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Abstract Basic formulation of the sequential pattern discovery problem assumes that the 
only constraint to be satisfied by discovered patterns is the minimum support 
threshold. However, very often users want to restrict the set of patterns to be 
discovered by adding extra constraints on the structure of patterns. Data mining 
systems should be able to exploit such constraints to speed-up the mining 
process. In this paper we discuss efficient constraint-based sequential pattern 
mining using dataset filtering techniques. We show how to transform a given 
data mining task into an equivalent one operating on a smaller dataset. We 
present an extension of the GSP algorithm using dataset filtering techniques 
and experimentally evaluate performance gains offered by the proposed 
method. 
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1. Introduction 

Data mining aims at discovery of useful patterns from large databases or 
data warehouses. One of the data mining methods is sequential pattern 
discovery introduced in [2]. Informally, sequential patterns are the most 
frequently occurring subsequences in sequences of sets of items.  

Among many proposed sequential pattern mining algorithms, most of 
them are designed to discover all sequential patterns exceeding a user-
specified minimum support threshold. Some of them (e.g. GSP [8]) also 
allow users to specify time constraints to be taken into account when 
checking whether a given data-sequence contains a given subsequence. 
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However, very often users are interested in patterns that satisfy more 
sophisticated criteria, for example concerning size or contents of patterns. 
Data mining tasks involving various types of constraints can be regarded as 
data mining queries [5]. 

It is obvious that additional pattern structure constraints can be verified in 
a post-processing step, after all patterns exceeding a given minimum support 
threshold have been discovered. Nevertheless, such a solution cannot be 
considered satisfactory since users providing advanced pattern selection 
criteria may expect that the data mining system will exploit them in the 
mining process to improve performance. In other words, the system should 
concentrate on patterns that are interesting from the user’s point of view, 
rather than waste time on discovering patterns the user has not asked for [4]. 

Very little work concerning constraint-driven sequential pattern discovery 
has been done so far. In fact, only the algorithms from the SPIRIT family [3] 
exploit pattern structure constraints in order to improve performance. These 
algorithms can be seen as extensions of GSP using advanced candidate 
generation and pruning techniques. In the SPIRIT framework, pattern 
constrains are specified as regular expressions, which is an especially 
convenient method if a user wants to significantly restrict the structure of 
patterns to be discovered. It has been shown that pushing regular expression 
constraints deep into the mining process can reduce processing time by more 
than an order of magnitude. Nevertheless, it appears that further research on 
constraint-based sequential pattern mining is needed. 

We claim that techniques applicable to constraint-driven pattern discovery 
can be classified into the following groups: 
– post-processing (filtering out patterns that do not satisfy user-specified 

pattern constraints after the actual discovery process); 
– candidate filtering (application of pattern constraints to reduce the number 

of processed candidates); 
– dataset filtering (restricting the source dataset to objects that can possibly 

support patterns that satisfy user-specified pattern constraints). 
In the context of sequential pattern mining, candidate filtering techniques 

are represented by the SPIRIT algorithm family, whereas dataset filtering 
techniques have not been considered before. Dataset filtering techniques have 
been first proposed for efficient constraint-based discovery of association 
rules. However, due to different pattern constraints and the presence of time 
constraints, adaptation of these techniques to sequential pattern discovery is 
not straightforward.  

In this paper we present new dataset filtering techniques to be used in the 
context of sequential pattern discovery. We identify pattern constraints that 
can be pushed down to dataset selection queries, which leads to a transformed 
data mining task on a smaller dataset but equivalent in terms of resulting 
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sequential patterns. The proposed techniques can be integrated with any 
sequential pattern discovery algorithm. We present an efficient way of 
integrating the dataset filtering techniques with GSP, and experimentally 
evaluate performance gains in comparison with the original GSP algorithm. 

1.1 Sequential Patterns 

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-
empty set of items. A sequence is an ordered list of itemsets and is denoted as 
<X1 X2 ... Xn>, where Xi is an itemset (Xi ⊆ L). Xi is called an element of the 
sequence. The size of a sequence is the number of items in the sequence. The 
length of a sequence is the number of elements in the sequence. 

