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Abstract: Frequent itemset mining is often regarded as ad-
vanced querying where a user specifies the source dataset and pattern
constraints using a given constraint model. In this paper we address
the problem of processing batches of frequent itemset queries using
the Apriori algorithm. The best solution of this problem proposed
so far is Common Counting, which consists in concurrent execution
of the queries using Apriori with the integration of scans of the parts
of the database shared among the queries. In this paper we propose
a new method - Common Candidate Tree, offering a more tight in-
tegration of the concurrently processed queries by sharing memory
data structures, i.e., candidate hash trees. The experiments show
that Common Candidate Tree outperforms Common Counting in
terms of execution time. Moreover, thanks to smaller memory con-
sumption, Common Candidate Tree can be applied to larger batches
of queries.
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1. Introduction

Frequent itemset mining (Agrawal et al., 1993) is one of the fundamental data
mining techniques. Its goal is discovery of all subsets whose number of occur-
rences in a source collection of sets (called transactions) exceeds a user-specified
threshold. Typically, discovered frequent itemsets are used to generate associ-
ation rules, which provide a deeper insight into associations among items con-
tained in the database. Nevertheless, since generation of rules from frequent
itemsets is relatively straightforward (Agrawal et al., 1994), researchers focused
on the frequent itemset discovery task. The problem of frequent itemset and
association rule mining was initially formulated in the context of market-basket
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analysis, aiming at discovery of items frequently co-occurring in customer trans-
actions. However, the problem quickly found numerous applications in various
domains including: medicine, telecommunications, and World Wide Web.

Many frequent itemset mining algorithms have been developed. The two
most prominent classes of algorithms are determined by a strategy of travers-
ing the pattern search space. Level-wise algorithms, represented by the classic
Apriori algorithm (Agrawal and Srikant, 1994), follow the breadth-first strategy,
whereas pattern-growth methods, among which FP-growth (Han et al., 2000) is
the best known, perform the depth-first search.

Apriori starts with discovering frequent itemsets of size 1, and then itera-
tively generates candidates (i.e., potentially frequent itemsets) from previously
found smaller frequent itemsets and counts their occurrences in a database scan.
To improve efficiency of testing which candidates are contained in a transaction
read from the database, the candidates are stored in a hash tree in main mem-
ory. The number of Apriori iterations, and consequently the number of database
scans, depends on the size of the largest frequent itemset to be discovered.

FP-growth, similarly to Apriori, also builds larger frequent itemsets from
smaller ones but instead of candidate generation and testing, it exploits the idea
of database projections. Projections are determined by frequent itemsets found
so far, and patterns are grown by discovering items frequent in their projections.
To facilitate efficient projections, FP-growth transforms a database into an FP-
tree, which is a highly compact data structure, designed to be stored in main
memory. Only two database scans are needed to build an FP-tree, and then
actual mining is performed on the FP-tree, with no further scans of the original
database.

FP-growth has been found more efficient than Apriori for low support thresh-
olds and/or dense datasets (i.e., datasets containing numerous and long frequent
itemsets). However, in real life, datasets having different characteristics are be-
ing analyzed, and there is no single algorithm best in all cases (see Zheng et al.,
2001).

Frequent itemset mining is often regarded as advanced database query-
ing where a user specifies the source dataset, the minimum support/frequency
threshold, and optionally pattern constraints within a given constraint model
(Imielinski and Mannila, 1996). A significant amount of research on efficient
processing of frequent itemset queries has been done in recent years, focusing
mainly on constraint handling (see Pei and Han, 2000 for an overview) and
reusing results of previous queries (Baralis and Psaila, 1999; Cheung et al.,
1996; Meo, 2003; Morzy et al., 2000).

Recently, a new problem of optimizing processing of sets of frequent itemset
queries has been considered, bringing the concept of multiple-query optimiza-
tion to the domain of frequent itemset mining. The idea was to process the
queries concurrently rather than sequentially and exploit the overlapping of
queries’ source datasets. Sets of frequent itemset queries available for concur-
rent processing may arise in data mining systems operating in a batch mode or
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be collected within a given time window in multi-user interactive data mining
environments. A motivating example from the domain of market basket analy-
sis could be a set of queries discovering frequent itemsets from the overlapping
parts of a database table containing customer transaction data from overlapping
time periods.

