HASH-MINE: A New Framework for Discovery of
Frequent Itemsets

Marek Wojciechowski, Madej Zakrzewicz

Poznan University of Techndogy
Ingtitute of Computing Science
ul. Piotrowo 3a, 60-965Poznan, Poland
Mar ek. Wj ci echowski @s. put . poznan. pl
Maci ej . Zakr zewi cz@s. put . poznan. pl

Abstract. Discovery of frequently occurring subsets of items, cdled itemsets, is
the core of many data mining methods. Most of the previous gudies adopt
Apriori-like dgorithms, which iteratively generate candidate itemsets and chedk
their occurrence frequencies in the database. These gproaches wuffer from
serious costs of repeaed passes over the analyzed database. To address this
problem, we propose a novel method cdled HASH-MINE, for reducing
database adivity of frequent itemset discovery agorithms. The idea of
HASH_MINE consists in using hash tables for pruning candidate itemsets. The
proposed method requires fewer scans over the source database: the first scan
credes hash tables, while the subsequent ones verify discovered itemsets. Its
performanceimprovements have been shown in a series of our experiments.

1 Introduction

Discovery of frequent itemsets is the are of many data mining methods. It has been
well studied in the mntext of aswociation rules introduced in [1]. The problem of
mining asociation rulesis usualy decomposed into two phases: discovery of frequent
itemsets and generation of rules from the discovered frequent itemsets. Since the
seoond step is graightforward, reseachers deding with association rules usualy
concentrate on efficient algorithms for discovery of frequent itemsets. It has to be
noted that frequent itemsets have more gplicaions than only for discovery of
asciation rules. It has been shown that they can be used in discovery of sequential
patterns [4] or clustering[7].

Most of the previous gudies on frequent itemsets adopt Apriori-like dgorithms,
which iteratively generate candidate itemsets and chedk their occurrence frequencies
in the database. It has been shown that Apriori in its original form [3] suffers from
serious costs of repeaed passes over the analyzed database and from the number of
candidates that have to be dedked, espedally when the frequent itemsets to be
discovered are long.

In this paper, we propose anovel method, called Hash-Mine, for reducing database
adivity of frequent itemset discovery algorithms. Hash-Mine generates hash tables
derived from the origina database and uses them for pruning candidate itemsets in

some of the iterations. The proposed method requires snaller number of scans over
the source database than Apriori. Experiments sow that our method leals to a
significant performance improvement over the dassc Apriori algorithm. The minimal
number of database scans in our approad is two: the first scan creaes hash tables,
while the second one performs final pruning, however, the best results can be
obtained, if we use hash-based pruning starting from the third iteration of the
algorithm.

1.1 Background

Frequent itemsets. Let L={l,, I, ..., I} be aset of literads, cdled items. Let a non-
empty set of items T be cdled an itemset. Let D be aset of variable length itemsets,
where eab itemset TOL. We say that an itemset T supports an item xOL if xisin T.
We say that an itemset T supports an itemset XOL if T supparts every item in the set
X. Eadh itemset has an assciated measure of its datisticd significance cdled
support. The suppat of theitemset Tintheset D is:

support(X,D) = ‘{T OoT sDupportQ(H

In other words, the itemset X holds in the set D with suppart sif sis the fradion of
itemsets in D supparting X. A frequent itemset is an itemset, whose suppart is above a
user-defined threshold.

Example. For the database D = {{A,B,C,D}, {A,C,D}, {E,F,G}, {A,C,D,H}}, and the
suppart threshold value of 0.5 we have the foll owing frequent itemsets: {A}, {C}, {D},
{AC}, {AD}, {C,D}, and {A,C,D}.

Introduction to Apriori. The dgorithm cdled Apriori iteratively finds all possble
itemsets that have suppat greaer or equal to a given minimum suppat vaue
(minsup). The first pass of the dgorithm counts item occurrences to determine the
frequent 1-itemsets (ead 1-itemset contains exadly one item). In ead of the next
passs, the frequent itemsets Ly-1 found in the (k-1)th passare used to generate the
candidate itemsets Cy, using apriori-gen function described below. Then, the database
is anned and the suppart of candidates in Cy is counted. The output of the first phase
of the Apriori algorithm consists of a set of k-itemsets (k=1, 2, ..), that have suppart
greder or equal to a given minimum suppat value. Figure 1 presents a formal
description of the dgorithm. We asaume that items in eat database itemset are kept
sorted in their lexicographic order.

