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2 Poznan University of Technology, Institute of Computing Science,Piotrowo 2, 60-965 Pozna«, PolandAbstract: Frequent itemset mining is often regarded as ad-vanced querying where a user speci�es the source dataset and patternconstraints using a given constraint model. In this paper we addressthe problem of processing batches of frequent itemset queries usingthe Apriori algorithm. The best solution of this problem proposedso far is Common Counting, which consists in concurrent executionof the queries using Apriori with the integration of scans of the partsof the database shared among the queries. In this paper we proposea new method - Common Candidate Tree, o�ering a more tight in-tegration of the concurrently processed queries by sharing memorydata structures, i.e., candidate hash trees. The experiments showthat Common Candidate Tree outperforms Common Counting interms of execution time. Moreover, thanks to smaller memory con-sumption, Common Candidate Tree can be applied to larger batchesof queries.Keywords: data mining, frequent itemset mining, data miningqueries.1. IntroductionFrequent itemset mining (Agrawal et al., 1993) is one of the fundamental datamining techniques. Its goal is discovery of all subsets whose number of occur-rences in a source collection of sets (called transactions) exceeds a user-speci�edthreshold. Typically, discovered frequent itemsets are used to generate associ-ation rules, which provide a deeper insight into associations among items con-tained in the database. Nevertheless, since generation of rules from frequentitemsets is relatively straightforward (Agrawal et al., 1994), researchers focusedon the frequent itemset discovery task. The problem of frequent itemset andassociation rule mining was initially formulated in the context of market-basket



2 P. Grudzi«ski, M. Wojciechowskianalysis, aiming at discovery of items frequently co-occurring in customer trans-actions. However, the problem quickly found numerous applications in variousdomains including: medicine, telecommunications, and World Wide Web.Many frequent itemset mining algorithms have been developed. The twomost prominent classes of algorithms are determined by a strategy of travers-ing the pattern search space. Level-wise algorithms, represented by the classicApriori algorithm (Agrawal and Srikant, 1994), follow the breadth-�rst strategy,whereas pattern-growth methods, among which FP-growth (Han et al., 2000) isthe best known, perform the depth-�rst search.Apriori starts with discovering frequent itemsets of size 1, and then itera-tively generates candidates (i.e., potentially frequent itemsets) from previouslyfound smaller frequent itemsets and counts their occurrences in a database scan.To improve e�ciency of testing which candidates are contained in a transactionread from the database, the candidates are stored in a hash tree in main mem-ory. The number of Apriori iterations, and consequently the number of databasescans, depends on the size of the largest frequent itemset to be discovered.FP-growth, similarly to Apriori, also builds larger frequent itemsets fromsmaller ones but instead of candidate generation and testing, it exploits the ideaof database projections. Projections are determined by frequent itemsets foundso far, and patterns are grown by discovering items frequent in their projections.To facilitate e�cient projections, FP-growth transforms a database into an FP-tree, which is a highly compact data structure, designed to be stored in mainmemory. Only two database scans are needed to build an FP-tree, and thenactual mining is performed on the FP-tree, with no further scans of the originaldatabase.FP-growth has been found more e�cient than Apriori for low support thresh-olds and/or dense datasets (i.e., datasets containing numerous and long frequentitemsets). However, in real life, datasets having di�erent characteristics are be-ing analyzed, and there is no single algorithm best in all cases (see Zheng et al.,2001).Frequent itemset mining is often regarded as advanced database query-ing where a user speci�es the source dataset, the minimum support/frequencythreshold, and optionally pattern constraints within a given constraint model(Imielinski and Mannila, 1996). A signi�cant amount of research on e�cientprocessing of frequent itemset queries has been done in recent years, focusingmainly on constraint handling (see Pei and Han, 2000 for an overview) andreusing results of previous queries (Baralis and Psaila, 1999; Cheung et al.,1996; Meo, 2003; Morzy et al., 2000).Recently, a new problem of optimizing processing of sets of frequent itemsetqueries has been considered, bringing the concept of multiple-query optimiza-tion to the domain of frequent itemset mining. The idea was to process thequeries concurrently rather than sequentially and exploit the overlapping ofqueries' source datasets. Sets of frequent itemset queries available for concur-rent processing may arise in data mining systems operating in a batch mode or



