
Data Access Paths for Frequent Itemsets Discovery

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

{marekw, mzakrz}@cs.put.poznan.pl

Abstract. Many frequent itemset discovery algorithms have been proposed in
the area of data mining research. The algorithms exhibit significant
computational complexity, resulting in long processing times. Their
performance is also dependent on source data characteristics. We argue that
users should not be responsible for choosing the most efficient algorithm to
solve a particular data mining problem. Instead, a data mining query optimizer
should follow the cost-based optimization rules to select the appropriate method
to solve the user's problem. The optimizer should consider alternative data
mining algorithms as well as alternative data access paths. In this paper, we use
the concept of materialized views to describe possible data access paths for
frequent itemset discovery.

1 Introduction

Data mining is a relatively new database research field, which focuses on algorithms
and methods for discovering interesting patterns in large databases [6]. An interesting
pattern is typically a description of strong correlation between attributes of a data
object. Many data mining methods developed in the area have proved to be useful in
decision support applications: association discovery, sequential pattern discovery,
classifier discovery, clustering, etc. One of the most popular data mining methods is
frequent itemset discovery, which aims at finding the most frequent subsets of
database itemsets. Unfortunately, frequent itemset discovery algorithms exhibit
significant computational complexity, resulting in long processing times. The compu-
tational cost of the algorithms is usually influenced by a need to perform multiple
passes over the source data and to perform a significant amount of in-memory
operations. Moreover, the algorithms' performance is also dependent on source data
characteristics - for example, some algorithms perform better for long patterns, some
algorithms benefit from uniform data distribution, etc.

Users perceive data mining as an interactive and iterative process of advanced
querying: users specify requests to discover a specific class of patterns, and a data
mining system returns the discovered patterns. A user interacting with a data mining
system has to specify several constraints on patterns to be discovered. However,
usually it is not trivial to find a set of constraints leading to the satisfying set of
patterns. Thus, users are very likely to execute a series of similar data mining queries
before they find what they need.

In the scope of our data mining research we follow the idea of integrating data
mining mechanisms into database management systems (DBMSs). We argue that
DBMS functionality should be extended to completely support data mining
applications. This integration involves the following aspects: (1) query language
extension to allow users to formulate their specific data mining problems, (2) logical
and physical structure extensions to permanently store discovered patterns, and (3)
query optimizer extension to generate alternative query execution plans and to choose
the best one. In this paper we show that a DBMS query optimizer can consider
various data access paths for alternative data mining algorithms. We present our
research in the context of frequent itemsets discovery.

1.1 Preliminaries

Let L be a set of items. An itemset I is a subset of L. A database D is a set of itemsets.
Consider two itemsets I1 and I2. We say that I1 supports I2 if I1⊆I2. A frequent itemset
X is an itemset which is supported by more than a given number of itemsets in D.
Given a user-defined support threshold minsup, the problem of association discovery
is to find all frequent itemsets in D.

1.2 Data Mining Query Processing

We assume the following model of user interaction with a DBMS extended with data
mining functions. A user defines his/her data mining problem in the form of a data
mining query (DMQ). The data mining query describes: (1) a data source, (2) a
support threshold, (3) filtering predicates to narrow source data set, and (4) filtering
predicates to narrow the set of discovered frequent itemsets. For example, a DMQ can
state that a user is interested in "processing last month's sale transactions from the
SALES table to find all frequent itemsets having support at least 2% and containing
more than three items". Using the SQL language extension we introduced in [9], the
presented example DMQ takes the form:

mine itemset from (select set(product) from sales
 where date between '1-06-01' and '30-06-01' group by trans_id)
where support(itemset)>=0.02 and length(itemset)>3

Next, the DMQ is sent to the DBMS. The DBMS has to compile the query into a
microprogram and then to execute the microprogram. We will show that a DMQ can
be compiled into many alternative microprograms and that a query optimizer is
needed to efficiently choose the best one.

2 Data Access Paths

A DMQ can be executed using different data access methods:
1. A traditional data mining algorithm can be used to discover interesting patterns
directly from the original database. We will refer to this method as to Full Table Scan.

2. A materialized view of the original database can be used by a data mining
algorithm instead of the original database itself. A materialized view can introduce
some form of data reduction (lossless or lossy), thus reducing I/O activity of a data
mining algorithm. We will refer to this method as to Materialized View Scan.
3. Existing data mining results can be used to execute a new DMQ. Data mining
results can be stored in a form of a data mining view, therefore we will refer to this
method as to Materialized Data Mining View Scan.

