for both scenarios, we were able to train competent bots, which
exhibit human-like behaviors. The results confirm the utility of
ViZDoom as an AI research platform and imply that visual
reinforcement learning in 3D realistic first-person perspective
environments is feasible.

Keywords: video games, visual-based reinforcement learning,
deep reinforcement learning, first-person perspective games, FPS,
visual learning, neural networks

I. INTRODUCTION

Visual signals are one of the primary sources of information
about the surrounding environment for living and artificial
beings. While computers have already exceeded humans in
terms of raw data processing, they still do not match their
ability to interact with and act in complex, realistic 3D
environments. Recent increase in computing power (GPUs),
and the advances in visual learning (i.e., machine learning
from visual information) have enabled a significant progress in
this area. This was possible thanks to the renaissance of neural
networks, and deep architectures in particular. Deep learning
has been applied to many supervised machine learning tasks
and performed spectacularly well especially in the field of
image classification [18]. Recently, deep architectures have
also been successfully employed in the reinforcement learning
domain to train human-level agents to play a set of Atari 2600
games from raw pixel information [22].

Thanks to high recognizability and an easy-to-use software
toolkit, Atari 2600 games have been widely adopted as a
benchmark for visual learning algorithms. Atari 2600 games
have, however, several drawbacks from the AI research per-
spective. First, they involve only 2D environments. Second, the
environments hardly resemble the world we live in. Third, they

are third-person perspective games, which does not match a
real-world mobile-robot scenario. Last but not least, although,
for some Atari 2600 games, human players are still ahead of
bots trained from scratch, the best deep reinforcement learning
algorithms are already ahead on average. Therefore, there is
a need for more challenging reinforcement learning problems
involving first-person-perspective and realistic 3D worlds.

In this paper, we propose a software platform, ViZDoom1,
for the machine (reinforcement) learning research from raw
visual information. The environment is based on Doom, the
famous first-person shooter (FPS) video game. It allows de-
veloping bots that play Doom using only the screen buffer.
The environment involves a 3D world that is significantly
more real-world-like than Atari 2600 games. It also provides a
relatively realistic physics model. An agent (bot) in ViZDoom
has to effectively perceive, interpret, and learn the 3D world
in order to make tactical and strategic decisions where to go
and how to act. The strength of the environment as an AI
research platform also lies in its customization capabilities.
The platform makes it easy to define custom scenarios which
differ by maps, environment elements, non-player characters,
rewards, goals, and actions available to the agent. It is also
lightweight – on modern computers, one can play the game at
nearly 7000 frames per second (the real-time in Doom involves
35 frames per second) using a single CPU core, which is of
particular importance if learning is involved.

In order to demonstrate the usability of the platform, we
perform two ViZDoom experiments with deep Q-learning [22].
The first one involves a somewhat limited 2D-like environ-
ment, for which we try to find out the optimal rate at which
agents should make decisions. In the second experiment, the
agent has to navigate a 3D maze collecting some object and
omitting the others. The results of the experiments indicate that
deep reinforcement learning is capable of tackling first-person
perspective 3D environments2.

FPS games, especially the most popular ones such as Unreal
Tournament [12], [13], Counter-Strike [15] or Quake III Arena
[8], have already been used in AI research. However, in
these studies agents acted upon high-level information like
positions of walls, enemies, locations of items, etc., which
are usually inaccessible to human players. Supplying only
raw visual information might relieve researchers of the burden

1http://vizdoom.cs.put.edu.pl
2Precisely speaking, Doom is pseudo-3D or 2.5D.

ar
X

iv
:1

60
5.

02
09

7v
2 

 [
cs

.L
G

] 
 2

0 
Se

p 
20

16

http://vizdoom.cs.put.edu.pl


of providing AI with high-level information and handcrafted
features. We also hypothesize that it could make the agents
behave more believable [16]. So far, there has been no studies
on reinforcement learning from visual information obtained
from FPS games.

To date, there have been no FPS-based environments that
allow research on agents relying exclusively on raw visual in-
formation. This could be a serious factor impeding the progress
of vision-based reinforcement learning, since engaging in it
requires a large amount of programming work. Existence
of a ready-to-use tool facilitates conducting experiments and
focusing on the goal of the research.