Integration of Candidate Hash Trees... 3be collected within a given time window in multi-user interactive data miningenvironments. A motivating example from the domain of market basket analy-sis could be a set of queries discovering frequent itemsets from the overlappingparts of a database table containing customer transaction data from overlappingtime periods.So far, the best method of processing batches of frequent itemset queries isCommon Counting, which consists in concurrent execution of the queries withthe integration of scans of parts of the database shared among the queries.Common Counting has been originally designed for Apriori, in case of whichdataset scans required to count candidates were integrated (Wojciechowski andZakrzewicz, 2003). Later, the method was adapted to work with FP-growth,reducing the number of disk blocks read during the phase of building FP-treesfor a batch of queries (Wojciechowski et al., 2005).The Common Counting method, which optimizes only database scans, def-initely does not exploit all optimization possibilities. Further integration ofoperations performed by concurrently processed frequent itemset queries re-quires techniques dedicated to particular mining algorithms, or at least familiesof algorithms. In this paper we propose a new method of processing of batchesof frequent itemset queries using the Apriori algorithm, called Common Candi-date Tree, which integrates processing of batches of queries more tightly thanCommon Counting by integrating memory data structures of the queries. Ex-periments show that Common Candidate Tree is more e�cient than CommonCounting. Moreover, due to better utilization of main memory, it is also appli-cable to larger batches of queries.The paper is organized as follows. Section 2 discusses related work. Section 3formally presents the frequent itemset mining problem and describes the Apriorialgorithm. In Sect. 4 we review basic de�nitions regarding frequent itemsetqueries and we brie�y describe the Common Counting method. In Sect. 5 weintroduce Common Candidate Tree - a new method for concurrent processing offrequent itemset queries using Apriori. Section 6 presents experimental results.Section 7 contains conclusions and discusses future work.2. Related WorkMultiple-query optimization has been extensively studied in the context ofdatabase systems (see Sellis, 1988 for an overview). The idea was to iden-tify common subexpressions (selections, projections, joins, etc.) and constructa global execution plan minimizing the overall processing time by executingthe common subexpressions only once for the set of queries (Alsabbagh andRaghavan, 1994; Jarke, 1985). Many heuristic algorithms for multiple-queryoptimization in database systems were proposed (e.g., Roy et al., 2000). Datamining queries could also bene�t from the general strategy of identifying andsharing common computations. However, due to their di�erent nature theyrequire novel multiple-query processing methods.



4 P. Grudzi«ski, M. WojciechowskiTo the best of our knowledge, apart from the problem considered in thispaper, multiple-query optimization for frequent pattern queries has been con-sidered only in the context of frequent pattern mining on multiple datasets (Jinet al., 2005). The idea was to reduce the common computations appearingin di�erent complex queries, each of which compared the support of patternsin several disjoint datasets. This is fundamentally di�erent from our problem,where each query refers to only one dataset and the queries' datasets overlap.Earlier, the need for multiple-query optimization has been postulated in thesomewhat related research area of inductive logic programming, where a tech-nique based on similar ideas as Common Counting has been proposed, consistingin combining similar queries into query packs (Blockeel et al., 2002).As an introduction to multiple-data-mining-query optimization, we can re-gard techniques of reusing intermediate or �nal results of previous queries toanswer a new query. Methods falling into that category that have been studiedin the context of frequent itemset discovery are: incremental mining (Cheunget al., 1996), caching intermediate query results (Nag et al., 1999), and reusingmaterialized complete (Baralis and Psaila, 1999; Meo, 2003; Morzy et al., 2000)or condensed (Jeudy and Boulicaut, 2002) results of previous queries providedthat syntactic di�erences between the queries satisfy certain conditions.3. Frequent Itemset Mining and Apriori Algorithm3.1. Basic De�nitions and Problem StatementDefinition 1. Let I be a set of literals, called items. An itemset I is a setof items from I (I ⊆ I). The size of an itemset is the number of items init. An itemset of size k is called a k-itemset. A transaction over I is a couple
T = 〈tid, I〉, where tid is a transaction identi�er and I is an itemset. A database
D over I is a set of transactions over I such that each transaction has a uniqueidenti�er.Definition 2. A transaction T = 〈tid, I〉 supports an itemset X if X ⊆ I. Thesupport of an itemset X in D is the number of transactions in D that support X.The frequency (also called relative support) of an itemset X in D is the supportof X in D divided by the total number of transactions in D.Definition 3. An itemset is called frequent in D if its support is no less thana given minimum support threshold. (Alternatively, if a minimum frequencythreshold is provided, an itemset is frequent if its frequency is no less than agiven minimum frequency threshold.)Problem. Given a database D and a minimum support threshold minsup or aminimum frequency threshold minfreq, the problem of frequent itemset miningconsists in discovering all frequent itemsets in D.