We say that a sequence X = <X1 X2 ... Xn> is a subsequence of a sequence 
Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2 ⊆ 
Yi2, ..., Xn ⊆ Yin. We call <Yi1 Yi2 ... Yin > an occurrence of X in Y.  

Given a sequence Y = <Y1 Y2 ... Ym> and a subsequence X, X is a 
contiguous subsequence of Y if any of the following conditions hold: 1) X is 
derived from Y by dropping an item from Y1 or Ym. 2) X is derived from Y by 
dropping an item from an element Yi which has at least 2 items. 3) X is a 
contiguous subsequence of X’, and X’ is a contiguous subsequence of Y. 

Let D be a set of variable length sequences (called data-sequences), where 
for each sequence S = <S1 S2 ... Sn>, a timestamp is associated with each Si. 
With no time constraints we say that a sequence X is contained in a data-
sequence S if X is a subsequence of S. We consider the following user-
specified time constraints while looking for occurrences of a given sequence 
in a given data-sequence: minimal and maximal gap allowed between 
consecutive elements of an occurrence of the sequence (called min-gap and 
max-gap), and time window that allows a group of consecutive elements of a 
data-sequence to be merged and treated as a single element as long as their 
timestamps are within the user-specified window-size. 

The support of a sequence <X1 X2 ... Xn> in D is the fraction of data-
sequences in D that contain the sequence. A sequential pattern (also called a 
frequent sequence) is a sequence whose support in D is above the user-
specified minimum support threshold. 

1.2 Review of the GSP Algorithm 

The GSP algorithm, introduced in [8], exploits the following property: all 
contiguous subsequences of a frequent sequence also have to be frequent. 
GSP makes multiple passes over the data. During the first pass the support of 
each item is counted. At the end of the first pass, the set of frequent items 
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(equivalent to the set of 1-element frequent sequences) is known. In each 
subsequent iteration, new potentially frequent sequences, called candidate 
sequences, are generated from the frequent sequences found in the previous 
pass. Each candidate sequence has one more item than frequent sequences 
from the previous iteration. In each iteration, the source dataset is scanned to 
evaluate the support of the candidate sequences and determine which 
candidates are actually frequent. The algorithm terminates when there are no 
candidates generated or if none of the candidates turns out to be frequent. 

1.3 Related Work 

Constraint-driven mining was extensively studied in the context of 
association rules [6][9][10]. The key step in association rule mining is 
discovery of frequent itemsets. Techniques of constraint-driven discovery of 
association rules proposed so far apply two kinds of optimizations: 
generating only frequent itemsets that can lead to rules satisfying the 
constraints, and restricting the source collection of sets to those which can 
contain such itemsets. However, because of the presence of time 
dependencies and time constraints in case of sequential pattern mining, direct 
adaptation of techniques proposed for association rules is not possible, or at 
least not sufficient.  

Most of the research on sequential patterns focused on introducing new 
algorithms, more efficient than GSP (e.g. PrefixSpan [7]). However, the 
novel methods do not handle time constraints. Thus, GSP still remains the 
most general sequential pattern discovery algorithm and the reference point 
for new methods and techniques. 

2. Pushing Pattern Constraints into Dataset Selection 
Queries 

In constraint-based sequential pattern mining, we identify the following 
classes of constraints: database constraints, pattern constraints, and time 
constraints. Database constraints are used to specify the source dataset. 
Pattern constraints specify which patterns are interesting and should be 
returned by the query. Finally, time constraints influence the process of 
checking whether a given data-sequence contains a given pattern. The basic 
formulation of the sequential pattern discovery problem introduces three time 
constraints: max-gap, min-gap, and time window, and assumes only one 
pattern constraint (the minimum support threshold). We model pattern 
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constraints as complex Boolean predicates having the form of a conjunction 
of the following basic Boolean predicates on patterns and pattern elements: 
– π(SPG, α, pattern) - true if pattern support is greater than α, false 

otherwise; 
– π(SL, α, pattern) - true if pattern size is less than α, false otherwise; 
– π(SG, α, pattern) - true if pattern size is greater than α, false otherwise; 
– π(LL, α, pattern) - true if pattern length is less than α, false otherwise; 
– π(LG, α, pattern) - true if pattern length is greater than α, false otherwise; 
– π(C, β, pattern) - true if β is a subsequence of the pattern, false otherwise; 
– π(NC, β, pattern) - true if β is not a subsequence of the pattern, false 