So far, the best method of processing batches of frequent itemset queries is
Common Counting, which consists in concurrent execution of the queries with
the integration of scans of parts of the database shared among the queries.
Common Counting has been originally designed for Apriori, in case of which
dataset scans required to count candidates were integrated (Wojciechowski and
Zakrzewicz, 2003). Later, the method was adapted to work with FP-growth,
reducing the number of disk blocks read during the phase of building FP-trees
for a batch of queries (Wojciechowski et al., 2005).

The Common Counting method, which optimizes only database scans, def-
initely does not exploit all optimization possibilities. Further integration of
operations performed by concurrently processed frequent itemset queries re-
quires techniques dedicated to particular mining algorithms, or at least families
of algorithms. In this paper we propose a new method of processing of batches
of frequent itemset queries using the Apriori algorithm, called Common Candi-
date Tree, which integrates processing of batches of queries more tightly than
Common Counting by integrating memory data structures of the queries. Ex-
periments show that Common Candidate Tree is more efficient than Common
Counting. Moreover, due to better utilization of main memory, it is also appli-
cable to larger batches of queries.

The paper is organized as follows. Section 2 discusses related work. Section 3
formally presents the frequent itemset mining problem and describes the Apriori
algorithm. In Sect. 4 we review basic definitions regarding frequent itemset
queries and we briefly describe the Common Counting method. In Sect. 5 we
introduce Common Candidate Tree - a new method for concurrent processing of
frequent itemset queries using Apriori. Section 6 presents experimental results.
Section 7 contains conclusions and discusses future work.

2. Related Work

Multiple-query optimization has been extensively studied in the context of
database systems (see Sellis, 1988 for an overview). The idea was to iden-
tify common subexpressions (selections, projections, joins, etc.) and construct
a global execution plan minimizing the overall processing time by executing
the common subexpressions only once for the set of queries (Alsabbagh and
Raghavan, 1994; Jarke, 1985). Many heuristic algorithms for multiple-query
optimization in database systems were proposed (e.g., Roy et al., 2000). Data
mining queries could also benefit from the general strategy of identifying and
sharing common computations. However, due to their different nature they
require novel multiple-query processing methods.
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To the best of our knowledge, apart from the problem considered in this
paper, multiple-query optimization for frequent pattern queries has been con-
sidered only in the context of frequent pattern mining on multiple datasets (Jin
et al., 2005). The idea was to reduce the common computations appearing
in different complex queries, each of which compared the support of patterns
in several disjoint datasets. This is fundamentally different from our problem,
where each query refers to only one dataset and the queries’ datasets overlap.

Earlier, the need for multiple-query optimization has been postulated in the
somewhat related research area of inductive logic programming, where a tech-
nique based on similar ideas as Common Counting has been proposed, consisting
in combining similar queries into query packs (Blockeel et al., 2002).

As an introduction to multiple-data-mining-query optimization, we can re-
gard techniques of reusing intermediate or final results of previous queries to
answer a new query. Methods falling into that category that have been studied
in the context of frequent itemset discovery are: incremental mining (Cheung
et al., 1996), caching intermediate query results (Nag et al., 1999), and reusing
materialized complete (Baralis and Psaila, 1999; Meo, 2003; Morzy et al., 2000)
or condensed (Jeudy and Boulicaut, 2002) results of previous queries provided
that syntactic differences between the queries satisfy certain conditions.

3. Frequent Itemset Mining and Apriori Algorithm
3.1. Basic Definitions and Problem Statement

DEFINITION 1. Let Z be a set of literals, called items. An itemset I is a set
of items from T (I C I). The size of an itemset is the number of items in
it. An itemset of size k is called a k-itemset. A transaction over T is a couple
T = (tid, I), where tid is a transaction identifier and I is an itemset. A database
D over T is a set of transactions over I such that each transaction has a unique
identifier.