Integration of Candidate Hash Trees... 5Input: D, minsup(1) F1 = {frequent 1-itemsets}(2) for (k=2; Fk−1 6= ∅; k++) do begin(3) Ck = apriori_gen(Fk−1)(4) forall transactions t ∈ D do begin(5) Ct = subset(Ck, t)(6) forall candidates c ∈ Ct do(7) c.counter++(8) end(9) Fk = {c ∈ Ck|c.counter ≥ minsup}(10) end(11) Answer = ⋃
k FkFigure 1. AprioriIn general, frequency thresholds are more convenient and informative for end-users than support thresholds. On the other hand, mining algorithms are oftenformulated for the minimum support threshold, which can be directly comparedto the numbers of itemsets' occurrences in the database. Obviously, minsup =

dminfreq ∗ |D|e, so conversion between the two thresholds is possible, providedthat the total number of transactions in the database is known. Therefore,the conversion can be done after the �rst scan of the database performed by amining algorithm.3.2. Algorithm AprioriThe Apriori algorithm for frequent itemset discovery is presented in Fig. 1. Inthe formulation of the algorithm Fk denotes the set of all frequent k-itemsets,and Ck denotes a set of potentially frequent k-itemsets, called candidates.Apriori starts with the discovery of frequent 1-itemsets, i.e., frequent items(line 1). For this task, the �rst scan of the database is performed. Before makingthe k-th pass (for k > 1), the algorithm generates the set of candidates Ck using
Fk−1 (line 3). The candidate generation procedure, denoted as apriori_gen(),provides e�cient pruning of the search space, and is described in Sect. 3.2.1.In the k-th database pass (lines 4-8), Apriori counts the supports of all theitemsets in Ck. (In practice, the database pass is performed only if the set ofgenerated candidates is not empty.) The key step of this phase of the algorithm isdetermining which candidates from Ck are contained in a transaction t retrievedfrom the database. This step is denoted in the algorithm as a call to the subset()function, and is described in Sect. 3.2.2. At the end of the pass all itemsets in Ckwith a support greater than or equal to the minimum support threshold minsupform the set of frequent k-itemsets Fk (line 9). The algorithm �nishes work ifthere are no frequent itemsets found in a given iteration (condition in line 2)and returns all the frequent itemsets found (line 11).



