{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# dzięki temu będziemy mogli rysować wykresy \"inline\", tzn. bezpośrednio w notebooku.\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAADCCAYAAAAB3f2/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUNElEQVR4nO3de3BT55nH8e/juw3GxsYYW8YYc79jh0C4hzQXcg8kbZM0SZMGSHfane3u9JbNTGZ2Mju73e7sdGd2OwnQpJMmTdIWO6QpJUvTBHMJCSCb+yUgG7BsjLHBxvguvfuHlKzDGjCy7HOO9HxmPJaODkfPi/zT0ZFenUeMMSilbkyM1QUo5UQaHKVCoMFRKgQaHKVCoMFRKgQaHKVCEGfVHY8YMcIUFBRYdfdKXdPevXvPG2Oyrna7ZcEpKChgz549Vt29UtckIqeudbu+VFMqBBocpUKgwVEqBBocpUJg2ZsDSlnhTGMrpeVekuJjWLNkXMjb0eCoiNfU1sWmA7WUur18VtUIwH0zc/q1TQ2OikhdPj9lx+spcXvZcqSOzm4/47KG8KO7JvFQkQtXenK/tq/BURHDGMMBbxMlbi9/3FdDw+VOMoYk8PjcfFYWu5jhSkNEwnJfGhzleDUX2ygt91Ja7uXEuRYS4mK4Y0o2K4pcLJ2URXxs+N8D0+AoR2rp6ObPB2opLffyiacBY+DmguH8y8oZ3DMjh7Tk+AG9fw2Ocoxun58dJxsocVfzwaGztHf5KchM4Qdfm8iKIhf5mSmDVosGR9ne4ZpmSsurebeihvpLHaQlx/NwcR4ri/Mozk8P23HLjdDgKFuqa25nY4WXEreXo2cvER8rLJs0kpXFLpZNHkliXKyl9WlwlG20dnbzP4fq2OCuZseJ8/gNzB6dzksPTuO+mbkMH5JgdYlf0uAoS/n9hl2eBja4vWw+WMvlTh95w5P53rLxrChyUZg11OoSe6XBUZb4vO4SG9xeNlZ4qW1qJzUxjvtn5bKiyMXNBRnExAz+ccuN0OCoQXO+pYP3KmooKa/moLeZ2Bhh6cQsXrh3CrdPySYp3trjlhuhwVEDqr3Lx1+O1FHi9rL1eD0+v2G6axgv3jeV+2flkpWaaHWJIdHgqLDz+w27qxopLffyp/21XOroJictidWLC1lZ7GJidqrVJfabBkeFjae+5cupL9UX2khJiOXu6TmsLHZxS2EmsTY/brkRfQqOiCwH/hOIBdYbY/71itvTgDeA/OA2/90Y81qYa1U2dOFyJ+/vr2GD20vFmYvECCwcP4If3jmJO6dlk5IQmc/N1x2ViMQC/w3cAVQDu0XkPWPM4R6rfQ84bIy5X0SygGMi8qYxpnNAqlaW6uj28dHRekrc1Xx07BxdPsPkUan84z2TeXC2i+xhSVaXOOD68nQwFzhhjPEAiMjbwINAz+AYIFUCcx+GAo1Ad5hrVRYyxuA+fZHS8mr+uK+WprYuslITeXpBASuK8piaO8zqEgdVX4LjAs70uF4NzLtinf8C3gNqgFTgm8YYf1gqVLawflsl/7zpCEnxMdw1bRQrilwsGj+CuAGYsu8EfQlOb0d0V