DEFINITION 2. A transaction T = (tid, I) supports an itemset X if X C I. The
support of an itemset X in D is the number of transactions in D that support X .
The frequency (also called relative support) of an itemset X in D is the support
of X in D divided by the total number of transactions in D.

DEFINITION 3. An itemset is called frequent in D if its support is no less than
a given minimum support threshold. (Alternatively, if a minimum frequency
threshold is provided, an itemset is frequent if its frequency is no less than a
given minimum frequency threshold.)

PROBLEM. Given a database D and a minimum support threshold minsup or a
minimum frequency threshold minfreq, the problem of frequent itemset mining
consists in discovering all frequent itemsets in D.
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Input: D, minsup
Fi1 = {frequent 1-itemsets}

—~
—_
~—

(2) for (k=2; Fr—1 # 0; k++) do begin
(3) Cy, = apriori_ gen(Fp—_1)

(4) forall transactions ¢t € D do begin
(5) C: = subset(Cg, t)

(6) forall candidates ¢ € C; do

(7) c.counter++

(8) end

(9) Fi = {c € Ci|c.counter > minsup}
(10) end

(11)  Answer = |, Fx

Figure 1. Apriori

In general, frequency thresholds are more convenient and informative for end-
users than support thresholds. On the other hand, mining algorithms are often
formulated for the minimum support threshold, which can be directly compared
to the numbers of itemsets’ occurrences in the database. Obviously, minsup =
[minfreq=|D|], so conversion between the two thresholds is possible, provided
that the total number of transactions in the database is known. Therefore,
the conversion can be done after the first scan of the database performed by a
mining algorithm.

3.2. Algorithm Apriori

The Apriori algorithm for frequent itemset discovery is presented in Fig. 1. In
the formulation of the algorithm Fj denotes the set of all frequent k-itemsets,
and C, denotes a set of potentially frequent k-itemsets, called candidates.

Apriori starts with the discovery of frequent 1-itemsets, i.e., frequent items
(line 1). For this task, the first scan of the database is performed. Before making
the k-th pass (for k > 1), the algorithm generates the set of candidates Cy, using
Fi—1 (line 3). The candidate generation procedure, denoted as apriori_ gen(),
provides efficient pruning of the search space, and is described in Sect. 3.2.1.
In the k-th database pass (lines 4-8), Apriori counts the supports of all the
itemsets in Cx. (In practice, the database pass is performed only if the set of
generated candidates is not empty.) The key step of this phase of the algorithm is
determining which candidates from Cj are contained in a transaction ¢ retrieved
from the database. This step is denoted in the algorithm as a call to the subset()
function, and is described in Sect. 3.2.2. At the end of the pass all itemsets in C
with a support greater than or equal to the minimum support threshold minsup
form the set of frequent k-itemsets Fj, (line 9). The algorithm finishes work if
there are no frequent itemsets found in a given iteration (condition in line 2)
and returns all the frequent itemsets found (line 11).
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3.2.1. Candidate Generation

The candidate generation procedure consists of two steps: the join step and the
prune step. In the join step, each pair of frequent k-1-itemsets that differ only in
the last item (according to lexicographical order of the items within itemsets) is
joined to form a candidate. This step can be expressed in SQL in the following
way:

insert into Cj

select p.itemy, p.items, ..., p.itemy_1, q.itemy_1
from Fj_1 p, Fr-1 ¢
where p.item; = q.itemy, ..., p.itemy_o = q.itemg_o, p.itemy_1 < q.itemy_;

In the prune step, itemsets having at least one subset that was found infre-
quent in the previous Apriori iteration are removed from the set of candidates:

forall itemsets ¢ € C,. do
forall k-1-subsets s of ¢ do
if s ¢ Fi_1 then
Cr =Cir \ {c}

The candidate generation procedure of Apriori exploits the antimonotonic-
ity property of the support measure, which implies that for a candidate to be
frequent all its subsets must also be frequent.