scan Dto find Ly
for (k = 2; L1 # 0; k++) do begin
G = apriori_gen (Lk1);
forall transactions t O D do begin
C = subset (G, t);
forall candidates ¢ O G do
c.count ++;
end
Lk ={ ¢ O G | c.count = minsup};
end
Answer = O Ly

Fig. 1. Apriori agorithm

In the dgorithm Apriori, candidate itemsets Cy are generated from previously found
frequent itemsets L4, using the apriori-gen function. The apriori-gen function works
in two steps. 1. join step and 2 prune step. Firgt, in the join step, large itemsets from
L1 are joined with other large itemsets from L, in the foll owing SQL -li ke manner:

insert into G
select p.item, p.item, ..., p.item., Qg.item.
fromLe: p, L1 Q
where p.item g.item
and p.item g.item

and p.item., = g.item.;
and p.item.; < g.item.q;

Next, in the prune step, ead itemset c[JC, such that some (k-1)-subset of c is not in
Ly.1 isdeleted:

forall itensets cOG do
forall (k-1)-subsets s of c do

if (s O Lk1) then delete ¢ from G

The set of candidate k-itemsets Cy is then returned as a result of the function apriori-
gen.

A serious problem of pradica applications of Apriori isitslong processngtime. The
repeaed database scanningisits most important drawback.

1.2 Related Work

Many variants of Apriori have been proposed recently to reduce the number of
required database scans or the number of candidates to verify. In [9] an agorithm
cdled Partition that needs only two scans over the database was proposed. Partition
divides the database into parts that can be kept in main memory, discovers itemsetsin
those parts and verifies the results in the final database pass The DIC algorithm [6]
begins cheding an itemset shortly after al its subsets have been determined frequent,

thus potentialy reducing the overall number of iterations. The dgorithm DHP [8]
enhances Apriori with a hashing scheme that is used in ead iteration to prune some
candidates before the database pass (the overall number of database scans is the same
as in the cae of Apriori). In [5] an agorithm cdled Max-Miner, significantly
different from the previous ones was introduced to reduce the number of processed
candidates when patterns (itemsets) to be found are long (the number of candidates
chedked by Apriori grows exponentiall y with the size of the longest pattern).

2 HASH-MINE Algorithm

Apriori-like dgorithms use full database scans for pruning candidate itemsets, which
are below the suppart threshold. Hash-Mine prunes candidates by using dynamicdly
generated hash tables, thus reducing the number of database blocks read.

A hash table used by Hash-Mine is a set of hash signatures generated for eadh
database itemset. The hash signature of aset X isan N-bit binary number creaed, by
means of bit-wise OR operation, from the hash keys of al data items contained in X.
The hash key of theitem xOX is an N-bit binary number defined as foll ows:

hash_key(X) = 2(xmdn

For example, for the database D = {{0,7,12,13},{2,4},{10,15,17}} and N=5, we
generate the foll owing hash table H={01101,10100,00001}.

The hash signatures have the following property. For any two sets X and Y, we
have XY if:

hash_si gnature(X) AND hash_si gnature(Y) = hash_si gnature(X)

where AND is a bit-wise AND operator. This property is not reversible in general
(when we find that the @dove formula evaluates to TRUE we still have to verify the
result traditionally).

In order to plan the length N of a hash signature for a given average set size
consider the following analysis. Asauming unform distribution of items, the
probability that representation of the set X sets k bits to '1' in an N-bit hash signature

q-1
NS ,wheref,,; =0, f, =q" - Z %]H'im

Example probabili stic expeded value of number of bits st to '1' for a 16-bit hash
signatures and various st sizesisill ustrated in Figure 2. We can observe that e.g. for
a set of 10 items, N should be greaer than 8 (otherwise we have dl bits st to 1 and
the signature is unusable sinceit is aways matched).

1 5 9 13 17 21 25
set size

Fig. 2. Number of bitmap signature bits st to '1' for various %t sizes (N=16)

The probability that a bitmap signature of the length N having k 1's matches another
bitmap signature of the length N havingm 1'sis:

et

It means that the smaller k, the better pruning is performed during matching bitmap
signatures of item sets, in order to ched their containment (so we have to verify less
item sets).

