
213

EFFICIENT CONSTRAINT-BASED
SEQUENTIAL PATTERN MINING USING
DATASET FILTERING TECHNIQUES

Tadeusz Morzy, Marek Wojciechowski, and Maciej Zakrzewicz
Poznan University of Technology, Institute of Computing Science
ul. Piotrowo 3a, 60-965 Poznan, Poland

Abstract Basic formulation of the sequential pattern discovery problem assumes that the
only constraint to be satisfied by discovered patterns is the minimum support
threshold. However, very often users want to restrict the set of patterns to be
discovered by adding extra constraints on the structure of patterns. Data mining
systems should be able to exploit such constraints to speed-up the mining
process. In this paper we discuss efficient constraint-based sequential pattern
mining using dataset filtering techniques. We show how to transform a given
data mining task into an equivalent one operating on a smaller dataset. We
present an extension of the GSP algorithm using dataset filtering techniques
and experimentally evaluate performance gains offered by the proposed
method.

Keywords: data mining, sequential patterns

1. Introduction

Data mining aims at discovery of useful patterns from large databases or
data warehouses. One of the data mining methods is sequential pattern
discovery introduced in [2]. Informally, sequential patterns are the most
frequently occurring subsequences in sequences of sets of items.

Among many proposed sequential pattern mining algorithms, most of
them are designed to discover all sequential patterns exceeding a user-
specified minimum support threshold. Some of them (e.g. GSP [8]) also
allow users to specify time constraints to be taken into account when
checking whether a given data-sequence contains a given subsequence.

214

However, very often users are interested in patterns that satisfy more
sophisticated criteria, for example concerning size or contents of patterns.
Data mining tasks involving various types of constraints can be regarded as
data mining queries [5].

It is obvious that additional pattern structure constraints can be verified in
a post-processing step, after all patterns exceeding a given minimum support
threshold have been discovered. Nevertheless, such a solution cannot be
considered satisfactory since users providing advanced pattern selection
criteria may expect that the data mining system will exploit them in the
mining process to improve performance. In other words, the system should
concentrate on patterns that are interesting from the user’s point of view,
rather than waste time on discovering patterns the user has not asked for [4].

Very little work concerning constraint-driven sequential pattern discovery
has been done so far. In fact, only the algorithms from the SPIRIT family [3]
exploit pattern structure constraints in order to improve performance. These
algorithms can be seen as extensions of GSP using advanced candidate
generation and pruning techniques. In the SPIRIT framework, pattern
constrains are specified as regular expressions, which is an especially
convenient method if a user wants to significantly restrict the structure of
patterns to be discovered. It has been shown that pushing regular expression
constraints deep into the mining process can reduce processing time by more
than an order of magnitude. Nevertheless, it appears that further research on
constraint-based sequential pattern mining is needed.

We claim that techniques applicable to constraint-driven pattern discovery
can be classified into the following groups:
– post-processing (filtering out patterns that do not satisfy user-specified

pattern constraints after the actual discovery process);
– candidate filtering (application of pattern constraints to reduce the number

of processed candidates);
– dataset filtering (restricting the source dataset to objects that can possibly

support patterns that satisfy user-specified pattern constraints).
In the context of sequential pattern mining, candidate filtering techniques

are represented by the SPIRIT algorithm family, whereas dataset filtering
techniques have not been considered before. Dataset filtering techniques have
been first proposed for efficient constraint-based discovery of association
rules. However, due to different pattern constraints and the presence of time
constraints, adaptation of these techniques to sequential pattern discovery is
not straightforward.

In this paper we present new dataset filtering techniques to be used in the
context of sequential pattern discovery. We identify pattern constraints that
can be pushed down to dataset selection queries, which leads to a transformed
data mining task on a smaller dataset but equivalent in terms of resulting

Efficient Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Techniques

215

sequential patterns. The proposed techniques can be integrated with any
sequential pattern discovery algorithm. We present an efficient way of
integrating the dataset filtering techniques with GSP, and experimentally
evaluate performance gains in comparison with the original GSP algorithm.