3.2.2. Candidate Counting

In order to avoid costly testing of each candidate for inclusion in a transaction
retrieved from the database, candidates Cj are stored in a hash tree. Leaves
of a hash tree contain pointers to candidates, while interior nodes at depth d
contain hash tables with pointers to nodes at depth d+1. The root of a hash
tree is at depth 1.

A candidate is added to the hash tree starting from the root, and traversing
the tree until a leaf is reached. At an interior node at depth d, the decision on
which branch to follow is based on the result of a chosen hash function applied
to the dth item of the candidate (according to the lexicographical order of items
within a candidate). Initially all nodes are created as leaves (starting with the
root), and converted into interior nodes when a number of candidates stored in
the node exceeds a specified threshold (as long as the depth d of the node is not
greater than k).

In order to find the candidates that are contained in a transaction ¢ using a
hash tree, we start from its root node. If we are at a leaf, we check which itemsets
from the leaf are contained in ¢ and increment the counters of candidates that
passed the inclusion test. If we are at an interior node and we have reached it
by hashing the ith item of the transaction (according to lexicographical order),
we hash on each item that comes after the ¢th item in ¢ and recursively apply
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this procedure to the node pointed by the result of the hash function. When
starting at the root node, we hash on every item in ¢.

4. Multiple-Query Optimization for Frequent Itemset
Queries

4.1. Basic Definitions and Problem Statement

With the aim of keeping our study on processing batches of frequent itemset
queries as general as possible, we are going to use a simple and general query
model. The model assumes that the data to be mined are stored in a set-
valued attribute of a database relation, accompanied by other attributes used
to identify transactions and to allow selection of a subset of the relation as the
mined dataset. Pattern constraints are represented as a general logical predicate
with no details on their form or nature. Frequent itemsets are selected according
to a minimum frequency threshold, which is not only generally more convenient
than a minimum support threshold from a user’s point of view, but also more
appropriate for our model due to the possibility of selecting a subset of the
relation for mining as the number of transactions in the dataset to be mined
will depend on the selectivity of the specified selection condition.

DEFINITION 4. A frequent itemset query is a tuple dmq = (R, a, %, ®, minfreq),
where R is a database relation, a is a set-valued attribute of R, ¥ is a condition
involving the attributes of R called data selection predicate, ® is a condition
involving discovered itemsets called pattern constraint, and minfreq is the min-
imum frequency threshold. The result of dmq is a set of itemsets discovered in
TaonR, satisfying ®, and having frequency > minfreq (7 and o denote rela-
tional projection and selection operations respectively).

EXAMPLE 1. Given the database relation Rq(a1,az2), where as is a set-valued
attribute and ay is an attribute of integer type. The frequent itemset query
dmgy = (R1,az2,a1 > 5, |itemset| < 4,3%) describes the problem of discovering
frequent itemsets in the set-valued attribute as of the relation R1. The itemsets
with frequency of at least 8% and containing less than 4 items are discovered in
the collection of records having aq > 5.

DEFINITION 5. The set of elementary data selection predicates for a set of
frequent itemset queries DMQ = {dmqi,dmqa,...,dmg,} is the smallest set
S ={s1, 82, ..., sk} of data selection predicates over the relation R such that for
each u,v (u # v) we have o5, R Nos, R =0 and for each dmg; there exist inte-
gers a,b,...,m such that o, R = 05, RUos, RU..Uds, R. The set of elementary
data selection predicates represents the partitioning of the database determined
by overlapping of queries’ datasets.