otherwise; 
– π(SL, α, patternn) - true if the size of the n-th element of the pattern is less 

than α, false otherwise; 
– ρ(SG, α, patternn) - true if the size of the n-th element of the pattern is 

greater than α, false otherwise; 
– ρ(C, γ, patternn) - true if γ is a subset of the n-th element of the pattern, 

false otherwise; 
– ρ(NC, γ, patternn) - true if γ is not a subset of the n-th element of the 

pattern, false otherwise. 
We believe that the above list of predicates is sufficient to allow users to 

express their pattern selection criteria. For simplicity’s sake, in length and 
size predicates we consider only sharp inequalities. 

Dataset filtering techniques consist in discarding data-sequences that 
cannot support any pattern satisfying pattern constraints specified by a user. 
There are two questions that have to be answered. Firstly, basic Boolean 
predicates concerning patterns or pattern elements whose presence in pattern 
constraints of a sequential pattern query leads to the possibility of dataset 
filtering have to be identified. Secondly, for each of the applicable basic 
Boolean pattern predicates, the corresponding predicate concerning data-
sequences has to be provided. 

Before we present theorems describing relationships between predicates 
concerning patterns or pattern elements and properties of data-sequences that 
can possibly support patterns satisfying these predicates, we have to 
introduce basic Boolean predicates concerning data-sequences to be used for 
dataset filtering: 
– σ(SG, α, sequence) – true if the size of the data-sequence is greater than 

α, false otherwise; 
– σ(LG, α, sequence) – true if the length of the data-sequence is greater 

than α, false otherwise; 
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– σ(C, β, sequence, maxgap, mingap, window) – true if the data-sequence 
contains the sequence forming the pattern β using given time constraints, 
false otherwise; 

– σ(CS, α, sequence, window) - true if there exists a 1-element sequence of 
size α that is contained in the sequence with respect to the window-size 
constraint, false otherwise; 

– σ(CL, α, sequence, maxgap, mingap, window) - true if there exists a 
sequence of length α that is contained in the sequence with respect to the 
max-gap, min-gap, and window-size constraints, false otherwise. 
 
Theorem 1 Sequential patterns of size greater than k cannot be supported 

by a data-sequence whose size is not greater than k. 
Proof: The proof is obvious since an occurrence of a pattern in a sequence 

must consist of the same number of items as the pattern. 
 
Theorem 2 Sequential patterns of length greater than k, to be returned by 

a data mining query, can be supported only by data-sequences which contain 
some sequence of length k+1 using max-gap, min-gap, and window-size 
specified in the query. 

Proof: Each sequential pattern of length greater than k has at least one 
contiguous subsequence of length k+1. If a data-sequence contains some 
sequence, it contains every contiguous subsequence of that sequence. Thus, if 
a data-sequence contains some sequence of length greater than k, it contains 
at least one sequence of length k+1.   

 
Theorem 3 Sequential patterns, to be returned by a data mining query, 

containing a given sequence can be supported only by data-sequences 
containing that sequence using min-gap and window-size specified in the 
query, and max-gap of +∞. 

Proof: If a data-sequence contains some sequence using certain values of 
max-gap, min-gap, and window-size, it also contains every contiguous 
subsequence of the sequence, using the same time constraints. If max-gap is 
set to +∞, a data-sequence containing some sequence contains all its 
subsequences. 

 
Theorem 4 Sequential patterns, to be returned by a data mining query, 

whose n-th element has the size greater than k can be supported only by data-
sequences which contain some 1-element sequence of size k+1 using 
window-size specified in the query. 

Proof: Each 1-element subsequence of any sequence is its contiguous 
subsequence (from the definition of a contiguous subsequence). If any 
element of a sequence has the size greater than k, the sequence has at least 
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one 1-element contiguous subsequence of size k+1. If a data-sequence 
contains some sequence, it contains every contiguous subsequence of that 
sequence. Thus, if a data-sequence contains some sequence whose n-th 
element has the size greater than k, it has to contain some 1-element sequence 
of size k+1. 