II. RELATED WORK

One of the earliest works on visual-based reinforcement
learning is due to Asada et al. [4], [3], who trained robots
various elementary soccer-playing skills. Other works in this
area include teaching mobile robots with visual-based Q-
learning [10], learning policies with deep auto-encoders and
batch-mode algorithms [19], neuroevolution for a vision-based
version of the mountain car problem [6], and compressed
neuroevolution with recurrent neural networks for vision-based
car simulator [17]. Recently, Mnih et al. have shown a deep
Q-learning method for learning Atari 2600 games from visual
input [22].

Different first-person shooter (FPS) video games have al-
ready been used either as AI research platforms, or application
domains. The first academic work on AI in FPS games is
due to Geisler [11]. It concerned modeling player behavior in
Soldier of Fortune 2. Cole used genetic algorithms to tune bots
in Counter Strike [5]. Dawes [7] identified Unreal Tournament
2004 as a potential AI research test-bed. El Rhalib studied
weapon selection in Quake III Arena [8]. Smith devised a
RETALIATE reinforcement learning algorithm for optimizing
team tactics in Unreal Tournament [23]. SARSA(λ), another
reinforcement learning method, was the subject of research in
FPS games [21], [12]. Recently, continuous and reinforcement
learning techniques were applied to learn the behavior of tanks
in the game BZFlag [24].

As far as we are aware, to date, there have been no
studies that employed the genre-classical Doom FPS. Also,
no previous study used raw visual information to develop bots
in first-person perspective games with a notable exception of
the Abel’s et al. work on Minecraft [2].

III. VIZDOOM RESEARCH PLATFORM

A. Why Doom?

Creating yet another 3D first-person perspective environ-
ment from scratch solely for research purposes would be
somewhat wasteful [27]. Due to the popularity of the first-
person shooter genre, we have decided to use an existing game
engine as the base for our environment. We concluded that it
has to meet the following requirements:

1) based on popular open-source 3D FPS game (ability to
modify the code and the publication freedom),

Figure 1. Doom’s first-person perspective.

2) lightweight (portability and the ability to run multiple
instances on a single machine),

3) fast (the game engine should not be the learning bottle-
neck),

4) total control over the game’s processing (so that the
game can wait for the bot decisions or the agent can
learn by observing a human playing),

5) customizable resolution and rendering parameters,
6) multiplayer games capabilities (agent vs. agent and agent

vs. human),
7) easy-to-use tools to create custom scenarios,
8) ability to bind different programming languages (prefer-

ably written in C++),
9) multi-platform.

In order to make the decision according to the above-listed
criteria, we have analyzed seven recognizable FPS games:
Quake III Arena, Doom 3, Half-Life 2, Unreal Tournament
2004, Unreal Tournament and Cube. Their comparison is
shown in Table I. Some of the features listed in the table are
objective (e.g., ‘scripting’) and others are subjective (“code
complexity”). Brand recognition was estimated as the number
(in millions) of Google results (as of 26.04.2016) for phrases
“game <gamename>”, where <gamename> was ‘doom’,
‘quake’, ‘half-life’, ‘unreal tournament’ or ‘cube’. The game
was considered as low-resolution capable if it was possible to
set the resolution to values smaller than 640× 480.

Some of the games had to be rejected right away in spite
of high general appeal. Unreal Tournament 2004 engine is
only accessible by the Software Development Kit and it lacks
support for controlling the speed of execution and direct screen
buffer access. The game has not been prepared to be heavily
modified.

Similar problems are shared by Half-Life 2 despite the
fact that the Source engine is widely known for modding
capabilities. It also lacks direct multiplayer support. Although
the Source engine itself offers multiplayer support, it involves
client-server architecture, which makes synchronization and
direct interaction with the engine problematic (network com-



Table I
OVERVIEW OF 3D FPS GAME ENGINES CONSIDERED.

Features / Game Doom Doom 3 Quake III: Arena Half-Life 2 Unreal
Tournament

2004

Unreal
Tournament

Cube

Game Engine ZDoom[1] id tech 4 ioquake3 Source Unreal
Engine 2

Unreal
Engine 4

Cube Engine

Release year 1993 2003 1999 2004 2004 not yet 2001
Open Source 3 3 3 3 3
License GPL GPLv3 GPLv2 Proprietary Proprietary Custom ZLIB
Language C++ C++ C C++ C++ C++ C++