6 P. Grudzi«ski, M. Wojciechowski3.2.1. Candidate GenerationThe candidate generation procedure consists of two steps: the join step and theprune step. In the join step, each pair of frequent k-1-itemsets that di�er only inthe last item (according to lexicographical order of the items within itemsets) isjoined to form a candidate. This step can be expressed in SQL in the followingway:insert into Ckselect p.item1, p.item2, ..., p.itemk−1, q.itemk−1from Fk−1 p, Fk−1 qwhere p.item1 = q.item1, ..., p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1In the prune step, itemsets having at least one subset that was found infre-quent in the previous Apriori iteration are removed from the set of candidates:forall itemsets c ∈ Ck doforall k-1-subsets s of c doif s /∈ Fk−1 then
Ck = Ck \ {c}The candidate generation procedure of Apriori exploits the antimonotonic-ity property of the support measure, which implies that for a candidate to befrequent all its subsets must also be frequent.3.2.2. Candidate CountingIn order to avoid costly testing of each candidate for inclusion in a transactionretrieved from the database, candidates Ck are stored in a hash tree. Leavesof a hash tree contain pointers to candidates, while interior nodes at depth dcontain hash tables with pointers to nodes at depth d+1. The root of a hashtree is at depth 1.A candidate is added to the hash tree starting from the root, and traversingthe tree until a leaf is reached. At an interior node at depth d, the decision onwhich branch to follow is based on the result of a chosen hash function appliedto the dth item of the candidate (according to the lexicographical order of itemswithin a candidate). Initially all nodes are created as leaves (starting with theroot), and converted into interior nodes when a number of candidates stored inthe node exceeds a speci�ed threshold (as long as the depth d of the node is notgreater than k).In order to �nd the candidates that are contained in a transaction t using ahash tree, we start from its root node. If we are at a leaf, we check which itemsetsfrom the leaf are contained in t and increment the counters of candidates thatpassed the inclusion test. If we are at an interior node and we have reached itby hashing the ith item of the transaction (according to lexicographical order),we hash on each item that comes after the ith item in t and recursively apply



Integration of Candidate Hash Trees... 7this procedure to the node pointed by the result of the hash function. Whenstarting at the root node, we hash on every item in t.4. Multiple-Query Optimization for Frequent ItemsetQueries4.1. Basic De�nitions and Problem StatementWith the aim of keeping our study on processing batches of frequent itemsetqueries as general as possible, we are going to use a simple and general querymodel. The model assumes that the data to be mined are stored in a set-valued attribute of a database relation, accompanied by other attributes usedto identify transactions and to allow selection of a subset of the relation as themined dataset. Pattern constraints are represented as a general logical predicatewith no details on their form or nature. Frequent itemsets are selected accordingto a minimum frequency threshold, which is not only generally more convenientthan a minimum support threshold from a user's point of view, but also moreappropriate for our model due to the possibility of selecting a subset of therelation for mining as the number of transactions in the dataset to be minedwill depend on the selectivity of the speci�ed selection condition.Definition 4. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, minfreq),where R is a database relation, a is a set-valued attribute of R, Σ is a conditioninvolving the attributes of R called data selection predicate, Φ is a conditioninvolving discovered itemsets called pattern constraint, and minfreq is the min-imum frequency threshold. The result of dmq is a set of itemsets discovered in
πaσΣR, satisfying Φ, and having frequency ≥ minfreq (π and σ denote rela-tional projection and selection operations respectively).Example 1. Given the database relation R1(a1, a2), where a2 is a set-valuedattribute and a1 is an attribute of integer type. The frequent itemset query
dmq1 = (R1, a2, a1 > 5, |itemset|< 4, 3%) describes the problem of discoveringfrequent itemsets in the set-valued attribute a2 of the relation R1. The itemsetswith frequency of at least 3% and containing less than 4 items are discovered inthe collection of records having a1 >5.Definition 5. The set of elementary data selection predicates for a set offrequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} is the smallest set
S = {s1, s2, ..., sk} of data selection predicates over the relation R such that foreach u, v (u 6= v) we have σsu

R∩ σsv
R = ∅ and for each dmqi there exist inte-gers a, b, ..., m such that σΣi

R = σsa
R∪σsb

R∪ ..∪σsm
R. The set of elementarydata selection predicates represents the partitioning of the database determinedby overlapping of queries' datasets.Example 2. Given the relation R1(a1, a2) and three frequent itemset queries:

dmq1 = (R1, a2, 5≤a1 <20, ∅, 3%), dmq2 = (R1, a2, 0≤a1 <15, ∅, 5%), dmq3 =



8 P. Grudzi«ski, M. WojciechowskiInput: DMQ = {dmq1, dmq2, ..., dmqn},where dmqi = (R, a, Σi, Φi, minfreqi)(1) for (i=1; i ≤ n; i++) do(2) Ci
1 = all possible 1-itemsets(3) for (k=1; C1

