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Abstract: Frequent itemset mining can be regarded as advanced database querying where a user specifies constraints 

on the source dataset and patterns to be discovered. Since such frequent itemset queries can be submitted to 

the data mining system in batches, a natural question arises whether a batch of queries can be processed 

more efficiently than by executing each query individually. So far, two methods of processing batches of 

frequent itemset queries have been proposed for the Apriori algorithm: Common Counting, which integrates 

only the database scans required to process the queries, and Common Candidate Tree, which extends the 

concept by allowing the queries to also share their main memory structures. In this paper we propose a new 

method called Common Candidates, which further integrates processing of the queries from a batch by 

performing integrated candidate generation. 

1 INTRODUCTION 

Frequent itemset discovery (Agrawal et al., 1993) is 

a very important data mining problem with 

numerous practical applications. Its goal is discovery 

of the most frequently occurring subsets, in a 

database of sets of items, called transactions.  

Despite significant advances in frequent itemset 

mining, the most widely implemented and used in 

practice frequent itemset mining algorithm is the 

classic Apriori algorithm (Agrawal and Srikant, 

1994), due to its simplicity and satisfactory 

performance in real-world scenarios. Apriori 

iteratively generates candidates (i.e., potentially 

frequent itemsets) from previously found smaller 

frequent itemsets and counts their occurrences in the 

database. To improve the efficiency of testing which 

candidates are contained in a transaction read from 

the database, the candidates are stored in a hash tree. 

Frequent itemset mining is often regarded as 

advanced database querying where a user specifies 

the source dataset, the minimum support threshold, 

and optionally pattern constraints within a given 

constraint model (Imielinski and Mannila, 1996). A 

significant amount of research on efficient 

processing of frequent itemset queries has been done 

in recent years, focusing mainly on constraint 

handling (see e.g. (Pei and Han, 2000) for an 

overview) and reusing results of previous queries 

(Baralis and Psaila, 1999) (Meo, 2003). 

Recently, a new problem of optimizing 

processing of sets of frequent itemset queries has 

been considered, bringing the concept of multiple-

query optimization, the problem extensively studied 

in the area of database systems (see (Sellis, 1988) 

for an overview),  to the domain of frequent itemset 

mining. The idea was to process the queries 

concurrently rather than sequentially and exploit the 

overlapping of queries’ source datasets. 

Two general approaches have been taken to 

design methods of processing batches of frequent 

itemset queries: (1) providing methods independent 

from a particular frequent pattern mining algorithm, 

and (2) tailoring dedicated methods for the most 

prominent frequent pattern mining algorithms with a 

particular emphasis on Apriori (Wojciechowski and 

Zakrzewicz, 2002). It has been shown that the latter 

approach yields more efficient algorithms than the 



 

former, due to better sharing of computations and 

I/O operations among the queries forming a batch. 

The first method of processing batches of 

frequent itemset queries proposed for Apriori was 

Common Counting (Wojciechowski and 

Zakrzewicz, 2002), which consists in concurrent 

execution of the queries with the integration of scans 

of parts of the database shared among the queries. 

Later, Common Counting was improved by 

additionally sharing the hash tree structures used to 

store candidates, resulting in the Common Candidate 

Tree method (Grudzinski and Wojciechowski, 

2007). In this paper we present a new algorithm 

called Common Candidates, which builds on the 

success of Common Candidate Tree, offering further 

integration of computations among the queries by 

performing integrated candidate generation. 

2 RELATED WORK 

To the best of our knowledge, apart from the 

problem considered in this paper, multiple-query 

optimization for frequent pattern queries has been 

considered only in the context of frequent pattern 

mining on multiple datasets (Jin et al., 2005). The 

idea was to reduce the common computations 

appearing in different complex queries, each of 

which compared the support of patterns in several 

disjoint datasets. This is fundamentally different 

from our problem, where each query refers to only 

one dataset and the queries' datasets overlap. 

Earlier, the need for multiple-query optimization 

has been postulated in the area of inductive logic 

programming, where a technique based on similar 

ideas as Common Counting has been proposed 

(Blockeel et al., 2002). 

3 BASIC DEFINITIONS 

Frequent itemset query. A frequent itemset query 

is a tuple dmq = (R, a, , , minsup), where R is a 

database relation, a is a set-valued attribute of R,  is 

a condition involving the attributes of R called data 

selection predicate,  is a condition involving 

discovered itemsets called pattern constraint, and 

minsup is the minimum support threshold. The result 

of dmq is a set of itemsets discovered in aR, 

satisfying , and having support ≥ minsup ( and  

denote relational projection and selection operations 

respectively). 

 

Elementary data selection predicates. The set of 

elementary data selection predicates for a set of 

frequent itemset queries DMQ = {dmq1, dmq2, ..., 

dmqn} is the smallest set S={s1, s2 ,..., sk} of data 

selection predicates over the relation R such that for 

each u, v (u  v) we have suRsvR = and for 

each dmqi there exist integers a, b, ..., m such that 

iR=saRsbR..smR. The set of elementary 

data selection predicates represents the partitioning 

of the database determined by overlapping of 

queries’ datasets.  

 

Problem Statement. Given a set of frequent itemset 

queries DMQ = {dmq1, dmq2, ..., dmqn}, the problem 

of multiple-query optimization of DMQ consists in 

generating an algorithm to execute DMQ that 

minimizes the overall processing time. 