1.1 Sequential Patterns

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-
empty set of items. A sequence is an ordered list of itemsets and is denoted as
<X1 X2 ... Xn>, where Xi is an itemset (Xi ⊆ L). Xi is called an element of the
sequence. The size of a sequence is the number of items in the sequence. The
length of a sequence is the number of elements in the sequence.

We say that a sequence X = <X1 X2 ... Xn> is a subsequence of a sequence
Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2 ⊆
Yi2, ..., Xn ⊆ Yin. We call <Yi1 Yi2 ... Yin > an occurrence of X in Y.

Given a sequence Y = <Y1 Y2 ... Ym> and a subsequence X, X is a
contiguous subsequence of Y if any of the following conditions hold: 1) X is
derived from Y by dropping an item from Y1 or Ym. 2) X is derived from Y by
dropping an item from an element Yi which has at least 2 items. 3) X is a
contiguous subsequence of X’, and X’ is a contiguous subsequence of Y.

Let D be a set of variable length sequences (called data-sequences), where
for each sequence S = <S1 S2 ... Sn>, a timestamp is associated with each Si.
With no time constraints we say that a sequence X is contained in a data-
sequence S if X is a subsequence of S. We consider the following user-
specified time constraints while looking for occurrences of a given sequence
in a given data-sequence: minimal and maximal gap allowed between
consecutive elements of an occurrence of the sequence (called min-gap and
max-gap), and time window that allows a group of consecutive elements of a
data-sequence to be merged and treated as a single element as long as their
timestamps are within the user-specified window-size.

The support of a sequence <X1 X2 ... Xn> in D is the fraction of data-
sequences in D that contain the sequence. A sequential pattern (also called a
frequent sequence) is a sequence whose support in D is above the user-
specified minimum support threshold.

1.2 Review of the GSP Algorithm

The GSP algorithm, introduced in [8], exploits the following property: all
contiguous subsequences of a frequent sequence also have to be frequent.
GSP makes multiple passes over the data. During the first pass the support of
each item is counted. At the end of the first pass, the set of frequent items

216

(equivalent to the set of 1-element frequent sequences) is known. In each
subsequent iteration, new potentially frequent sequences, called candidate
sequences, are generated from the frequent sequences found in the previous
pass. Each candidate sequence has one more item than frequent sequences
from the previous iteration. In each iteration, the source dataset is scanned to
evaluate the support of the candidate sequences and determine which
candidates are actually frequent. The algorithm terminates when there are no
candidates generated or if none of the candidates turns out to be frequent.

1.3 Related Work

Constraint-driven mining was extensively studied in the context of
association rules [6][9][10]. The key step in association rule mining is
discovery of frequent itemsets. Techniques of constraint-driven discovery of
association rules proposed so far apply two kinds of optimizations:
generating only frequent itemsets that can lead to rules satisfying the
constraints, and restricting the source collection of sets to those which can
contain such itemsets. However, because of the presence of time
dependencies and time constraints in case of sequential pattern mining, direct
adaptation of techniques proposed for association rules is not possible, or at
least not sufficient.

Most of the research on sequential patterns focused on introducing new
algorithms, more efficient than GSP (e.g. PrefixSpan [7]). However, the
novel methods do not handle time constraints. Thus, GSP still remains the
most general sequential pattern discovery algorithm and the reference point
for new methods and techniques.