3ajuguoAG4DxgFbRGSbMab5KxsSWQOsAcjPz7/xapUl2rt8vLz1JAvHZ/LyEzeRmjSwU/adoC9PF9XA6B7X8wjsWXp6BigxASeASmDylRsyxqw1xswxxszJyrrq2UWVzWxwV9NwuZPvL5ugoQnqS3B2AxNEZKyIJACPEnhZ1tNp4GsAIpINTAI84SxUWcPnN6zfVsnMvDRuKcywuhzbuG5wjDHdwPeBD4AjwO+MMYdE5Lsi8t3gai8BC0TkAPAh8BNjzPmBKloNnr8cqaPy/GVWLy605HsvdtWnN9mNMZuATVcse7nH5RrgzvCWpuxgbZmHvOHJ3D19lNWl2Ep0viWi+mTvqUb2nrrAqkVjo/bds6vR/w11Va9s9ZCWHM83bh59/ZWjjAZH9cpT38KWI3U8ecuYiJ020x8aHNWr9dsriY+N4dsLCqwuxZY0OOr/Od/SwR/2VvNwscux35cZaBoc9f+8vrOKLp+fVYsLrS7FtjQ46itaO7t5fdcpbp+SzTibnijDDjQ46it+v6eai61drFmie5tr0eCoL/n8hvXbPRTlpzNnzHCry7E1DY760uaDZznT2MZzS3R6zfVocBQQ+KLa2rKTFGSmcMdUnV5zPRocBcCnlY3sq25i1eLCiDqpxkDR4CgA1pV5yBiSwCM35VldiiNocBSf113iw6PneGr+GEedTdNKGhzFum0ekuJjeGp+gdWlOIYGJ8qda27n3fIavn7TaDJs1EbD7jQ4Ue61nVV0+f2sWjzW6lIcRYMTxVo6unlz1ymWTxvFmMwhVpfjKBqcKPbO7jM0t3fr9JoQaHCiVJfPz6vbK5lbkEFRvk6vuVEanCi16UAt3otturcJkQYnChljeGWrh3FZQ7ht8kiry3EkDU4U2nmygcO1zaxeXGj7Xpt2pcGJQq+UeRgxNJGHilxWl+JYGpwoc6S2mbLj9TyzsECn1/SDBifKrCvzkJIQy7fmabeI/tDgRJGai228t6+Gb8wZTXqKTq/pDw1OFPn1zioM8OwinV7TX30KjogsF5FjInJCRH56lXVuFZEKETkkIlvDW6bqr+b2Ln776WnumZHD6IwUq8txvLA0zxWRdOCXwHJjzGkR0Q8HbOatT0/T0tHNc/qBZ1j0ZY/zZfPcYBfpL5rn9vQ4gY5spwGMMefCW6bqj85uP6/tqGLBuEymu9KsLici9CU4vTXPvfIDgInAcBH5WET2ishT4SpQ9d97+2o429zOat3bhE24mufGATcRaGeYDHwiIruMMce/siFtnjvojDGsK/MwKTuVWydq39VwCVfz3GpgszHmcrCFYRkw68oNafPcwbf1eD3H6i6xWs+VFlbhap67EVgsInEikgLMI9AvVFlsbZmHUcOSeGBWrtWlRJTrvlQzxnSLyBfNc2OBV79onhu8/WVjzBER2QzsB/zAemPMwYEsXF3fQW8TO0828Pzdk0mI04/swikszXOD138O/Dx8pan+eqXMw9DEOB7T6TVhp09DEepMYyubDtTy2NzRDEuKt7qciKPBiVCv7qhEgGcW6vSagaDBiUBNrV28s/sMD8zKJTc92epyIpIGJwK98ekpWjt9+oHnANLgRJiObh+v7ahi8YQRTMkZZnU5EUuDE2HeLfdyvqWD55aMs7qUiKbBiSB+v2FtmYepOcNYOD7T6nIimgYngvz