DirectX 3 3 3
OpenGL 33 3 3 3 3 3 3
Software Render 3

Windows 3 3 3 3 3 3 3
Linux 3 3 3 3 3 3 3
Mac OS 3 3 3 3 3 3

Map editor 3 3 3 3 3 3 3
Screen buffer access 3 3 3 3 3
Scripting 3 3 3 3 3 3
Multiplayer mode 3 3 3 3 3 3
Small resolution 3 3 3 3 3 3 3

Custom assets 3 3 3 3 3 3 3
Free original assets 3 3

System requirements Low Medium Low Medium Medium High Low
Disk space 40MB 2GB 70MB 4,5GB 6GB >10GB 35MB
Code complexity Medium High Medium - - High Low

Active community 3 3 3 3 3

Brand recognition 31.5 16.8 18.7 1.0 0.1

munication).
The client-server architecture was also one the reasons for

rejection of Quake III: Arena. Quake III also does not offer any
scripting capabilities, which are essential to make a research
environment versatile. The rejection of Quake was a hard
decision as it is a highly regarded and playable game even
nowadays but this could not outweigh the lack of scripting
support.

The latter problem does not concern Doom 3 but its high
disk requirements were considered as a drawback. Doom 3 had
to be ignored also because of its complexity, Windows-only
tools, and OS-dependent rendering mechanisms. Although its
source code has been released, its community is dispersed.
As a result, there are several rarely updated versions of its
sources.

The community activity is also a problem in the case of
Cube as its last update was in August 2005. Nonetheless, the
low complexity of its code and the highly intuitive map editor
would make it a great choice if the engine was more popular.

Unreal Tournament, however popular, is not as recognizable
as Doom or Quake but it has been a primary research platform
for FPS games [9], [26]. It also has great capabilities. Despite
its active community and the availability of the source code,
it was rejected due to its high system requirements.

Doom (see Fig. 1) met most of the requirements and allowed
to implement features that would be barely achievable in other

3GZDoom, the ZDoom’s fork, is OpenGL-based.

games, e.g., off-screen rendering and custom rewards. The
game is highly recognizable and runs on the three major
operating systems. It was also designed to work in 320× 240
resolution and despite the fact that modern implementations
allow bigger resolutions, it still utilizes low-resolution textures.
Moreover, its source code is easy-to-understand.

The unique feature of Doom is its software renderer. Be-
cause of that, it could be run without the desktop environment
(e.g., remotely in a terminal) and accessing the screen buffer
does not require transferring it from the graphics card.

Technically, ViZDoom is based on the modernized, open-
source version of Doom’s original engine — ZDoom, which
is still actively supported and developed.

B. Application Programming Interface (API)

ViZDoom API is flexible and easy-to-use. It was designed
with reinforcement and apprenticeship learning in mind, and
therefore, it provides full control over the underlying Doom
process. In particular, it allows retrieving the game’s screen
buffer and make actions that correspond to keyboard buttons
(or their combinations) and mouse actions. Some game state
variables such as the player’s health or ammunition are avail-
able directly.

ViZDoom’s API was written in C++. The API offers a
myriad of configuration options such as control modes and
rendering options. In addition to the C++ support, bindings
for Python and Java have been provided. The Python API
example is shown in Fig. 2.



1 from vizdoom import *
2 from random import choice
3 from time import sleep, time
4

5 game = DoomGame()
6 game.load_config("../config/basic.cfg")
7 game.init()
8

9 # Sample actions. Entries correspond to buttons:
10 # MOVE_LEFT, MOVE_RIGHT, ATTACK
11 actions = [[True, False, False],
12 [False, True, False], [False, False, True]]
13 # Loop over 10 episodes.
14 for i in range(10):
15 game.new_episode()
16 while not game.is_episode_finished():
17 # Get the screen buffer and and game variables
18 s = game.get_state()
19 img = s.image_buffer
20 misc = s.game_variables
21 # Perform a random action:
22 action = choice(actions)
23 reward = game.make_action(action)
24 # Do something with the reward...
25

26 print("total reward:", game.get_total_reward())

Figure 2. Python API example

C. Features

ViZDoom provides features that can be exploited in dif-
ferent kinds of AI experiments. The main features include
different control modes, custom scenarios, access to the depth
buffer and off-screen rendering eliminating the need of using
a graphical interface.

1) Control modes: ViZDoom implements four control
modes: i) synchronous player, ii) synchronous spectator, iii)
asynchronous player, and iv) asynchronous spectator.