 
Theorem 5 Sequential patterns, to be returned by a data mining query, 

whose n-th element contains a given set can be supported only by data-
sequences which contain a 1-element sequence having the set as the only 
element, using time constraints specified in the query. 

Proof: Each 1-element subsequence of any sequence is its contiguous 
subsequence (from the definition of a contiguous subsequence). If any 
element of a sequence contains a given set, a 1-element sequence formed by 
the set is a contiguous subsequence of the sequence. If a data-sequence 
contains some sequence, it contains every contiguous subsequence of that 
sequence. Thus, if a data-sequence contains some sequence whose n-th 
element contains a given set, it has to contain a 1-element sequence having 
the set as the only element. 

 
The above theorems concern the basic Boolean predicates on patterns or 

pattern elements that can be used for dataset filtering and provide 
corresponding data-sequence predicates to be used in the filtering process. 
These predicates and their corresponding data-sequence predicates are 
presented in Table 1. 

Table 1. Basic Boolean predicates on patterns or pattern elements and 
corresponding data-sequence predicates 
Basic Boolean predicate on a pattern 
or n-th element of a pattern 

Basic Boolean predicate on a data-
sequence 

π(SG, α, pattern) σ(SG, α, sequence) 
π(LG, α, pattern) σ(CL, α+1, sequence, max, min, win) 
π(C, β, pattern) σ(C, β, sequence, +∞, min, win) 
ρ(SG, α, patternn) σ(CS, α+1, sequence, win) 
ρ(C, γ, patternn) σ(C, <γ>, sequence, max, min, win) 

 
In the above table, <γ> denotes a 1-element sequence having the set γ as 

its only element, while max, min, and win represent values of max-gap, min-
gap, and window-size time constraints respectively. 

The presence of other basic Boolean predicates in pattern constraints of a 
sequential pattern query does not affect the filtering process since patterns 
having support greater than a certain value, size or length less than a certain 
value, size of the n-th element less than a certain value, as well as patterns not 



220 

containing a certain sequence, or whose n-th element does not contain a 
certain itemset, can be supported by any data-sequence. 

 
Example 1 Consider the following sequential pattern query (for the query 

we present time and pattern constraints, the specification of the source dataset 
is omitted for brevity): DMQ = {max-gap: 100, min-gap: 7, window-size: 0,  
π(SPG, 0.01, pattern) ∧ π(SG, 3, pattern) ∧ π(LL, 5, pattern) ∧ 
π(C, <(A)(B)>, pattern)}. The query returns sequential patterns having 
support greater than 1%, having more than three items but less than five 
elements, containing the sequence <(A)(B)>. The specified values of max-
gap, min-gap, and window-size constraints are 100, 7, and 0 respectively.  

Thus, according to the Table 1 (based on the Theorems 1 – 5), the 
following dataset filtering predicate has to be satisfied by a data-sequence 
containing a pattern satisfying pattern constraints: σ(SG, 3, sequence) ∧ σ(C, 
<(A)(B)>, sequence, +∞, 7, 0). The dataset filtering predicate says that only 
data-sequences having more than three items and containing the sequence 
<(A)(B)> with max-gap of +∞, min-gap of 7, and window-size of 0, have to 
be considered in the discovery process. 

 
According to the Theorems 1 - 5, a sequential pattern query having one or 

more basic Boolean pattern predicates from the left column of Table 1 in its 
pattern constraints can be transformed into a query representing a discovery 
task on a potentially smaller dataset in the following way. Firstly, database 
constraints of the query have to be extended with appropriate data-sequence 
predicates. Secondly, the minimum support constraint has to be adjusted to 
the size of the filtered database. This step is necessary because the support of 
a pattern is expressed as the percentage of data-sequences containing the 
pattern. The Theorems 1 – 5 guarantee that the number of data-sequences 
containing a given pattern in the original and filtered dataset will be the same 
as long as the pattern satisfies pattern constraints. Thus, we have the 
following relationship between the support of a pattern p (satisfying pattern 
constraints) in the original and filtered datasets: supF(p) = |D| * sup(p) / |DF|, 
where supF(p) and sup(p) denote the support of the pattern p in the filtered 
and original dataset respectively, and |DF| and |D| denote the number of data-
sequences in the filtered and original dataset respectively. After the patterns 
frequent in the filtered dataset have been discovered, their support has to be 
normalized with respect to the number of data-sequences in the original 
dataset according to the above formula.  