2. Pushing Pattern Constraints into Dataset Selection
Queries

In constraint-based sequential pattern mining, we identify the following
classes of constraints: database constraints, pattern constraints, and time
constraints. Database constraints are used to specify the source dataset.
Pattern constraints specify which patterns are interesting and should be
returned by the query. Finally, time constraints influence the process of
checking whether a given data-sequence contains a given pattern. The basic
formulation of the sequential pattern discovery problem introduces three time
constraints: max-gap, min-gap, and time window, and assumes only one
pattern constraint (the minimum support threshold). We model pattern

Efficient Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Techniques

217

constraints as complex Boolean predicates having the form of a conjunction
of the following basic Boolean predicates on patterns and pattern elements:
– π(SPG, α, pattern) - true if pattern support is greater than α, false

otherwise;
– π(SL, α, pattern) - true if pattern size is less than α, false otherwise;
– π(SG, α, pattern) - true if pattern size is greater than α, false otherwise;
– π(LL, α, pattern) - true if pattern length is less than α, false otherwise;
– π(LG, α, pattern) - true if pattern length is greater than α, false otherwise;
– π(C, β, pattern) - true if β is a subsequence of the pattern, false otherwise;
– π(NC, β, pattern) - true if β is not a subsequence of the pattern, false

otherwise;
– π(SL, α, patternn) - true if the size of the n-th element of the pattern is less

than α, false otherwise;
– ρ(SG, α, patternn) - true if the size of the n-th element of the pattern is

greater than α, false otherwise;
– ρ(C, γ, patternn) - true if γ is a subset of the n-th element of the pattern,

false otherwise;
– ρ(NC, γ, patternn) - true if γ is not a subset of the n-th element of the

pattern, false otherwise.
We believe that the above list of predicates is sufficient to allow users to

express their pattern selection criteria. For simplicity’s sake, in length and
size predicates we consider only sharp inequalities.

Dataset filtering techniques consist in discarding data-sequences that
cannot support any pattern satisfying pattern constraints specified by a user.
There are two questions that have to be answered. Firstly, basic Boolean
predicates concerning patterns or pattern elements whose presence in pattern
constraints of a sequential pattern query leads to the possibility of dataset
filtering have to be identified. Secondly, for each of the applicable basic
Boolean pattern predicates, the corresponding predicate concerning data-
sequences has to be provided.

Before we present theorems describing relationships between predicates
concerning patterns or pattern elements and properties of data-sequences that
can possibly support patterns satisfying these predicates, we have to
introduce basic Boolean predicates concerning data-sequences to be used for
dataset filtering:
– σ(SG, α, sequence) – true if the size of the data-sequence is greater than

α, false otherwise;
– σ(LG, α, sequence) – true if the length of the data-sequence is greater

than α, false otherwise;

218

– σ(C, β, sequence, maxgap, mingap, window) – true if the data-sequence
contains the sequence forming the pattern β using given time constraints,
false otherwise;

– σ(CS, α, sequence, window) - true if there exists a 1-element sequence of
size α that is contained in the sequence with respect to the window-size
constraint, false otherwise;

– σ(CL, α, sequence, maxgap, mingap, window) - true if there exists a
sequence of length α that is contained in the sequence with respect to the
max-gap, min-gap, and window-size constraints, false otherwise.

Theorem 1 Sequential patterns of size greater than k cannot be supported

by a data-sequence whose size is not greater than k.
Proof: The proof is obvious since an occurrence of a pattern in a sequence

must consist of the same number of items as the pattern.

Theorem 2 Sequential patterns of length greater than k, to be returned by

a data mining query, can be supported only by data-sequences which contain
some sequence of length k+1 using max-gap, min-gap, and window-size
specified in the query.

Proof: Each sequential pattern of length greater than k has at least one
contiguous subsequence of length k+1. If a data-sequence contains some
sequence, it contains every contiguous subsequence of that sequence. Thus, if
a data-sequence contains some sequence of length greater than k, it contains
at least one sequence of length k+1.

Theorem 3 Sequential patterns, to be returned by a data mining query,

containing a given sequence can be supported only by data-sequences
containing that sequence using min-gap and window-size specified in the
query, and max-gap of +∞.

Proof: If a data-sequence contains some sequence using certain values of
max-gap, min-gap, and window-size, it also contains every contiguous
subsequence of the sequence, using the same time constraints. If max-gap is
set to +∞, a data-sequence containing some sequence contains all its
subsequences.