In asynchronous modes, the game runs at constant 35 frames
per second and if the agent reacts too slowly, it can miss
some frames. Conversely, if it makes a decision too quickly,
it is blocked until the next frame arrives from the engine.
Thus, for reinforcement learning research, more useful are the
synchronous modes, in which the game engine waits for the
decision maker. This way, the learning system can learn at its
pace, and it is not limited by any temporal constraints.

Importantly, for experimental reproducibility and debugging
purposes, the synchronous modes run deterministically.

In the player modes, it is the agent who makes actions
during the game. In contrast, in the spectator modes, a human
player is in control, and the agent only observes the player’s
actions.

In addition, ViZDoom provides an asynchronous multi-
player mode, which allows games involving up to eight players
(human or bots) over a network.

2) Scenarios: One of the most important features of ViZ-
Doom is the ability to run custom scenarios. This includes
creating appropriate maps, programming the environment me-
chanics (“when and how things happen”), defining terminal
conditions (e.g., “killing a certain monster”, “getting to a cer-
tain place”, “died”), and rewards (e.g., for “killing a monster”,

Figure 3. ViZDoom allows depth buffer access.

“getting hurt”, “picking up an object”). This mechanism opens
endless experimentation possibilities. In particular, it allows
creating a scenario of a difficulty which is on par with the
capabilities of the assessed learning algorithms.

Creation of scenarios is possible thanks to easy-to-use
software tools developed by the Doom community. The two
recommended free tools include Doom Builder 2 and SLADE
3. Both are visual editors, which allow defining custom maps
and coding the game mechanics in Action Code Script. They
also enable to conveniently test a scenario without leaving the
editor.

ViZDoom comes with a few predefined scenarios. Two of
them are described in Section IV.

3) Depth Buffer Access: ViZDoom provides access to the
renderer’s depth buffer (see Fig. 3), which may help an agent
to understand the received visual information. This feature
gives an opportunity to test whether the learning algorithms
can autonomously learn the whereabouts of the objects in
the environment. The depth information can also be used to
simulate the distance sensors common in mobile robots.

4) Off-Screen Rendering and Frame Skipping: To facil-
itate computationally heavy machine learning experiments,
we equipped ViZDoom with off-screen rendering and frame
skipping features. Off-screen rendering lessens the perfor-
mance burden of actually showing the game on the screen and
makes it possible to run the experiments on the servers (no
graphical interface needed). Frame skipping, on the other hand,
allows omitting rendering selected frames at all. Intuitively,
an effective bot does not have to see every single frame. We
explore this issue experimentally in Section IV.

D. ViZDoom’s Performance

The main factors affecting ViZDoom performance are the
number of the actors (like items and bots), the rendering
resolution, and computing the depth buffer. Fig. 4 shows how
the number of frames per second depends on these factors.
The tests have been made in the synchronous player mode on
Linux running on Intel Core i7-4790k. ViZDoom uses only a
single CPU core.



Figure 4. ViZDoom performance. “depth” means generating also the depth
buffer.

Figure 5. The basic scenario

The performance test shows that ViZDoom can render
nearly 7000 low-resolution frames per second. The rendering
resolution proves to be the most important factor influencing
the processing speed. In the case of low resolutions, the
time needed to render one frame is negligible compared to
the backpropagation time of any reasonably complex neural
network.

IV. EXPERIMENTS

A. Basic Experiment

The primary purpose of the experiment was to show that
reinforcement learning from the visual input is feasible in
ViZDoom. Additionally, the experiment investigates how the
number of skipped frames (see Section III-C4) influences the
learning process.

1) Scenario: This simple scenario takes place in a rectan-
gular chamber (see Fig. 5). An agent is spawned in the center
of the room’s longer wall. A stationary monster is spawned
at a random position along the opposite wall. The agent can
strafe left and right, or shoot. A single hit is enough to kill

the monster. The episode ends when the monster is eliminated
or after 300 frames, whatever comes first. The agent scores
101 points for killing the monster, −5 for a missing shot,
and, additionally, −1 for each action. The scores motivate the
learning agent to eliminate the monster as quickly as possible,
preferably with a single shot4.

2) Deep Q-Learning: The learning procedure is similar to
the Deep Q-Learning introduced for Atari 2600 [22]. The
problem is modeled as a Markov Decision Process and Q-
learning [28] is used to learn the policy. The action is selected
by an ε-greedy policy with linear ε decay. The Q-function
is approximated with a convolutional neural network, which
is trained with Stochastic Gradient Decent. We also used
experience replay but no target network freezing (see [22]).