Dataset filtering techniques can be combined with any sequential pattern 
discovery algorithm since they conceptually lead to a transformed discovery 
task guaranteed to return the same set of patterns as the original task. The 
transformation of the source dataset (by filtering out data-sequences that 
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cannot contain patterns of interest) and conversion of pattern constraints 
concerning pattern support can be performed before the actual discovery 
process. However, in reality such explicit transformation might be impossible 
due to space limitations. Some sequential pattern discovery algorithms 
perform certain projections of the database (e.g. PrefixSpan) by nature, while 
others (e.g. GSP) do not transform the database in any way, which is a 
serious advantage if the database is large and the storage space limited. We 
believe that if the original algorithm has some desirable properties, any 
extension applied to the algorithm should preserve them. 

3. Integration of Dataset Filtering Techniques with GSP 

In this section we present an extension of the GSP algorithm (denoted as 
GSP-F) exploiting dataset filtering techniques to support efficient constraint-
based sequential pattern mining. We chose GSP as the basis for 
implementing the dataset filtering techniques for two reasons. Firstly, GSP 
(and its extensions) is still the only sequential pattern discovery algorithm 
supporting time constraints, which affect the dataset filtering process. 
Secondly, GSP does not create any temporal structures to store portions of 
the source database and preserving this property may be a challenging task. 

GSP iteratively generates candidate sequences and evaluates their support 
by testing their occurrence in each data-sequence from the source dataset. 
Since we do not want to materialize the filtered dataset, filtering has to be 
performed on-line in each iteration of the algorithm. Data-sequences that do 
not satisfy dataset filtering constraints derived from pattern constraints are 
excluded from the candidate verification process (conceptually the discovery 
process takes place in the reduced dataset). It should be noted that since we 
do not explicitly transform the data mining task into an equivalent one, the 
support conversions discussed in the previous section are not necessary.  

The detailed GSP-F algorithm extending GSP with dataset filtering 
techniques is presented below. The algorithm takes a collection D of data-
sequences as input, and returns all sequential patterns in D supporting user-
specified pattern and time constraints. 

 
Algorithm GSP-F 
 DF = dataset filtering predicate derived from pattern constraints; 
 scan D in order to:  
 1) evaluate minimum number of supporting data-sequences for  
 a pattern to be called frequent (mincount) 
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 2) find L1 (set of 1-sequences contained in at least mincount  
 data-sequences satisfying DF); 
 for (k = 2; Lk-1 ≠ ∅; k++) do  
 begin 
  Ck = apriori_gen(Lk-1);    /* generate new candidate sequences */ 
  if Ck = ∅ then break; 
  forall data-sequences d ∈ D do  
   if d satisfies DF then 
    forall candidates c ∈ Ck do 
     if d contains c using user-specified time constraints then 
       c.count ++;  
     end if; 
   end if; 
  Lk  = { c ∈ Ck | c.count ≥ mincount}; 
 end; 
 output patterns from ∪k Lk satisfying pattern constraints; 
 
The algorithm starts with deriving dataset filtering constraints from 

pattern constraints provided by a user. These dataset filtering constraints are 
used in each scan of the source dataset and data-sequences that do not satisfy 
them are excluded from the candidate verification process. When the 
discovery of sequential patterns in the filtered dataset is finished, a post-
processing step filtering out patterns that do not satisfy user-specified pattern 
constraints is applied. This phase is required since dataset filtering itself does 
not guarantee that only patterns supporting pattern constraints are to be 
discovered. It should be noted that the support of patterns not satisfying user-
specified pattern constraints, counted in the filtered dataset, can be smaller 
than their actual support in the original dataset, but it is not a problem since 
these patterns will not be returned to the user. Moreover, this is in fact a 
positive feature as it can reduce the number of generated candidates not 
leading to patterns of user’s interest. 

GSP-F does not reduce the amount of data read from the database in each 
iteration in comparison to the original GSP algorithm. However, we expect it 
to be more efficient since data-sequences that do not satisfy dataset filtering 
constraints are excluded from the costly candidate verification process.  