2.1 Full Table Scan

The Full Table Scan method involves regular data mining algorithms like Apriori to
discover all interesting patterns by counting their occurrences in the original database.
Due to the large size of the original database, the performance of the algorithms is
relatively bad. Moreover, many algorithms perform good only in certain conditions
related to: data values distribution, support threshold value, available memory, etc. In
a typical scenario, the user is responsible for selecting an appropriate (in terms of
performance) data mining algorithm.

2.2 Materialized View Scan

Weak performance of many of the regular data mining algorithms is caused by the
need to make multiple passes over the large original database. If we could reduce or
compress the original database, the passes would be less costly since they would use
less I/O operations. Databases already offer a data structure that can be efficiently
used to reduce the original database: materialized views (MV). MV is a database
view, having its contents permanently stored in a database. MVs are normally created
by users to support data-intensive operations. We propose to use MVs to support data
mining algorithms.

Since not every MV guarantees a correct data mining result (compared to a full
table scan performed on the original database), we define the following types of MVs
and their use for data mining.

Definition (Strong pattern preserving view). Given the original database D, the
minsup threshold and the view V, we say the V is a strong pattern preserving view if
for each pattern p having sup(p,D)>minsup, we have sup(p,V)=sup(p,D).

Definition (Weak pattern preserving view). Given the original database D, the
minsup threshold and the view V, we say the V is a strong pattern preserving view if
for each pattern p having sup(p,D)>minsup, we have sup(p,V)>=sup(p,D).

According to the above definitions, if we are given a MV which is strong pattern
preserving, we can use it as an alternative data source for a data mining algorithm. If
we are given a MV which is a weak pattern preserving, we can use it to discover
potentially frequent patterns, but then we have to use the original database to make
the final verification of their support values.

Example 1. Given is the database table ISETS and the materialized view
ISETS_MV2 created by means of the following SQL statement.

create materialized view isets_mv2 as
 select signature(set,10) from isets;

where the user-defined function signature() computes the following binary signature
for an itemset of integers:

N mod N mod xN mod
21 2 ...2 2)},,..,,({ 21 kxx

k ANDANDNxxxsignature =

where AND is a bit-wise and operator.

ISETS

sid set
--- --------------
 1 {5, 7, 11, 22}
 2 {4, 5, 6, 17}
 3 {7, 22}

ISETS_MV2

sid signature(set,10)
--- ---------------------
1 0110010100
2 0000111100
3 0010000100

For the materialized view ISETS_MV2, we can intuitively define the support measure
as the percentage of signatures that have their bits set to '1' on at least the same
positions as the signature for the counted itemset.

According to our definitions, the view ISETS_MV2 is a weak pattern preserving
view (notice that e.g. sup({5, 17}, V) = 2 while sup({5, 17}, D) = 1). It can be used
by a data mining algorithm to find a superset of the actual result, but the original table
ISETS must be also used to perform the final verification.

2.3 Materialized Data Mining View Scan

Since usually data mining users must execute series of similar queries before they get
satisfying results, it can be helpful to exploit materialized results of previous queries
when answering a new one. We use the term materialized data mining view to refer to
intentionally gathered and permanently stored results of a DMQ.

Since not every materialized data mining view guarantees a correct data mining
result (compared to a full table scan performed on the original database), we define,
according to [3], the following relations between data mining queries and materialized
data mining views:
1. A materialized data mining view MDMV1 includes a data mining query DMQ1, if

for all data sets, each frequent itemset in the result of DMQ2 is also contained in
MDMQ1 with the same support value. According to our previous definitions, in
this case MDMV1 is a strong pattern preserving view.

2. A materialized data mining view MDMV1 dominates a data mining query DMQ1,
if for all data sets, each frequent itemset in the result of DMQ1 is also contained in
MDMQ1, and for a frequent itemset returned by both DMQ1 and MDMV1, its
support value evaluated by MDMV1 is not less than in case of DMQ1. According
to our previous definitions, in this case MDMV1 is a weak pattern preserving view.

If for a given DMQ, results of a DMQ including or dominating it are available, the
DMQ can be answered without running a costly mining algorithm on the original
database. In case of inclusion, one scan of the materialized DMQ result is necessary

to filter out frequent itemsets that do not satisfy constraints of the included query. In
case of dominance, one verifying scan of the source data set is necessary to evaluate
the support values of materialized frequent itemsets (filtering out the frequent itemsets
that do not satisfy constraints of the dominated query is also required).