3) Experimental Setup:
a) Neural Network Architecture: The network used in the

experiment consists of two convolutional layers with 32 square
filters, 7 and 4 pixels wide, respectively (see Fig. 6). Each
convolution layer is followed by a max-pooling layer with
max pooling of size 2 and rectified linear units for activation
[14]. Next, there is a fully-connected layer with 800 leaky
rectified linear units [20] and an output layer with 8 linear
units corresponding to the 8 combinations of the 3 available
actions (left, right and shot).

b) Game Settings: A state was represented by the most
recent frame, which was a 60 × 45 3-channel RGB image.
The number of skipped frames is controlled by the skipcount
parameter. We experimented with skipcounts of 0-7, 10, 15,
20, 25, 30, 35 and 40. It is important to note that the agent
repeats the last decision on the skipped frames.

c) Learning Settings: We arbitrarily set the discount
factor γ = 0.99, learning rate α = 0.01, replay memory
capacity to 10 000 elements and mini-batch size to 40. The
initial ε = 1.0 starts to decay after 100 000 learning steps,
finishing the decay at ε = 0.1 at 200 000 learning steps.

Every agent learned for 600 000 steps, each one consisting
of performing an action, observing a transition, and updating
the network. To monitor the learning progress, 1000 testing
episodes were played after each 5000 learning steps. Final
controllers were evaluated on 10 000 episodes. The experiment
was performed on Intel Core i7-4790k 4GHz with GeForce
GTX 970, which handled the neural network.

4) Results: Figure 7 shows the learning dynamics for the
selected skipcounts. It demonstrates that although all the
agents improve over time, the skips influence the learning
speed, its smoothness, as well as the final performance. When
the agent does not skip any frames, the learning is the slowest.
Generally, the larger the skipcount, the faster and smoother the
learning is. We have also observed that the agents learning with
higher skipcounts were less prone to irrational behaviors like
staying idle or going the direction opposite to the monster,
which results in lower variance on the plots. On the other
hand, too large skipcounts make the agent ‘clumsy’ due to the

4See also https://youtu.be/fKHw3wmT uA

https://youtu.be/fKHw3wmT_uA


Figure 6. Architecture of the convolutional neural network used for the experiment.

lack of fine-grained control, which results in suboptimal final
scores.

The detailed results, shown in Table II, indicate that the
optimal skipcount for this scenario is 4 (the “native” column).
However, higher values (up to 10) are close to this maximum.

We have also checked how robust to skipcounts the agents
are. For this purpose, we evaluated them using skipcounts
different from ones they had been trained with. Most of the
agents performed worse than with their “native” skipcounts.
The least robust were the agents trained with skipcounts less
than 4. Larger skipcounts resulted in more robust agents.
Interestingly, for skipcounts greater than or equal to 30, the
agents score better on skipcounts lower than the native ones.
Our best agent that was trained with skipcount 4 was also the
best when executed with skipcount 0.

It is also worth showing that increasing the skipcount influ-
ences the total learning time only slightly. The learning takes
longer primarily due to the higher total overhead associated
with episode restarts since higher skipcounts result in a greater
number of episodes.

To sum up, the skipcounts in the range of 4-10 provide
the best balance between the learning speed and the final
performance. The results also indicate that it would be prof-
itable to start learning with high skipcounts to exploit the
steepest learning curve and gradually decrease it to fine-tune
the performance.

B. Medikit Collecting Experiment

The previous experiment was conducted on a simple sce-
nario which was closer to a 2D arcade game rather than a true
3D virtual world. That is why we decided to test if similar
deep reinforcement learning methods would work in a more
involved scenario requiring substantial spatial reasoning.

1) Scenario: In this scenario, the agent is spawned in a
random spot of a maze with an acid surface, which slowly,
but constantly, takes away the agent’s life (see Fig. 8). To
survive, the agent needs to collect medikits and avoid blue
vials with poison. Items of both types appear in random
places during the episode. The agent is allowed to move
(forward/backward), and turn (left/right). It scores 1 point for
each tick, and it is punished by −100 points for dying. Thus,
it is motivated to survive as long as possible. To facilitate

0 100 200 300 400 500 600

Learning steps in thousands

300

250

200

150

100

50

0

50

100

A
v
e
ra

g
e
 r

e
su

lt
skipcount

0

2

4

6

10

20

40

Figure 7. Learning dynamics depending on the number of skipped frames.