k ∪ C2
k ∪ .. ∪ Cn

k 6= ∅; k++) do begin(4) for each sj ∈ S do begin(5) CC = {Ci
k : σsj

R ⊆ σΣi
R}(6) if CC 6= ∅ then count(CC, σsj

R) end(7) for (i=1; i ≤ n; i++) do begin(8) minsupi = dminfreqi ∗ |σΣi
R|e(9) F i

k = {C ∈ Ci
k : C.counter ≥ minsupi}(10) Ci

k+1
= apriori_gen(F i

k) end(11) end(12) for (i=1; i ≤ n; i++) do(13) Answeri = σΦi

⋃
k F

i
kFigure 2. Common Counting for Apriori

(R1, a2, 5≤a1 <15 or 30≤a1 <40, ∅, 4%). The set of elementary data selectionpredicates is then S = {0≤a1<5, 5≤a1 <15, 15≤a1<20, 30≤a1<40}.Problem. Given a set of frequent itemset queries DMQ = {dmq1, dmq2, ...,
dmqn}, the problem of multiple-query optimization of DMQ consists in gener-ating an algorithm to execute DMQ that minimizes the overall processing time.In general, it is assumed that after collecting the queries to be concur-rently executed using any strategy, duplicated queries are eliminated in a pre-processing step. According to previous studies (Morzy et al., 2000), it is alsoadvisable to combine queries operating on exactly the same dataset (at leastthe ones that have the same data selection predicate) into one query, whoseresults can be used to answer the original queries by simple checking of pat-tern constraints and/or frequency. Such a new query should have the frequencythreshold equal to the smallest threshold among the queries to be replaced andthe pattern constraint in the form of a disjunction of their pattern constraints.4.2. Common CountingCommon Counting consists in concurrent execution of a set of frequent itemsetqueries using Apriori and integrating scans of shared parts of the database. Thepseudo-code of Common Counting is presented in Fig. 2.Common Counting iteratively generates and counts candidates for all fre-quent itemset queries. In the �rst iteration, for all the queries, the set of can-didates is the set of all possible items (lines 1-2). The candidates of the size
k (k>1) are generated from frequent itemsets of size k-1, separately for eachquery (lines 7-11). Generation of candidates (represented in the pseudo-code



Integration of Candidate Hash Trees... 9by the apriori_gen() function) is performed exactly as in the original Apriorialgorithm. The candidates generated for each query are stored in a separatehash tree.Minimum frequency thresholds of the queries are converted to their corre-sponding minimum support thresholds by multiplying them by the numbers oftransactions in queries' source datasets (line 8). The numbers of transactionsin queries' source datasets are determined during the �rst database scan.The iterative process of candidate generation and counting ends when for allthe queries no further candidates can be generated (the condition in line 3).Occurrences of candidates for all the queries are counted during one inte-grated database scan in the following manner: For each elementary data selec-tion predicate, the transactions from its corresponding database partition areread one by one. For each transaction the candidates of the queries referring tothe database partition being read are considered, and the counters of candidatescontained in the transaction are incremented (lines 4-6). The inclusion test isperformed by confronting the transaction with hash trees of all the queries refer-ring to the database partition containing the transaction. Candidate countingis represented in the pseudo-code as the count() function. It should be notedthat if a given elementary data selection predicate is shared by several queries,then during each candidate counting phase its corresponding database partitionis read only once.The idea of Common Counting and its memory structures are illustrated inFig. 3 for the set of three queries. Each query creates its own hash tree to storeits candidates. If a given itemset is generated as a candidate by more than onequery, it appears in more than one hash tree.
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�Figure 3. Illustration of Common Counting and its memory structuresCommon Counting does not handle pattern constraints Φ, but allows forusing constraint handling techniques proposed for Apriori, based on modi�ca-tions of the candidate generation procedure, and then �ltering the discovered