Theorem 4 Sequential patterns, to be returned by a data mining query,

whose n-th element has the size greater than k can be supported only by data-
sequences which contain some 1-element sequence of size k+1 using
window-size specified in the query.

Proof: Each 1-element subsequence of any sequence is its contiguous
subsequence (from the definition of a contiguous subsequence). If any
element of a sequence has the size greater than k, the sequence has at least

Efficient Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Techniques

219

one 1-element contiguous subsequence of size k+1. If a data-sequence
contains some sequence, it contains every contiguous subsequence of that
sequence. Thus, if a data-sequence contains some sequence whose n-th
element has the size greater than k, it has to contain some 1-element sequence
of size k+1.

Theorem 5 Sequential patterns, to be returned by a data mining query,

whose n-th element contains a given set can be supported only by data-
sequences which contain a 1-element sequence having the set as the only
element, using time constraints specified in the query.

Proof: Each 1-element subsequence of any sequence is its contiguous
subsequence (from the definition of a contiguous subsequence). If any
element of a sequence contains a given set, a 1-element sequence formed by
the set is a contiguous subsequence of the sequence. If a data-sequence
contains some sequence, it contains every contiguous subsequence of that
sequence. Thus, if a data-sequence contains some sequence whose n-th
element contains a given set, it has to contain a 1-element sequence having
the set as the only element.

The above theorems concern the basic Boolean predicates on patterns or

pattern elements that can be used for dataset filtering and provide
corresponding data-sequence predicates to be used in the filtering process.
These predicates and their corresponding data-sequence predicates are
presented in Table 1.

Table 1. Basic Boolean predicates on patterns or pattern elements and
corresponding data-sequence predicates
Basic Boolean predicate on a pattern
or n-th element of a pattern

Basic Boolean predicate on a data-
sequence

π(SG, α, pattern) σ(SG, α, sequence)
π(LG, α, pattern) σ(CL, α+1, sequence, max, min, win)
π(C, β, pattern) σ(C, β, sequence, +∞, min, win)
ρ(SG, α, patternn) σ(CS, α+1, sequence, win)
ρ(C, γ, patternn) σ(C, <γ>, sequence, max, min, win)

In the above table, <γ> denotes a 1-element sequence having the set γ as

its only element, while max, min, and win represent values of max-gap, min-
gap, and window-size time constraints respectively.

The presence of other basic Boolean predicates in pattern constraints of a
sequential pattern query does not affect the filtering process since patterns
having support greater than a certain value, size or length less than a certain
value, size of the n-th element less than a certain value, as well as patterns not

220

containing a certain sequence, or whose n-th element does not contain a
certain itemset, can be supported by any data-sequence.

Example 1 Consider the following sequential pattern query (for the query

we present time and pattern constraints, the specification of the source dataset
is omitted for brevity): DMQ = {max-gap: 100, min-gap: 7, window-size: 0,
π(SPG, 0.01, pattern) ∧ π(SG, 3, pattern) ∧ π(LL, 5, pattern) ∧
π(C, <(A)(B)>, pattern)}. The query returns sequential patterns having
support greater than 1%, having more than three items but less than five
elements, containing the sequence <(A)(B)>. The specified values of max-
gap, min-gap, and window-size constraints are 100, 7, and 0 respectively.

Thus, according to the Table 1 (based on the Theorems 1 – 5), the
following dataset filtering predicate has to be satisfied by a data-sequence
containing a pattern satisfying pattern constraints: σ(SG, 3, sequence) ∧ σ(C,
<(A)(B)>, sequence, +∞, 7, 0). The dataset filtering predicate says that only
data-sequences having more than three items and containing the sequence
<(A)(B)> with max-gap of +∞, min-gap of 7, and window-size of 0, have to
be considered in the discovery process.