Table II
AGENTS’ FINAL PERFORMANCE IN THE FUNCTION OF THE NUMBER OF

SKIPPED FRAMES (‘NATIVE’). ALL THE AGENTS WERE ALSO TESTED FOR
SKIPCOUNTS∈ {0, 10}.

skipcount
average score ± stdev

episodes learning time [min]
native 0 10

0 51.5± 74.9 51.5± 74.9 36.0± 103.6 6961 91.1

1 69.0± 34.2 69.2± 26.9 39.6± 93.9 29 378 93.1

2 76.2± 15.5 71.8± 18.1 47.9± 47.6 49 308 91.5

3 76.1± 14.6 75.1± 15.0 44.1± 85.4 65 871 93.4

4 82.2± 9.4 81.3± 11.0 76.5± 17.1 104 796 93.9

5 81.8± 10.2 79.0± 13.6 75.2± 19.9 119 217 92.5

6 81.5± 9.6 78.7± 14.8 76.3± 16.5 133 952 92

7 81.2± 9.7 77.6± 15.8 76.9± 17.9 143 833 95.2

10 80.1± 10.5 75.0± 17.6 80.1± 10.5 171 070 92.8

15 74.6± 14.5 71.2± 16.0 73.5± 19.2 185 782 93.6

20 74.2± 15.0 73.3± 14.0 71.4± 20.7 240 956 94.8

25 73 ± 17 73.6± 15.5 71.4± 20.8 272 633 96.9

30 61.4± 31.9 69.7± 19.0 68.9± 24.2 265 978 95.7

35 60.2± 32.2 69.5± 16.6 65.7± 26.1 299 545 96.9

40 56.2± 39.7 68.4± 19.0 68.2± 22.8 308 602 98.6



Figure 8. Health gathering scenario

learning, we also introduced shaping rewards of 100 and −100
points for collecting a medikit and a vial, respectively. The
shaping rewards do not count to the final score but are used
during the agent’s training helping it to ‘understand’ its goal.
Each episode ends after 2100 ticks (1 minute in real-time) or
when the agent dies so 2100 is the maximum achievable score.
Being idle results in scoring 284 points.

2) Experimental Setup: The learning procedure was the
same as described in Section IV-A2 with the difference that
for updating the weights RMSProp [25] this time.

a) Neural Network Architecture: The employed network
is similar the one used in the previous experiment. The differ-
ences are as follows. It involves three convolutional layers with
32 square filters 7, 5, and 3 pixels wide, respectively. The fully-
connected layer uses 1024 leaky rectified linear units and the
output layer 16 linear units corresponding to each combination
of the 4 available actions.

b) Game Settings: The game’s state was represented by
a 120 × 45 3-channel RGB image, health points and the
current tick number (within the episode). Additionally, a kind
of memory was implemented by making the agent use 4 last
states as the neural network’s input. The nonvisual inputs
(health, ammo) were fed directly to the first fully-connected
layer. Skipcount of 10 was used.

c) Learning Settings: We set the discount factor γ = 1,
learning rate α = 0.00001, replay memory capacity to 10 000
elements and mini-batch size to 64. The initial ε = 1.0 started
to decay after 4 000 learning steps, finishing the decay at ε =
0.1 at 104 000 episodes.

The agent was set to learn for 1000 000 steps. To monitor the
learning progress, 200 testing episodes were played after each
5000 learning steps. The whole learning process, including the
testing episodes, lasted 29 hours.

3) Results: The learning dynamics is shown in Fig. 9. It
can be observed that the agents fairly quickly learns to get the
perfect score from time to time. Its average score, however,
improves slowly reaching 1300 at the end of the learning. The

Figure 9. Learning dynamics for health gathering scenario.

trend might, however, suggest that some improvement is still
possible given more training time. The plots suggest that even
at the end of learning, the agent for some initial states fails to
live more than a random player.

It must, however, be noted that the scenario is not easy and
even from a human player, it requires a lot of focus. It is so
because the medikits are not abundant enough to allow the
bots to waste much time.