The Hash-Mine agorithm for frequent itemset discovery is presented in Figure 3.
A user gives a minimum suppat value (minsup), and an array (use_hash), which
spedfies, in what iterations to use ahash-based candidate pruning — use_hash[i]=1
meansto use ahash tablein theiteration i, instead of a database scan.

scan D to generate hash signatures S and to find Ly;
for (k = 2; Lk.1# 0; k++) do begin
G = apriori_gen (Lk1);
i f use_hash[k] =1 then begin
forall signatures t O S do
forall candidates ¢ O G do
if ¢ AND t=c then c.count ++;
end;
el se begin
forall transactions t O D do begin
G = subset (G, t);
forall candidates ¢ 0O G do c.count ++;
end,
end,
Ly ={ c O G | c.count = minsup};
end,
Answer = O, Ly
scan D to verify Answer;

Fig. 3. Hash-Mine Algorithm

3 Experimental Results

We performed several experiments on synthetic data to evaluate the performance and
scdability of the Hash-Mine algorithm and the dficiency of hash-based candidate
pruning. The data sets were generated by means of the GEN generator from the Quest
projed [2]. The average item set size was 25 items out of 50. The experiments were
conducted in a dient-server architedure. The database was implemented in Oracle 8i
DBMS runring on a PC with Pentium Il 300 MHz processor and 128 MB of main
memory. The dient was a PC with the same hardware @nfiguration, communicating
with the server via Ethernet locd areanetwork.

Figure 4 shows exeaution times of two instances of the Hash-Mine algorithm:
using three ad four database passes (counting the final verificaion path). The
exeadtion times of Hash-Mine are cwmpared to Apriori, which for our test data set
nealed 7 database scans. The experiments $ow that our method is c.a. 2 times faster
than Apriori and scdes linealy with the size of the database (same a Apriori).

In Figure 5 numbers of candidates that were not pruned out in subsequent iterations
are shown for Apriori and Hash-Mine switching to hash-based pruning in the fourth
iteration. The database used in the test consisted of 1000 itemsets and the required
minimum suppart was 20%. Since hash-based pruning leares me itemsets that are
not frequent, Hash-Mine may require more iterations than Apriori (as $own in our
example). Despite this, Hash-Mine still outperforms Apriori because alditional
iterations are performed in main memory.

We dso experimented with the version of Hash-Mine using only two database
scans. the initial one and the verificaion one, but in that case the number of
candidates that had to be analyzed due to inacarate pruning was too large and led to
longer exeaution times than in case of Apriori.

1200 -
——f— Apriori (7 scans)

1000 —3¢—Hash-Mine (3 scans)
—{J—Hash-Mine (4 scans)

800 -

600 -

execution time [s]

400 -

200 4

1000 2000 3000 4000 5000 6000

database size (#itemsets)

Fig. 4. Exeaution times comparison

M Hash-Mine (start at 4)

250 DApriori

180

100

number of frequent itemsets

iteration

Fig. 5. Numbers of candidates not pruned out

4 Conclusions

In this paper we have shown that dynamicdly creaed hash tables can replace ostly
database scans. Hash tables are extremely small, as compared to the source database,
therefore they fit into memory even for very large databases. The Hash-Mine method
can be used to improve performance of Apriori-like data mining agorithms,
espedally when a number of their iterations is large. Our experimental results $ow
50% performanceincrease over the traditional algorithms.

References

1. Agrawa R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. 1993 ACM SIGMOD International Conference on Management of
Data, pp. 207-216, Washington DC, USA (1993

2. Agrawa R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd Int'l Conference on Knowledge Discovery in Databases
and Data Mining, Portland, Oregon (1996

3. Agrawd R., Srikant R.: Fast Algorithms for Mining Assciation Rules. Proc. 20th Int'l
Conf. Very Large Data Bases, pp. 478-499, Santiago, Chile (1994

4. Agrawa R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int'l Conference on
Data Engineeaing (1995

5. Bayardo R. J.: Efficiently Mining Long Patterns from Databases. Proc. of the 1998 ACM
SIGMOD International Conference on Management of Data (1998

6. Brin S., Motwani R., Ullman J., Tsur S.: Dynamic Itemset Courting and Implicaion Rules
for Market Basket Data. Proc. of the 1997 ACM SIGMOD International Conference on
Management of Data (1997

7. Han E., Karypis G., Kumar V., Mobasher B.: Hypergraph Based Clustering in High-
Dimensional Data Sets: A summary of Results. Bulletin of the IEEE Computer Society
Technicd Committeeon Data Engineaing, Vol.21 No. 1 (1998

8. Pak JS., Chen M.-S,, Yu P. S:. An Effedive Hash-Based Algorithm for Mining
Assciation Rules. Proc. 1995ACM SIGMOD International Conference on Management of
Data, San Jose, CA, USA (1995

9. Savasere A., Omiednski E., Navathe S.: An Efficient Algorithm for Mining Assciation
Rules in Large Databases. Proc. 21th Int'l Conf. Very Large Data Bases, pp. 432-444,
Zurich, Switzerland (1995