10 P. Grudzi«ski, M. Wojciechowskifrequent itemsets in a post-processing phase for those constraints that cannotbe handled within Apriori.5. Common Candidate TreeCommon Counting optimizes scans of the parts of the database shared amongthe queries, performing other operations of the Apriori algorithm separately foreach query. Aiming at the increase of computation sharing between the concur-rently processed queries, we introduce a new method: Common Candidate Tree,based on the concept of using one shared hash tree structure to store candidatesof all the queries. The proposed solution preserves the integration of scans ofshared database regions, and additionally allows to integrate the testing of theinclusion of candidates in a transaction retrieved from the database.The structure of a hash tree in the Common Candidate Tree method staysunchanged compared to Common Counting and the original Apriori. In orderto allow the queries to share one hash tree, it is only necessary to extend thestructure of a candidate so that instead of having a single counter, a candi-date will be assigned a vector of counters (counters[]) - one counter per query.Moreover, each candidate will have a vector of Boolean �ags (fromQuery[]) toindicate which queries generated a given candidate. The �ags will be set duringmerging the candidate sets generated by the queries into one integrated set ofcandidates that then will be stored in a common hash tree. The structure of acandidate in a common hash tree used in the Common Candidate Tree methodis illustrated in Fig. 4 for the set of three queries.
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Figure 4. Illustration of a candidate structure used by Common Candidate TreeThe pseudo-code of Common Candidate Tree is depicted in Fig. 5. Thedi�erence between the new method and Common Counting is that in CommonCandidate Tree an integrated candidate set is being counted instead of separatecandidate sets as in Common Counting (lines 1 and 10). The new approachhas two signi�cant advantages. Firstly, in typical situations, where the queriesshare many common candidates, Common Candidate Tree should require lessmemory as it stores each candidate only once, no matter how many queriesgenerated it. Secondly, due to the elimination of duplicated candidates, Com-mon Candidate Tree reduces the number of inclusion tests between candidates



Integration of Candidate Hash Trees... 11Input: DMQ = {dmq1, dmq2, ..., dmqn},where dmqi = (R, a, Σi, Φi, minfreqi)(1) C1 = all possible 1-itemsets(2) for (k=1; Ck 6= ∅; k++) do begin(3) for each sj ∈ S do begin(4) CC = {C ∈ Ck : ∃i C.fromQuery[i] = true ∧ σsj
R ⊆ σΣi

R}(5) if CC 6= ∅ then count(CC, σsj
R) end(6) for (i=1; i ≤ n; i++) do begin(7) minsupi = dminfreqi ∗ |σΣi
R|e(8) F i

k = {C ∈ Ck : C.counters[i] ≥ minsupi}(9) Ci
k+1 = apriori_gen(F i

k) end(10) Ck+1 = C1
k+1

∪ C2
k+1

∪ .. ∪ Cn
k+1(11) end(12) for (i=1; i ≤ n; i++) do(13) Answeri = σΦi

⋃
k F

i
kFigure 5. Common Candidate Treeand transactions. Candidate generation and selection of frequent itemsets (bycomparing candidate support with the minimum support threshold) are still per-formed separately for each query (lines 6-9). In the phase of counting candidateoccurrences, during the scan of a given database partition only these candidatesare taken into account that have been generated by at least one of the queriesreferring to that partition, and if a candidate is included in a transaction onlycounters for such queries are incremented (lines 3-5).As for importance of Common Candidate Tree as a new method of process-ing batches of frequents itemset queries, it should be stressed again that possi-ble performance improvement due to tighter integration of computations is notits only advantage over Common Counting. A serious problem with CommonCounting, limiting its applicability to large batches of queries, is the necessityof having hash trees of many queries present in main memory at the same time.This problem was previously solved by dividing the original set of queries intodisjoint subsets and running Common Counting separately for each of the querysubsets (Boi«ski et al., 2006; Wojciechowski and Zakrzewicz, 2005). CommonCandidate Tree uses a single hash tree, having unmodi�ed structure of internalnodes, and only extends the structure of candidates with extra counters and�ags, which should increase its applicability with no need for dividing the queryset.Similarly to Common Counting, Common Candidate Tree does not handlepattern constraints Φ, but allows for using constraint handling techniques pro-posed for Apriori, since the candidate generation procedure used by Apriori isnot modi�ed by Common Candidate Tree.