16DlO1l/muaU6vWagaXAiyNoyD670ZO6ZkWN1KRFPgxMhyk9f4LOqRp5ZWEB8rD6sA03/hyPEum0eUpPieHSuTq8ZDBqcCHCq4TKbD57liVvGMDSxT9MPVT9pcCLA+m2VxMXE8MyCAqtLiRoaHIdrvNzJ7/ee4aGiXEYOS7K6nKihwXG433xyivYuP6sX6/SawaTBcbD2Lh+vf1LFbZNHMiE71epyoooGx8H+sLeahsud2hzKAhoch/L5Deu3eZiVl8a8sRlWlxN1NDgOteXwWaoaWvXsNRbR4DjU2jIPozOSWT5tlNWlRCUNjgPtqWrEffoiqxYVEqfTayyh/+sO9EqZh/SUeL4+J8/qUqKWBsdhTta38JcjdTx1yxhSEnR6jVU0OA6zfpuH+NgYnpxfYHUpUU2D4yD1lzrY4PbycHEeWamJVpcT1TQ4DvL6J1V0+fysXqznSrOaBschWju7+c2uU9wxJZvCrKFWlxP1NDgO8bvdZ7jY2sVzS3V6jR2ErXlucL2bRcQnIo+Er0TV7fPzqx2VFOenc9MYnV5jB9cNTo/muXcDU4HHRGTqVdb7GYF2ICqMNh86y5nGNtboudJsI1zNcwH+FtgAaOPcMDImcK60sSOGcMfUbKvLUUFhaZ4rIi5gBfCVnjmq/3Z5Gtlf3cSqxWOJjdHJnHbRl+D0pXnuL4CfGGN819yQyBoR2SMie+rr6/taY1RbW3aSzCEJPFys02vsJFzNc+cAb4tIFfAI8EsReejKDWnz3BtzvO4SHx2r56n5BSTFx1pdjuqhL5OdvmyeC3gJNM99vOcKxpgvP5ETkV8D7xtj3g1jnVFpXZmHpPgYnpw/xupS1BXC0jx3gGuMSnXN7bxb4eWxuflkDEmwuhx1hbA1z+2x/On+l6Ve21GFz29YtUg/8LQjnTlgQy0d3bz56Snunp5DfmaK1eWoXmhwbOjtz05zqb1bWxHamAbHZrp8fl7dXsncsRnMHp1udTnqKjQ4NvOn/bXUNLXznO5tbE2DYyPGGF4p8zB+5FCWTRppdTnqGjQ4NrL9xHmO1DazevFYYnR6ja1pcGxkbZmHrNREHipyXX9lZSkNjk0crmlm2+fneXpBAYlxOr3G7jQ4NrFum4eUhFiemKfTa5xAg2MDNRfb+OO+Gh69OZ+0lHiry1F9oMGxgVe3V2KA7ywqsLoU1UcaHIs1tXXx1menuXdGDnnDdXqNU2hwLPbWZ6e53OnT5lAOo8GxUGe3n9d2VLJwfCbTXWlWl6NugAbHQhsrvNQ1d+jZaxxIg2MRYwzrtnmYPCqVJRNGWF2OukEaHIt8fLye43UtrF6srQidSINjkbVbPYwalsT9s3KtLkWFQINjgQPVTXziaeA7iwpIiNOHwIn0UbPAK2UnSU2M47G5+VaXokKkwRlkZxpb2XSglsfm5ZOapNNrnEqDM8h+tb2SGBGeWVhgdSmqHzQ4g+hiayfv7D7DA7NzyUlLtroc1Q8anEH0xq5TtHXp9JpIoMEZJO1dPn698xRLJ2YxedQwq8tR/aTBGSTvlns539Khe5sIocEZBH6/Ye02D9Nyh7FgXKbV5agw0OAMgg+PnsNTf5k1S3R6TaQIS/NcEfmWiOwP/uwUkVnhL9W51padxJWezL0zcqwuRYVJuJrnVgJLjTEzgZeAteEu1Kncpy+wu