EXAMPLE 2. Given the relation Ri(a1,a2) and three frequent itemset queries:
dmgy = (R1,a2,5<a1<20,0,3%), dngs = (R1,a2,0<a; <15,0,5%), dmgs =



8 P. Grudziriski, M. Wojciechowski

Input: DMQ = {dmq1,dmga, ...,dmg,},

where dmgq; = (R, a, X;, ®;, minfreq;)

1) for (:=1;i < n;i++) do

) Ci = all possible 1-itemsets

) for (k=1; C}UC?U..UCP # 0; k++) do begin
) for each s; € S do begin

) cc={C} : o5, R Cox,R}

) if CC # () then count(CC,o,,R) end

) for (i=1;i < n; i++) do begin

) minsup; = [minfreg; x |ox, R|]

) i ={C € C} : C.counter > minsup;}
0) Cj., = apriori_gen(F}) end

1) end

2) for (i=1;i <n;it+)do

3) Answer; = oo, U, F;

Figure 2. Common Counting for Apriori

(R1,a2,5<a1 <15 0r 30<a; <40,0,4%). The set of elementary data selection
predicates is then S = {0<a; <5, 5<a; <15, 15<a; <20, 30<a; <40}.

PROBLEM. Given a set of frequent itemset queries DMQ = {dmq,dmqga, ...,
dmay}, the problem of multiple-query optimization of DMQ consists in gener-
ating an algorithm to execute DM Q that minimizes the overall processing time.

In general, it is assumed that after collecting the queries to be concur-
rently executed using any strategy, duplicated queries are eliminated in a pre-
processing step. According to previous studies (Morzy et al., 2000), it is also
advisable to combine queries operating on exactly the same dataset (at least
the ones that have the same data selection predicate) into one query, whose
results can be used to answer the original queries by simple checking of pat-
tern constraints and/or frequency. Such a new query should have the frequency
threshold equal to the smallest threshold among the queries to be replaced and
the pattern constraint in the form of a disjunction of their pattern constraints.

4.2, Common Counting

Common Counting consists in concurrent execution of a set of frequent itemset
queries using Apriori and integrating scans of shared parts of the database. The
pseudo-code of Common Counting is presented in Fig. 2.

Common Counting iteratively generates and counts candidates for all fre-
quent itemset queries. In the first iteration, for all the queries, the set of can-
didates is the set of all possible items (lines 1-2). The candidates of the size
k (k>1) are generated from frequent itemsets of size k-1, separately for each
query (lines 7-11). Generation of candidates (represented in the pseudo-code
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by the apriori_gen() function) is performed exactly as in the original Apriori
algorithm. The candidates generated for each query are stored in a separate
hash tree.

Minimum frequency thresholds of the queries are converted to their corre-
sponding minimum support thresholds by multiplying them by the numbers of
transactions in queries’ source datasets (line 8). The numbers of transactions
in queries’ source datasets are determined during the first database scan.

The iterative process of candidate generation and counting ends when for all
the queries no further candidates can be generated (the condition in line 3).

Occurrences of candidates for all the queries are counted during one inte-
grated database scan in the following manner: For each elementary data selec-
tion predicate, the transactions from its corresponding database partition are
read one by one. For each transaction the candidates of the queries referring to
the database partition being read are considered, and the counters of candidates
contained in the transaction are incremented (lines 4-6). The inclusion test is
performed by confronting the transaction with hash trees of all the queries refer-
ring to the database partition containing the transaction. Candidate counting
is represented in the pseudo-code as the count() function. It should be noted
that if a given elementary data selection predicate is shared by several queries,
then during each candidate counting phase its corresponding database partition
is read only once.

The idea of Common Counting and its memory structures are illustrated in
Fig. 3 for the set of three queries. Each query creates its own hash tree to store
its candidates. If a given itemset is generated as a candidate by more than one
query, it appears in more than one hash tree.

database| |
R{ N A 5 v_/
ARV NSNS

itemset counter itemset counter
| {101,102,105}| 23 | | {101,102,105}| 17 |

Figure 3. Illustration of Common Counting and its memory structures

Common Counting does not handle pattern constraints ®, but allows for
using constraint handling techniques proposed for Apriori, based on modifica-
tions of the candidate generation procedure, and then filtering the discovered



10 P. Grudzinski, M. Wojciechowski

frequent itemsets in a post-processing phase for those constraints that cannot
be handled within Apriori.