12 P. Grudzi«ski, M. Wojciechowski6. Experimental ResultsIn order to evaluate performance and memory consumption of Common Candi-date Tree we performed a series of experiments on two synthetic datasets gener-ated with GEN (Agrawal et al., 1996). The �rst dataset, denoted as GEN1, wasgenerated using the following GEN settings: number of transactions = 100000,average number of items in a transaction = 5, number of di�erent items = 1000,number of patterns (i.e., frequent itemsets) = 500, average pattern length = 3.The size of the GEN1 dataset was 6 MB. For the second dataset, denoted asGEN2, generator parameters were modi�ed to produce a signi�cantly largerdataset, both in terms of the number of transactions and the average transac-tion size. The following GEN settings were used to generate GEN2: number oftransactions = 1000000, average number of items in a transaction = 8, numberof di�erent items = 1000, number of patterns = 1500, average pattern length =4. The size of the GEN2 dataset was 97 MB.In experiments we compared Common Candidate Tree with Common Count-ing, which is the best method so far, and sequential execution as the naturalreference point for multiple-query processing and optimization techniques. Theexperiments were conducted on a PC with Athlon 1700+ processor and 512 MBof main memory, running Microsoft Windows XP. The datasets were stored in�at �les on a local disk.In the experiments we varied the number of queries in a batch, the minimumfrequency threshold, and the level of overlapping between the queries' datasets.For each query, its source dataset was a contiguous fragment of the generateddataset (containing 50000 subsequent transactions in case of GEN1, and 500000subsequent transactions in case of GEN2). Although neither of the methodsrequires this, in all the experiments all the queries to be concurrently processedused the same frequency threshold, so as to make the potential in�uence ofthe frequency threshold and the di�erence in performance between the testedmethods easier to observe1.In the �rst series of experiments we tested the e�ect of the level of over-lapping between the queries' datasets on execution times of Common Counting(CC) and Common Candidate Tree (CCT), compared to sequential processing(SEQ). At the same time, in order to compare main memory consumption ofthe CC and CCT methods we measured the size of hash trees (space occupiedby tree nodes and candidates). The experiments were performed for the caseof two overlapping queries. For each dataset we used two di�erent minimumfrequency thresholds. The thresholds were adjusted so that they resulted insigni�cantly di�erent numbers of Apriori iterations: 2 iterations for the higherfrequency threshold and 5-8 iterations for the lower one. The respective fre-1The greater the di�erence in minimum frequency thresholds among the queries forminga batch, the greater the di�erence in number of Apriori iterations among the queries can beexpected. Both Common Counting and Common Candidate Tree reduce the processing timeof only those iterations in which at least 2 queries are still being processed.
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 Figure 6. Execution times for two queries and di�erent levels of overlappingwith minfreq=1% (left) and minfreq=3% (right) on the GEN1 dataset
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 Figure 7. Execution times for two queries and di�erent levels of overlappingwith minfreq=0.7% (left) and minfreq=2% (right) on the GEN2 datasetquency thresholds were 3% and 1% for GEN1, and 2% and 0.7% for GEN2.Figures 6 and 7 present execution times of the compared methods for dif-ferent levels of overlapping for the case of two queries on GEN1 and GEN2respectively. The execution times of CC and CCT decrease linearly with theincrease of the level of overlapping, with CCT signi�cantly outperforming CCin all cases with the exception of mining a small dataset with a high frequencythreshold, where the performance gains of CCT over CC were not impressive.It should be noted that relative performance of CCT with respect to sequentialprocessing was similar for all the four cases. On the other hand, performanceof CC degraded with the increase of the dataset size and the decrease of thefrequency threshold. Only for the higher of tested frequency thresholds on thesmall dataset CC could compete with CCT, because due to a small numberof candidates and transactions, penalty in performance for traversing two sep-arate hash trees and possibly testing some candidates twice against the sametransaction was not big in that case.Figures 8 and 9 show average sums of hash tree sizes for CC and CCT
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 Figure 8. Average sums of hash tree sizes for two queries and di�erent levelsof overlapping with minfreq=1% (left) and minfreq=3% (right) on the GEN1dataset
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 Figure 9. Average sums of hash tree sizes for two queries and di�erent levelsof overlapping with minfreq=0.7% (left) and minfreq=2% (right) on the GEN2dataset(computed as the sum of sizes of hash trees of all the queries from all iterationsdivided by the number of iterations) for GEN1 and GEN2 respectively. Forthe case of two queries CCT reduced average memory consumption by 32% to39% compared to CC. Di�erences in memory consumption of both algorithmsfor di�erent levels of overlapping observed for the frequency threshold of 0.7%on GEN2 were due to di�erent characteristics of di�erent regions of the dataset(both algorithms were similarly a�ected).The goal of the second series of experiments was to evaluate scalability of CCand CCT with respect to the number of concurrently executed queries. In gen-eral, it is hard to compare performance of the considered methods for di�erentnumbers of queries in a batch because the more queries the more overlappingcon�gurations possible. Therefore, in order to assess the in�uence of the num-ber of queries on their performance we "benchmarked" the methods on sets ofidentical queries (the level of overlapping was always 100%).Figures 10 and 11 show how the execution time of a batch of queries increases