4 COMMON CANDIDATES 

The only part of Apriori that is still performed 

separately for each query in Common Candidate 

Tree (CCT) is the candidate itemset generation. In 

order to introduce concurrency in that area, we 

propose a new method: Common Candidates 

(CCan), which makes it possible to generate 

candidates for all queries in a batch at once while 

preserving all the optimizations present in CCT. The 

pseudo-code for CCan is presented in Figure 1. 
CCT used two representations of an itemset: a 

standard, single-query representation (to store the 
frequent itemsets and freshly generated candidates) 
and an extended, multiple-query one (to store the 
frequent itemsets inside a common hash tree). CCan 
abandons the former completely and stores both the 
frequent and candidate itemsets using the extended 
representation with a bitmap (fromQuery[]) used to 
indicate which queries generated a candidate itemset 
and then updated to show in which queries that 
itemset has been verified to be frequent. 

The general idea of candidate generation remains 

identical to that of Apriori and is composed of the 

join phase and pruning phase. There are, however, 

some significant differences. Unlike all the previous 

methods which performed the join phase with only 

the itemsets from one query at a time, CCan joins all 

frequent itemsets from all queries simultaneously. 

To avoid generating candidates that do not apply to 

any query, only those pairs of itemsets that share at 

least one query are considered. After a candidate has 

been generated, its bitmap is calculated during the 

mandatory pruning phase by performing a logical 

AND operation on the bitmaps of all of its subsets of 



 

size 1 less. The resulting bitmap has its bits set only 

for those queries in which all of the subsets are 

frequent (queries that the candidate actually applies 

to), and candidates with an empty bitmap are 

automatically pruned. As the candidates generated 

using this method already use the extended itemset 

representation, they can be stored inside a common 

hash tree without any merging or conversion. 

The advantage of the integrated candidate 

generation of CCan as compared to CCT is two-fold. 

Firstly, each candidate is generated only once, no 

matter how many queries it applies to. Secondly, 

there is no need to convert the itemsets between the 

standard and extended representations, as the latter 

is used in both the generation and count phases. 

5 EXPERIMENTAL RESULTS 

In order to evaluate the performance of CCan 

compared to CCT, we conducted a series of 

experiments on a synthetic dataset generated with 

GEN (Agrawal et al., 1996) using the following 

settings: number of transactions = 1000000, average 

number of items in a transaction = 8, number of 

different items = 1000, number of patterns = 1500, 

average pattern length = 4. The dataset was stored in 

an index-organized table inside an Oracle database 

to facilitate efficient access to its fragments 

processed by frequent itemset queries. The 

experiments were carried out on a Mac with 2.2 

GHz Intel Core 2 Duo processor and 4 GB of 

memory, running Snow Leopard; the database was 

deployed on a PC with Athlon 64 3800+ processor 

and 2 GB or memory, running SuSE Linux. 
In the experiments we varied the level of 

overlapping between the queries and the number of 

queries in a batch. Each query referred to a dataset 
containing 100000 subsequent transactions from the 
generated dataset. The support threshold of 0.7%, 
which resulted in 7-8 Apriori iterations, was used for 
all queries. In addition to measuring total execution 
times for both algorithms, we also measured the time 
spent on candidate generation which is the target of 
optimizations introduced in CCan. 

 

 

Figure 2: Generation and total execution times for two 

queries and different levels of overlapping. 

The goal of the first experiment was to examine 
how the level of overlapping between the queries 
affects the generation and total execution times of 
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Figure 1: Common Candidates. 

 



 

CCan compared to CTT. The batch used in this 
experiment consisted of two queries. Obtained 
results are shown in Figure 2. 

The generation times of both CCT and CCan 

remain almost constant regardless of the level of 

overlapping, with CCan significantly outperforming 

CCT. The difference in total execution times is less 

significant, due to the fact that candidate occurrence 

counting is considerably more time consuming than 

candidate generation in Apriori-based methods. 

Second of the conducted experiments examined 

how well the algorithms scale with the increasing 

number of concurrently executed queries. In order to 

keep the queries equally similar, the level of 

overlapping between each pair of subsequent queries 

inside the batch was fixed at 75%. As can be seen in 

Figure 3, the generation time of CCT grows linearly 

with the increase of the number of queries in a batch, 

while CCan remains largely insensitive. Total 

execution times increase similarly for both methods, 

with CCan performing slightly better, especially 

with more queries in a batch. 

 

 

Figure 3: Generation and total execution times for 

different numbers of similar queries. 

6 CONCLUSIONS 

In this paper we addressed the problem of efficient 

processing of batches of frequent itemset queries in 

the context of the Apriori algorithm. We proposed a 

new algorithm, called Common Candidates, built 

upon Common Candidate Tree, offering further 

integration of computations performed for a batch of 

queries thanks to the integrated candidate generation 

procedure.  
The conducted experiments showed that the new 

method results in significant reduction of the total 
time spent on candidate generation. The impact of 
the integrated candidate generation procedure on the 
overall execution time is less spectacular but still 
noticeable. 

In the future we plan to investigate the possible 
impact of several optimizations applied to Apriori by 
its practical implementations on our batch 
processing algorithms. 
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