5. Common Candidate Tree

Common Counting optimizes scans of the parts of the database shared among
the queries, performing other operations of the Apriori algorithm separately for
each query. Aiming at the increase of computation sharing between the concur-
rently processed queries, we introduce a new method: Common Candidate Tree,
based on the concept of using one shared hash tree structure to store candidates
of all the queries. The proposed solution preserves the integration of scans of
shared database regions, and additionally allows to integrate the testing of the
inclusion of candidates in a transaction retrieved from the database.

The structure of a hash tree in the Common Candidate Tree method stays
unchanged compared to Common Counting and the original Apriori. In order
to allow the queries to share one hash tree, it is only necessary to extend the
structure of a candidate so that instead of having a single counter, a candi-
date will be assigned a vector of counters (counters|]) - one counter per query.
Moreover, each candidate will have a vector of Boolean flags (fromQuery[]) to
indicate which queries generated a given candidate. The flags will be set during
merging the candidate sets generated by the queries into one integrated set of
candidates that then will be stored in a common hash tree. The structure of a
candidate in a common hash tree used in the Common Candidate Tree method
is illustrated in Fig. 4 for the set of three queries.

common hash tree for dmq,, dmq,, and dmaq,

AN

itemset fromQuery[] counters[]
[{101,102,105} [1 | 0 | 1 [23] 0 [17]

Figure 4. Illustration of a candidate structure used by Common Candidate Tree

The pseudo-code of Common Candidate Tree is depicted in Fig. 5. The
difference between the new method and Common Counting is that in Common
Candidate Tree an integrated candidate set is being counted instead of separate
candidate sets as in Common Counting (lines 1 and 10). The new approach
has two significant advantages. Firstly, in typical situations, where the queries
share many common candidates, Common Candidate Tree should require less
memory as it stores each candidate only once, no matter how many queries
generated it. Secondly, due to the elimination of duplicated candidates, Com-
mon Candidate Tree reduces the number of inclusion tests between candidates



Integration of Candidate Hash Trees... 11

Input: DMQ = {dmq,dmqs, ...,dmagy},
where dmq; = (R, a, X;, ®;, minfreq;)
1)  C; = all possible 1-itemsets
2 for (k=1; Cy, # 0; k++) do begin
for each s; € S do begin
CC ={C € C : Fi C.fromQueryli] = true N os,R C ox, R}
if CC # () then count(CC,o,,R) end
for (i=1;i < n; i++) do begin

(
(2)
(3)
(4)
(5)
(6)
(7) minsup; = [minfreg; * |ox, R|]
(8)
(9)
(10
(11
(

(

<

4

o Ot

8 Fi ={C € Cy : C.countersi| > minsup;}
9 Cj,1 = apriori_gen(F;) end

1 Cry1=Ch UCE U..UCH,
1 end

12) for (i=1;i < mn;i++) do

13 Answer; = oo, U, Fi

N ~—

Figure 5. Common Candidate Tree

and transactions. Candidate generation and selection of frequent itemsets (by
comparing candidate support with the minimum support threshold) are still per-
formed separately for each query (lines 6-9). In the phase of counting candidate
occurrences, during the scan of a given database partition only these candidates
are taken into account that have been generated by at least one of the queries
referring to that partition, and if a candidate is included in a transaction only
counters for such queries are incremented (lines 3-5).

As for importance of Common Candidate Tree as a new method of process-
ing batches of frequents itemset queries, it should be stressed again that possi-
ble performance improvement due to tighter integration of computations is not
its only advantage over Common Counting. A serious problem with Common
Counting, limiting its applicability to large batches of queries, is the necessity
of having hash trees of many queries present in main memory at the same time.
This problem was previously solved by dividing the original set of queries into
disjoint subsets and running Common Counting separately for each of the query
subsets (Boinski et al., 2006; Wojciechowski and Zakrzewicz, 2005). Common
Candidate Tree uses a single hash tree, having unmodified structure of internal
nodes, and only extends the structure of candidates with extra counters and
flags, which should increase its applicability with no need for dividing the query
set.