Integration of Candidate Hash Trees... 15
0

20

40

60

80

100

120

140

2 3 4 5

number of queries

ex
ec

ut
io

n 
tim

e 
[s

]

CC

CCT

SEQ

 

0

5

10

15

20

25

30

2 3 4 5

number of queries

ex
ec

ut
io

n 
tim

e 
[s

]

CC

CCT

SEQ

 Figure 10. Execution times for 2-5 identical queries with minfreq=1% (left) andminfreq=3% (right) on the GEN1 dataset
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 Figure 11. Execution times for 2-5 identical queries with minfreq=0.7% (left)and minfreq=2% (right) on the GEN2 datasetwith the number of queries forming it for GEN1 and GEN2 respectively. Theexecution time of CCT increases insigni�cantly with the increase of the numberof queries, whereas the execution time of CC on the large GEN2 dataset growsalmost as rapidly as in the case of sequential execution of the queries. Onthe small GEN1 dataset the gap between CCT and CC is smaller, especiallyfor the higher frequency threshold, similarly as observed in the �rst series ofexperiments.Figures 12 and 13 present average sums of sizes of hash trees built by CC andCCT for batches of 2 to 5 queries on GEN1 and GEN2 respectively. With theincrease of the number of queries the amount of main memory consumed by CCTgrows signi�cantly slower than in case of CC. The experiment clearly indicatesthat CCT is applicable for larger batches of queries than CC, even taking intoaccount the fact that the experiment favored CCT (since the queries forminga batch were identical, addition of another query resulted in the addition ofanother hash tree for CC, and only in the increase of the size of the vectorsassigned to candidates in case of CCT).
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 Figure 12. Average sums of hash tree sizes for 2-5 identical queries with min-freq=1% (left) and minfreq=3% (right) on the GEN1 dataset
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 Figure 13. Average sums of hash tree sizes for 2-5 identical queries with min-freq=0.7% (left) and minfreq=2% (right) on the GEN2 dataset7. ConclusionsIn the paper we proposed a new method of concurrent execution of the set offrequent itemset queries using the Apriori algorithm. The new method is calledCommon Candidate Tree because it utilizes a common hash tree structure forall the concurrently executed queries. The experiments show that in comparisonwith the previously proposed Common Counting method, Common CandidateTree is much more e�cient, scales better with respect to the number of queries,and consumes a smaller amount of main memory.Concurrently to the work reported in this paper, we developed a methodanalogous to Common Candidate Tree, designed for FP-growth, aiming at theintegration of FP-trees of the concurrently executed queries (Wojciechowski etal., 2007). In the future we plan to investigate further possibilities of computa-tion sharing between the concurrently processed queries, going beyond sharingdisk accesses and memory data structures.
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