Watching the agent play5 revealed that it had developed a
policy consistent with our expectations. It navigates towards
medikits, actively, although not very deftly, avoids the poison
vials, and does not push against walls and corners. It also
backpedals after reaching a dead end or a poison vial. How-
ever, it very often hesitates about choosing a direction, which
results in turning left and right alternately on the spot. This
quirky behavior is the most probable, direct cause of not fully
satisfactory performance.

Interestingly, the learning dynamics consists of three sudden
but ephemeral drops in the average and best score. The reason
for such dynamics is unknown and it requires further research.

V. CONCLUSIONS

ViZDoom is a Doom-based platform for research in vision-
based reinforcement learning. It is easy-to-use, highly flexible,
multi-platform, lightweight, and efficient. In contrast to the
other popular visual learning environments such as Atari
2600, ViZDoom provides a 3D, semi-realistic, first-person
perspective virtual world. ViZDoom’s API gives the user
full control of the environment. Multiple modes of operation
facilitate experimentation with different learning paradigms
such as reinforcement learning, apprenticeship learning, learn-
ing by demonstration, and, even the ‘ordinary’, supervised
learning. The strength and versatility of environment lie in
is customizability via the mechanism of scenarios, which can
be conveniently programmed with open-source tools.

5https://www.youtube.com/watch?v=re6hkcTWVUY

https://www.youtube.com/watch?v=re6hkcTWVUY


We also demonstrated that visual reinforcement learning is
possible in the 3D virtual environment of ViZDoom by per-
forming experiments with deep Q-learning on two scenarios.
The results of the simple move-and-shoot scenario, indicate
that the speed of the learning system highly depends on the
number of frames the agent is allowed to skip during the
learning. We have found out that it is profitable to skip from
4 to 10 frames. We used this knowledge in the second, more
involved, scenario, in which the agent had to navigate through
a hostile maze and collect some items and avoid the others.
Although the agent was not able to find a perfect strategy,
it learned to navigate the maze surprisingly well exhibiting
evidence of a human-like behavior.

ViZDoom has recently reached a stable 1.0.1 version and
has a potential to be extended in many interesting directions.
First, we would like to implement a synchronous multiplayer
mode, which would be convenient for self-learning in mul-
tiplayer settings. Second, bots are now deaf thus, we plan
to allow bots to access the sound buffer. Lastly, interesting,
supervised learning experiments (e.g., segmentation) could be
conducted if ViZDoom automatically labeled objects in the
scene.

ACKNOWLEDGMENT

This work has been supported in part by the Polish Na-
tional Science Centre grant no. DEC-2013/09/D/ST6/03932.
M. Kempka acknowledges the support of Ministry of Science
and Higher Education grant no. 09/91/DSPB/0602.

REFERENCES

[1] Zdoom wiki page. http://zdoom.org/wiki/Main Page. Accessed: 2016-
01-30.

[2] David Abel, Alekh Agarwal, Fernando Diaz, Akshay Krishnamurthy,
and Robert E. Schapire. Exploratory gradient boosting for reinforcement
learning in complex domains. CoRR, abs/1603.04119, 2016.

[3] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda.
Purposive behavior acquisition for a real robot by vision-based reinforce-
ment learning. In Recent Advances in Robot Learning, pages 163–187.
Springer, 1996.

[4] Minoru Asada, Eiji Uchibe, Shoichi Noda, Sukoya Tawaratsumida, and
Koh Hosoda. A vision-based reinforcement learning for coordination of
soccer playing behaviors. In Proceedings of AAAI-94 Workshop on AI
and A-life and Entertainment, pages 16–21, 1994.

[5] Nicholas Cole, Sushil J Louis, and Chris Miles. Using a genetic algo-
rithm to tune first-person shooter bots. In Evolutionary Computation,
2004. CEC2004. Congress on, volume 1, pages 139–145. IEEE, 2004.

[6] Giuseppe Cuccu, Matthew Luciw, Jürgen Schmidhuber, and Faustino
Gomez. Intrinsically motivated neuroevolution for vision-based rein-
forcement learning. In Development and Learning (ICDL), 2011 IEEE
International Conference on, volume 2, pages 1–7. IEEE, 2011.

[7] Mark Dawes and Richard Hall. Towards using first-person shooter
computer games as an artificial intelligence testbed. In Knowledge-
Based Intelligent Information and Engineering Systems, pages 276–282.
Springer, 2005.

[8] Abdennour El Rhalibi and Madjid Merabti. A hybrid fuzzy ANN system
for agent adaptation in a first person shooter. International Journal of
Computer Games Technology, 2008, 2008.