Similarly to Common Counting, Common Candidate Tree does not handle
pattern constraints ®, but allows for using constraint handling techniques pro-
posed for Apriori, since the candidate generation procedure used by Apriori is
not modified by Common Candidate Tree.
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6. Experimental Results

In order to evaluate performance and memory consumption of Common Candi-
date Tree we performed a series of experiments on two synthetic datasets gener-
ated with GEN (Agrawal et al., 1996). The first dataset, denoted as GEN1, was
generated using the following GEN settings: number of transactions = 100000,
average number of items in a transaction = 5, number of different items = 1000,
number of patterns (i.e., frequent itemsets) = 500, average pattern length = 3.
The size of the GEN1 dataset was 6 MB. For the second dataset, denoted as
GEN2, generator parameters were modified to produce a significantly larger
dataset, both in terms of the number of transactions and the average transac-
tion size. The following GEN settings were used to generate GEN2: number of
transactions = 1000000, average number of items in a transaction = 8, number
of different items = 1000, number of patterns = 1500, average pattern length =
4. The size of the GEN2 dataset was 97 MB.

In experiments we compared Common Candidate Tree with Common Count-
ing, which is the best method so far, and sequential execution as the natural
reference point for multiple-query processing and optimization techniques. The
experiments were conducted on a PC with Athlon 1700+ processor and 512 MB
of main memory, running Microsoft Windows XP. The datasets were stored in
flat files on a local disk.

In the experiments we varied the number of queries in a batch, the minimum
frequency threshold, and the level of overlapping between the queries’ datasets.
For each query, its source dataset was a contiguous fragment of the generated
dataset (containing 50000 subsequent transactions in case of GEN1, and 500000
subsequent transactions in case of GEN2). Although neither of the methods
requires this, in all the experiments all the queries to be concurrently processed
used the same frequency threshold, so as to make the potential influence of
the frequency threshold and the difference in performance between the tested
methods easier to observe!.

In the first series of experiments we tested the effect of the level of over-
lapping between the queries’ datasets on execution times of Common Counting
(CC) and Common Candidate Tree (CCT), compared to sequential processing
(SEQ). At the same time, in order to compare main memory consumption of
the CC and CCT methods we measured the size of hash trees (space occupied
by tree nodes and candidates). The experiments were performed for the case
of two overlapping queries. For each dataset we used two different minimum
frequency thresholds. The thresholds were adjusted so that they resulted in
significantly different numbers of Apriori iterations: 2 iterations for the higher
frequency threshold and 5-8 iterations for the lower one. The respective fre-

IThe greater the difference in minimum frequency thresholds among the queries forming
a batch, the greater the difference in number of Apriori iterations among the queries can be
expected. Both Common Counting and Common Candidate Tree reduce the processing time
of only those iterations in which at least 2 queries are still being processed.
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Figure 6. Execution times for two queries and different levels of overlapping
with minfreq=1% (left) and minfreq=3% (right) on the GEN1 dataset
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Figure 7. Execution times for two queries and different levels of overlapping
with minfreq=0.7% (left) and minfreq=2% (right) on the GEN2 dataset

quency thresholds were 3% and 1% for GEN1, and 2% and 0.7% for GEN2.

Figures 6 and 7 present execution times of the compared methods for dif-
ferent levels of overlapping for the case of two queries on GEN1 and GEN2
respectively. The execution times of CC and CCT decrease linearly with the
increase of the level of overlapping, with CCT significantly outperforming CC
in all cases with the exception of mining a small dataset with a high frequency
threshold, where the performance gains of CCT over CC were not impressive.
It should be noted that relative performance of CCT with respect to sequential
processing was similar for all the four cases. On the other hand, performance
of CC degraded with the increase of the dataset size and the decrease of the
frequency threshold. Only for the higher of tested frequency thresholds on the
small dataset CC could compete with CCT, because due to a small number
of candidates and transactions, penalty in performance for traversing two sep-
arate hash trees and possibly testing some candidates twice against the same
transaction was not big in that case.