4. Experimental Results 

In order to evaluate performance gains offered by our dataset filtering 
techniques, we performed several experiments on a synthetic dataset 
generated by means of the GEN generator from the Quest project [1]. The 
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dataset contained 1000 data-sequences built from 50 different items, the 
average number of transactions per data-sequence was 5.5, and the average 
number of items per transaction was 1.2. Since GEN does not generate 
transaction times, we treated transaction identifiers as transaction times, thus 
the time gap between each two consecutive elements of each data-sequence 
was always equal to one time unit. The generated data-sequences were stored 
in a database table (a local Oracle8i database server was used).  

We started the experiments with varying the constraints regarding pattern 
size, length, and contents for the fixed minimum support threshold of 1%, 
infinite max-gap, and min-gap and window-size equal to 0. Apart from 
measuring the total execution times of GSP and GSP-F, we also registered 
the time spent by GSP-F on dataset filtering, and the selectivity of dataset 
filtering constraints derived from pattern constraints (expressed as the 
percentage of data-sequences in the database satisfying dataset filtering 
constraints). Figure 1 presents the ratio of the execution time of GSP-F to the 
execution time of GSP for different values of selectivity of the derived 
dataset filtering constraints. 
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Figure 1. Performance improvements for different values of selectivity 

As we expected, the experiments showed that the lower the selectivity of 
dataset filtering constraints, the better the performance of GSP-F is likely to 
be as compared to GSP. However, we observe that sometimes the 
performance improvement might be better for a query leading to a larger 
filtered dataset. This can be easily explained by the fact that performance of 
GSP-F depends not only on the number of data-sequences against which 
candidates generated in each iteration have to be verified but also on the 
number of the candidates, which depends on the data distribution within the 
filtered dataset. Nevertheless, dataset filtering reduces the processing time 
(usually several times), except for an unlikely situation when dataset filtering 
constraints derived from pattern constraints do not filter out any source data-



224 

sequences. However, even that unrealistic situation does not pose a problem 
since, according to our experiments, the time spent on extra dataset filtering 
operations constitutes less than 1% of the overall processing time. 

The selectivity of dataset filtering constraints depends on the original 
pattern constraints but also on the actual contents of the database. In general, 
we observed that pattern constraints involving the presence of a certain 
subsequence or subset led to much better results (reducing the processing 
time 2 to 5 times) than constraints referring only to pattern size or length 
(typically reducing the processing time by less than 10%). This is due to the 
fact that sequential patterns are usually smaller in terms of size and length 
than source data-sequences, and therefore even restrictive constraints on 
pattern size/length result in weak constraints on data-sequences. 

In another series of experiments, we observed the influence of varying the 
minimum support threshold and time constraints on performance gains 
offered by dataset filtering. GSP encounters problems when the minimum 
support threshold is low or time constraints are relaxed (large max-gap and 
window-size, small min-gap) because of the huge number of candidates to be 
verified. In our experiments, decreasing the minimum support threshold or 
relaxing time constraints worked in favor of our dataset filtering techniques, 
leading to bigger performance gains. (Figure 2 presents the influence of 
varying the minimum support from 0.5% to 2% on the relative processing 
time of GSP-F compared to GSP for an example query with min-gap = 0, 
max-gap = +∞, win-size = 0 and pattern constraints resulting in dataset 
filtering constraint having the selectivity of 25%.) This behavior can be 
explained by the fact that since dataset filtering reduces the cost of candidate 
verification phase, the more this phase contributes to the overall processing 
time, the more significant relative performance gains are going to be. 
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Figure 2. Performance improvements for different values of minimum support 
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5. Concluding Remarks 

We have discussed the application of dataset filtering techniques to 
efficient sequential pattern mining in the presence of various pattern 
constraints. We identified the set of pattern selection predicates that support 
dataset filtering and presented the method of pushing these constraints down 
to dataset selection queries. Dataset filtering techniques can be applied to any 
sequential pattern discovery algorithm since they conceptually lead to an 
equivalent data mining task on a possibly smaller dataset. We focused on the 
implementation details concerning integration of dataset filtering techniques 
with the GSP algorithm. Our experiments show that dataset filtering can 
result in significant performance improvements, especially in case of pattern 
constrains involving the presence of a certain subsequence or subset. 
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