[9] A I Esparcia-Alcazar, A Martinez-Garcia, A Mora, J J Merelo, and
P Garcia-Sanchez. Controlling bots in a First Person Shooter game
using genetic algorithms. In Evolutionary Computation (CEC), 2010
IEEE Congress on, pages 1–8, jul 2010.

[10] Chris Gaskett, Luke Fletcher, and Alexander Zelinsky. Reinforcement
learning for a vision based mobile robot. In Intelligent Robots and
Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International
Conference on, volume 1, pages 403–409. IEEE, 2000.

[11] Benjamin Geisler. An empirical study of machine learning algorithms
applied to modeling player behavior in a first person shooter video
game. PhD thesis, University of Wisconsin-Madison, 2002.

[12] F G Glavin and M G Madden. DRE-Bot: A hierarchical First Person
Shooter bot using multiple Sarsa(λ) reinforcement learners. In Computer
Games (CGAMES), 2012 17th International Conference on, pages 148–
152, jul 2012.

[13] F G Glavin and M G Madden. Adaptive Shooting for Bots in First
Person Shooter Games Using Reinforcement Learning. Computational
Intelligence and AI in Games, IEEE Transactions on, 7(2):180–192, jun
2015.

[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Geoffrey J. Gordon and David B. Dunson,
editors, Proceedings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics (AISTATS-11), volume 15, pages 315–
323. Journal of Machine Learning Research - Workshop and Conference
Proceedings, 2011.

[15] S Hladky and V Bulitko. An evaluation of models for predicting op-
ponent positions in first-person shooter video games. In Computational
Intelligence and Games, 2008. CIG ’08. IEEE Symposium On, pages
39–46, dec 2008.

[16] Igor V. Karpov, Jacob Schrum, and Risto Miikkulainen. Believable Bot
Navigation via Playback of Human Traces, pages 151–170. Springer
Berlin Heidelberg, 2012.

[17] Jan Koutnı́k, Jürgen Schmidhuber, and Faustino Gomez. Evolving deep
unsupervised convolutional networks for vision-based reinforcement
learning. In Proceedings of the 2014 conference on Genetic and
evolutionary computation, pages 541–548. ACM, 2014.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[19] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural net-
works in reinforcement learning. In IJCNN, pages 1–8, 2010.

[20] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier
nonlinearities improve neural network acoustic models. In International
Conference on Machine Learning (ICML), 2013.

[21] M McPartland and M Gallagher. Reinforcement Learning in First Person
Shooter Games. Computational Intelligence and AI in Games, IEEE
Transactions on, 3(1):43–56, mar 2011.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 02
2015.

[23] Megan Smith, Stephen Lee-Urban, and Héctor Muñoz-Avila. RE-
TALIATE: learning winning policies in first-person shooter games.
In Proceedings of the National Conference on Artificial Intelligence,
volume 22, page 1801. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2007.

[24] Tony C Smith and Jonathan Miles. Continuous and Reinforcement
Learning Methods for First-Person Shooter Games. Journal on Com-
puting (JoC), 1(1), 2014.

[25] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning, 2012.

[26] Chang Kee Tong, Ong Jia Hui, J Teo, and Chin Kim On. The
Evolution of Gamebots for 3D First Person Shooter (FPS). In Bio-
Inspired Computing: Theories and Applications (BIC-TA), 2011 Sixth
International Conference on, pages 21–26, sep 2011.

[27] David Trenholme and Shamus P Smith. Computer game engines for
developing first-person virtual environments. Virtual reality, 12(3):181–
187, 2008.

[28] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3):279–292, 1992.

http://zdoom.org/wiki/Main_Page

	I Introduction
	II Related Work
	III ViZDoom Research Platform
	III-A Why Doom?
	III-B Application Programming Interface (API)
	III-C Features
	III-C1 Control modes
	III-C2 Scenarios
	III-C3 Depth Buffer Access
	III-C4 Off-Screen Rendering and Frame Skipping

	III-D ViZDoom's Performance

	IV Experiments
	IV-A Basic Experiment
	IV-A1 Scenario
	IV-A2 Deep Q-Learning
	IV-A3 Experimental Setup
	IV-A4 Results

	IV-B Medikit Collecting Experiment
	IV-B1 Scenario
	IV-B2 Experimental Setup
	IV-B3 Results


	V Conclusions
	References