Figures 8 and 9 show average sums of hash tree sizes for CC and CCT



14 P. Grudziriski, M. Wojciechowski

250000 20000

= )
3 8 ’\0\'_'/0—-
N 2000004 o ———¢—¢— 4 N 16000
N 8
3 3
2 150000 A L 12000 m. .
= [ R L EEREEL EECEED RERTTY ER ——C = - - - - = cc
a -.-m--.CCT -.-m-..CCT
S 100000 § 8000
oy .y
o o
£ 50000 - £ 4000
=1 =]
12} 12
g 0 S 0

0 20 40 60 80 100 0 20 40 60 80 100

overlapping [%)] owerlapping [%)]

Figure 8. Average sums of hash tree sizes for two queries and different levels
of overlapping with minfreq=1% (left) and minfreq=3% (right) on the GEN1
dataset
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Figure 9. Average sums of hash tree sizes for two queries and different levels
of overlapping with minfreq=0.7% (left) and minfreq=2% (right) on the GEN2
dataset

(computed as the sum of sizes of hash trees of all the queries from all iterations
divided by the number of iterations) for GEN1 and GEN2 respectively. For
the case of two queries CCT reduced average memory consumption by 32% to
39% compared to CC. Differences in memory consumption of both algorithms
for different levels of overlapping observed for the frequency threshold of 0.7%
on GEN2 were due to different characteristics of different regions of the dataset
(both algorithms were similarly affected).

The goal of the second series of experiments was to evaluate scalability of CC
and CCT with respect to the number of concurrently executed queries. In gen-
eral, it is hard to compare performance of the considered methods for different
numbers of queries in a batch because the more queries the more overlapping
configurations possible. Therefore, in order to assess the influence of the num-
ber of queries on their performance we "benchmarked" the methods on sets of
identical queries (the level of overlapping was always 100%).

Figures 10 and 11 show how the execution time of a batch of queries increases
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Figure 10. Execution times for 2-5 identical queries with minfreq=1% (left) and
minfreq=3% (right) on the GEN1 dataset
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Figure 11. Execution times for 2-5 identical queries with minfreq=0.7% (left)
and minfreq=2% (right) on the GEN2 dataset

with the number of queries forming it for GEN1 and GEN2 respectively. The
execution time of CCT increases insignificantly with the increase of the number
of queries, whereas the execution time of CC on the large GEN2 dataset grows
almost as rapidly as in the case of sequential execution of the queries. On
the small GEN1 dataset the gap between CCT and CC is smaller, especially
for the higher frequency threshold, similarly as observed in the first series of
experiments.

Figures 12 and 13 present average sums of sizes of hash trees built by CC and
CCT for batches of 2 to 5 queries on GEN1 and GEN2 respectively. With the
increase of the number of queries the amount of main memory consumed by CCT
grows significantly slower than in case of CC. The experiment clearly indicates
that CCT is applicable for larger batches of queries than CC, even taking into
account the fact that the experiment favored CCT (since the queries forming
a batch were identical, addition of another query resulted in the addition of
another hash tree for CC, and only in the increase of the size of the vectors
assigned to candidates in case of CCT).
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Figure 12. Average sums of hash tree sizes for 2-5 identical queries with min-
freq=1% (left) and minfreq=3% (right) on the GEN1 dataset
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Figure 13. Average sums of hash tree sizes for 2-5 identical queries with min-
freq=0.7% (left) and minfreq=2% (right) on the GEN2 dataset

7. Conclusions

In the paper we proposed a new method of concurrent execution of the set of
frequent itemset queries using the Apriori algorithm. The new method is called
Common Candidate Tree because it utilizes a common hash tree structure for
all the concurrently executed queries. The experiments show that in comparison
with the previously proposed Common Counting method, Common Candidate
Tree is much more efficient, scales better with respect to the number of queries,
and consumes a smaller amount of main memory.

Concurrently to the work reported in this paper, we developed a method
analogous to Common Candidate Tree, designed for FP-growth, aiming at the
integration of FP-trees of the concurrently executed queries (Wojciechowski et
al., 2007). In the future we plan to investigate further possibilities of computa-
tion sharing between the concurrently processed queries, going beyond sharing
disk accesses and memory data structures.
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