According to the Theorems 1 - 5, a sequential pattern query having one or

more basic Boolean pattern predicates from the left column of Table 1 in its
pattern constraints can be transformed into a query representing a discovery
task on a potentially smaller dataset in the following way. Firstly, database
constraints of the query have to be extended with appropriate data-sequence
predicates. Secondly, the minimum support constraint has to be adjusted to
the size of the filtered database. This step is necessary because the support of
a pattern is expressed as the percentage of data-sequences containing the
pattern. The Theorems 1 – 5 guarantee that the number of data-sequences
containing a given pattern in the original and filtered dataset will be the same
as long as the pattern satisfies pattern constraints. Thus, we have the
following relationship between the support of a pattern p (satisfying pattern
constraints) in the original and filtered datasets: supF(p) = |D| * sup(p) / |DF|,
where supF(p) and sup(p) denote the support of the pattern p in the filtered
and original dataset respectively, and |DF| and |D| denote the number of data-
sequences in the filtered and original dataset respectively. After the patterns
frequent in the filtered dataset have been discovered, their support has to be
normalized with respect to the number of data-sequences in the original
dataset according to the above formula.

Dataset filtering techniques can be combined with any sequential pattern
discovery algorithm since they conceptually lead to a transformed discovery
task guaranteed to return the same set of patterns as the original task. The
transformation of the source dataset (by filtering out data-sequences that

Efficient Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Techniques

221

cannot contain patterns of interest) and conversion of pattern constraints
concerning pattern support can be performed before the actual discovery
process. However, in reality such explicit transformation might be impossible
due to space limitations. Some sequential pattern discovery algorithms
perform certain projections of the database (e.g. PrefixSpan) by nature, while
others (e.g. GSP) do not transform the database in any way, which is a
serious advantage if the database is large and the storage space limited. We
believe that if the original algorithm has some desirable properties, any
extension applied to the algorithm should preserve them.

3. Integration of Dataset Filtering Techniques with GSP

In this section we present an extension of the GSP algorithm (denoted as
GSP-F) exploiting dataset filtering techniques to support efficient constraint-
based sequential pattern mining. We chose GSP as the basis for
implementing the dataset filtering techniques for two reasons. Firstly, GSP
(and its extensions) is still the only sequential pattern discovery algorithm
supporting time constraints, which affect the dataset filtering process.
Secondly, GSP does not create any temporal structures to store portions of
the source database and preserving this property may be a challenging task.

GSP iteratively generates candidate sequences and evaluates their support
by testing their occurrence in each data-sequence from the source dataset.
Since we do not want to materialize the filtered dataset, filtering has to be
performed on-line in each iteration of the algorithm. Data-sequences that do
not satisfy dataset filtering constraints derived from pattern constraints are
excluded from the candidate verification process (conceptually the discovery
process takes place in the reduced dataset). It should be noted that since we
do not explicitly transform the data mining task into an equivalent one, the
support conversions discussed in the previous section are not necessary.

The detailed GSP-F algorithm extending GSP with dataset filtering
techniques is presented below. The algorithm takes a collection D of data-
sequences as input, and returns all sequential patterns in D supporting user-
specified pattern and time constraints.

Algorithm GSP-F
 DF = dataset filtering predicate derived from pattern constraints;
 scan D in order to:
 1) evaluate minimum number of supporting data-sequences for
 a pattern to be called frequent (mincount)

222

 2) find L1 (set of 1-sequences contained in at least mincount
 data-sequences satisfying DF);
 for (k = 2; Lk-1 ≠ ∅; k++) do
 begin
 Ck = apriori_gen(Lk-1); /* generate new candidate sequences */
 if Ck = ∅ then break;
 forall data-sequences d ∈ D do
 if d satisfies DF then
 forall candidates c ∈ Ck do
 if d contains c using user-specified time constraints then
 c.count ++;
 end if;
 end if;
 Lk = { c ∈ Ck | c.count ≥ mincount};
 end;
 output patterns from ∪k Lk satisfying pattern constraints;