Example 2. Given the ISETS3 table, a user has issued a DMQ to analyze only the
rows 1,2,3,4 to discover all frequent patterns having their support values equal to at
least 30%. The results of the DMQ have been permanently stored in the database in
the form of the materialized data mining view ISETS_DMV2, created by means of
the following statement.

create materialized view isets_dmv2 as
 mine itemset from (select set from isets2 where sid in (1,2,3,4))
 where support(set)>=0.3

ISETS3

sid set
--- ------------
 1 5, 6, 7, 22
 2 5, 6, 17

3 7, 22
4 2, 5, 6
5 2, 6, 22
6 6, 22

ISETS_DMV2

itemset (support)

{5}(0.75)
{6}(0.75)
{7}(0.5)
{22}(0.5)
{5,6}(0.75)
{7,22}(0.5)

Using the above results we can answer a DMQ over the whole database table ISETS3.
Assume a user issued the following DMQ.

mine itemset from (select set from isets2 where sid in (1,2,3,4,5,6))
where support(set)>=0.3

Notice that the above DMQ is dominated by the union of the following two data
mining queries (every itemset which is frequent in the whole table must also be
frequent in at least one portion of it):

mine itemset from (select set from isets2 where sid in (1,2,3,4))
where support(set)>=0.3
union
mine itemset from (select set from isets2 where sid in (5,6))
where support(set)>=0.3

The above union represents a weak pattern preserving view. We can rewrite the first
part of the above union to use the materialized data mining view ISETS_DMV2. The
second part of the union can be evaluated using the full table scan method or the
materialized view scan method (because of lack of a suitable materialized data mining
view). However, since the result of the union is a superset of the actual result of the
user's query, we still need to perform additional support evaluation and final filtering.

We use a traditional data mining algorithm to discover frequent itemsets in the
remaining part of the original database:

sid set
--- ---------
5 2, 6, 22
6 6, 22

Frequent patterns minsup=0.30

{6}(1.00)
{22}(1.00)
{6,22}(1.00)

Next, we merge the two sets of frequent itemsets and count their actual support by
performing another scan over the database table ISETS3. The itemsets which do not
appear to be frequent are then removed from the result (not the case here).

ISETS3

sid set
--- ------------
 1 5, 6, 7, 22
 2 5, 6, 17
 3 7, 22
 4 2, 5, 6
 5 2, 6, 22
 6 6, 22

Frequent patterns minsup=0.30

{5}(0.5)
{6}(0.83)
{7}(0.33)
{22}(0.67)
{5,6}(0.5)
{6,22}(0.5)
{7,22}(0.33)

4 Conclusions

We have showed that a frequent itemsets discovery algorithm can use one of three
methods for data access. An existing materialized view or a materialized data mining
view can be employed by the algorithm to reduce its I/O complexity. We have defined
rules for chosing views which are applicable to a given DMQ. The data access
methods were presented in the context of frequent itemsets discovery, however, they
can be easily mapped to other areas of data mining, e.g. sequential pattern discovery
or association rules discovery.

The choice of the most efficient method should be done by the data mining query
optimizer, using a model of a data mining method as well as a statistical model of the
database table. The statistical model of the database (or a part of it) can be gathered
using a preliminary step of sampling. Thus, transparently to the user, every data
mining query execution can use its fastest implementation.

References

1. Agrawal, R., Imielinski, T. , Swami, A.: Mining Association Rules Between Sets of Items
in Large Databases. Proc. of 1993 ACM-SIGMOD Int. Conf. Management of Data (1993)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. Proc. 1994 Int.
Conf. Very Large Databases (1994)

3. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proc. of the 1st DaWaK
Conference (1999)

4. Elmasri R., Navathe S.B.: Fundamentals of Database Systems, Second Edition (1994)
5. Houtsma, M., Swami, A.: Set-oriented Mining for Association Rules in Relational

Databases. Proc. of 1995 Int. Conf. Data Engineering (1995)
6. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.

Communications of the ACM, Vol. 39, No. 11 (1996)
7. Mannila, H., Toivonen, H., Verkami, A.I.: Efficient Algorithms for Discovering

Association Rules. Proc. AAAI'94 Workshop on KDD (1994)
8. Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views. Proc. of

the 4th PKDD Conference (2000)
9. Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97 Symposium