The algorithm starts with deriving dataset filtering constraints from

pattern constraints provided by a user. These dataset filtering constraints are
used in each scan of the source dataset and data-sequences that do not satisfy
them are excluded from the candidate verification process. When the
discovery of sequential patterns in the filtered dataset is finished, a post-
processing step filtering out patterns that do not satisfy user-specified pattern
constraints is applied. This phase is required since dataset filtering itself does
not guarantee that only patterns supporting pattern constraints are to be
discovered. It should be noted that the support of patterns not satisfying user-
specified pattern constraints, counted in the filtered dataset, can be smaller
than their actual support in the original dataset, but it is not a problem since
these patterns will not be returned to the user. Moreover, this is in fact a
positive feature as it can reduce the number of generated candidates not
leading to patterns of user’s interest.

GSP-F does not reduce the amount of data read from the database in each
iteration in comparison to the original GSP algorithm. However, we expect it
to be more efficient since data-sequences that do not satisfy dataset filtering
constraints are excluded from the costly candidate verification process.

4. Experimental Results

In order to evaluate performance gains offered by our dataset filtering
techniques, we performed several experiments on a synthetic dataset
generated by means of the GEN generator from the Quest project [1]. The

Efficient Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Techniques

223

dataset contained 1000 data-sequences built from 50 different items, the
average number of transactions per data-sequence was 5.5, and the average
number of items per transaction was 1.2. Since GEN does not generate
transaction times, we treated transaction identifiers as transaction times, thus
the time gap between each two consecutive elements of each data-sequence
was always equal to one time unit. The generated data-sequences were stored
in a database table (a local Oracle8i database server was used).

We started the experiments with varying the constraints regarding pattern
size, length, and contents for the fixed minimum support threshold of 1%,
infinite max-gap, and min-gap and window-size equal to 0. Apart from
measuring the total execution times of GSP and GSP-F, we also registered
the time spent by GSP-F on dataset filtering, and the selectivity of dataset
filtering constraints derived from pattern constraints (expressed as the
percentage of data-sequences in the database satisfying dataset filtering
constraints). Figure 1 presents the ratio of the execution time of GSP-F to the
execution time of GSP for different values of selectivity of the derived
dataset filtering constraints.

0

20

40

60

80

100

120

0 20 40 60 80 100

Selectivity [%]

R
el

at
iv

e
ex

ec
u

ti
o

n
 t

im
e

[%
]

Figure 1. Performance improvements for different values of selectivity

As we expected, the experiments showed that the lower the selectivity of
dataset filtering constraints, the better the performance of GSP-F is likely to
be as compared to GSP. However, we observe that sometimes the
performance improvement might be better for a query leading to a larger
filtered dataset. This can be easily explained by the fact that performance of
GSP-F depends not only on the number of data-sequences against which
candidates generated in each iteration have to be verified but also on the
number of the candidates, which depends on the data distribution within the
filtered dataset. Nevertheless, dataset filtering reduces the processing time
(usually several times), except for an unlikely situation when dataset filtering
constraints derived from pattern constraints do not filter out any source data-

224

sequences. However, even that unrealistic situation does not pose a problem
since, according to our experiments, the time spent on extra dataset filtering
operations constitutes less than 1% of the overall processing time.

The selectivity of dataset filtering constraints depends on the original
pattern constraints but also on the actual contents of the database. In general,
we observed that pattern constraints involving the presence of a certain
subsequence or subset led to much better results (reducing the processing
time 2 to 5 times) than constraints referring only to pattern size or length
(typically reducing the processing time by less than 10%). This is due to the
fact that sequential patterns are usually smaller in terms of size and length
than source data-sequences, and therefore even restrictive constraints on
pattern size/length result in weak constraints on data-sequences.

In another series of experiments, we observed the influence of varying the
minimum support threshold and time constraints on performance gains
offered by dataset filtering. GSP encounters problems when the minimum
support threshold is low or time constraints are relaxed (large max-gap and
window-size, small min-gap) because of the huge number of candidates to be
verified. In our experiments, decreasing the minimum support threshold or
relaxing time constraints worked in favor of our dataset filtering techniques,
leading to bigger performance gains. (Figure 2 presents the influence of
varying the minimum support from 0.5% to 2% on the relative processing
time of GSP-F compared to GSP for an example query with min-gap = 0,
max-gap = +∞, win-size = 0 and pattern constraints resulting in dataset
filtering constraint having the selectivity of 25%.) This behavior can be
explained by the fact that since dataset filtering reduces the cost of candidate
verification phase, the more this phase contributes to the overall processing
time, the more significant relative performance gains are going to be.

0

10

20

30

40

50

60

70

0,5 1,0 1,5 2,0

Minimum support [%]

R
el

at
iv

e
ex

ec
u

ti
o

n
 t

im
e

[%
]

Figure 2. Performance improvements for different values of minimum support

Efficient Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Techniques

225

5. Concluding Remarks

We have discussed the application of dataset filtering techniques to
efficient sequential pattern mining in the presence of various pattern
constraints. We identified the set of pattern selection predicates that support
dataset filtering and presented the method of pushing these constraints down
to dataset selection queries. Dataset filtering techniques can be applied to any
sequential pattern discovery algorithm since they conceptually lead to an
equivalent data mining task on a possibly smaller dataset. We focused on the
implementation details concerning integration of dataset filtering techniques
with the GSP algorithm. Our experiments show that dataset filtering can
result in significant performance improvements, especially in case of pattern
constrains involving the presence of a certain subsequence or subset.

References

[1] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, T. Bollinger, The Quest Data
Mining System, In E. Simoudis, J. Han, U. M. Fayyad (Eds.), Proceedings of the 2nd
KDD Conference, Portland, Oregon, AAAI Press, 1996

[2] R. Agrawal, R. Srikant, Mining Sequential Patterns, In P. S. Yu, A. L. P. Chen (Eds.),
Proceedings of the 11th ICDE Conf., Taipei, Taiwan, IEEE Computer Society, 1995

[3] M. Garofalakis, R. Rastogi, K. Shim, SPIRIT: Sequential Pattern Mining with Regular
Expression Constraints, In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik,
M. L. Brodie (Eds.), Proceedings of 25th VLDB Conference, Edinburgh, Scotland, UK,
Morgan Kaufmann, 1999

[4] J. Han, L. Lakshmanan, R. Ng, Constraint-Based Multidimensional Data Mining, IEEE
Computer, Vol. 32, 1999; 8:46-50

[5] T. Imielinski, H. Mannila, A Database Perspective on Knowledge Discovery,
Communications of the ACM, Vol. 39, 1996; 11:58-64

[6] R. Ng, L. Lakshmanan, J. Han, A. Pang, Exploratory Mining and Pruning Optimizations
of Constrained Association Rules, In L. M. Haas, A. Tiwary (Eds.), Proceedings of the
1998 SIGMOD Conference, Seattle, Washington, ACM Press, 1998

[7] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M-C. Hsu, PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth, Proceedings
of the 17th ICDE Conference, Heidelberg, Germany, IEEE Computer Society, 2001

[8] R. Srikant, R. Agrawal, Mining Sequential Patterns: Generalizations and Performance
Improvements, In P. M. G. Apers, M. Bouzeghoub, G. Gardarin (Eds.), Proceedings of
the 5th EDBT Conference, Avignon, France, Springer, 1996

[9] R. Srikant, Q. Vu, R. Agrawal, Mining Association Rules with Item Constraints, In D.
Heckerman, H. Mannila, D. Pregibon (Eds.), Proceedings of the 3rd KDD Conference,
Newport Beach, California, AAAI Press, 1997

[10] M. Zakrzewicz, Data Mining within DBMS Functionality, In A. Caplinskas (Ed.),
Proceedings of the 4th IEEE International Baltic Workshop on Databases & Information
Systems, Vilnius, Lithuania, 2000