+oCzy4aS1ys7uAjRVia5xpjdhpjLgSv7iLQtU0RaA41LCmOb948+vorK8foS3+c3prnzrvG+s8Cf+5PUU5njOGAt4kSt5fNh87yN0vHMSSxT62IlEP05dHsS/PcwIoiywgEZ9FVbl8DrAHIz4+8CY7ei228W+6lxF3NyfrLJMTFcN/MXJ7Tb3hGnL4Epy/NcxGRmcB64G5jTENvGzLGrCV4/DNnzpxew+c0LR3d/PlALSVuL7sqGzAG5hZksGpxIffMyCEtWSdyRqKwNM8VkXygBHjSGHM87FXaTLfPz/YT5ykt9/LBobO0d/kpyEzh72+fyIoiF6Mz9DRPkS5czXNfBDIJtGkH6DbGzBm4sq1xuKaZEnc1G/fVUH+pg7TkeB65KY8VRXkU56frZzRRRIyx5hXTnDlzzJ49eyy57xtR19zOxgovJW4vR89eIj5WWDZpJCuL81g2OUtPkB6hRGTvtZ789a2eXrR2dvPBobOUuL3sOHEev4Gi/HReenAa983MZbi2T496Gpwgn9+wy9PABnc1mw+epbXTR97wZL6/bDwPFbkozBpqdYnKRqI+OMfrLlHi9rKxwkttUzupiXE8MCuXlcV5zBkzXDujqV5FZXDOt3TwXkUNJeXVHPQ2Exsj3DoxixfuncLtU7JJitfjFnVtUROc9i4fWw7XUVruZevxenx+wwxXGi/eN5UHZucyYmii1SUqB4no4Pj9ht1VjZS4vWw6UMuljm5y0pJYs6SQlUUuJmSnWl2icqiIDI6nvoXS8sBbyN6LbQxJiGX59BweLnYxrzCTWD1uUf0UMcG5cLmT9/fXsMHtpeLMRWIEFk3I4kd3TeLOadmkJETMUJUNOPqvqaPbx0dHz1Hi9vLRsXN0+QyTR6Xywj1TeHB2LiOHJVldoopQjguOMQb36YuUuKt5f38tTW1dZKUm8vSCAlYU5TE1V88gowaeY4JzuqGV0nIvpeXVVDW0khQfw/Jpo1hRnMfCcZn67Uo1qGwdnKa2Lv60v5bS8mp2V11ABOYXZvK9ZeO5e0YOQ/XLYcoitvvL6/b5+fhYPaXlXrYcqaOz28/4kUP58fJJPDTbRW66njpWWc92wfEZww//sI9YER6fm8/DxXlMdw3TKfvKVmwXnMS4WN5ZM5/CrCHE63GLsinbBQdg0ij9RF/Zmz6lKxUCDY5SIdDgKBUCDY5SIdDgKBUCy85yIyL1wKlrrDICOD9I5Qy0SBlLpIwDrj+WMcaYrKvdaFlwrkdE9kTKudkiZSyRMg7o/1j0pZpSIdDgKBUCOwcnkppTRcpYImUc0M+x2PYYRyk7s/MeRynbsiQ4IvKqiJwTkYM9lmWIyBYR+Tz4e3iP254PNu49JiJ3WVHz1YjIaBH5SESOiMghEfm74HJHjUdEkkTkMxHZFxzHPwWXO2ocPYlIrIiUi8j7wevhG4sxZtB/gCVAMXCwx7J/A34avPxT4GfBy1OBfUAiMBY4CcRaUfdVxpIDFAcvpwLHgzU7ajwEOu8NDV6OBz4FbnHaOK4Y0z8AvwXeD/ffmJWDKrgiOMeAnB5/jMeCl58Hnu+x3gfAfKsflGuMayNwh5PHA6QAbgK9Xh05DgKdAz8EbusRnLCNxU7HONnGmFqA4O+RweW9Ne91DXJtfSIiBUARgWdrx40n+NKmAjgHbDHGOHIcQb8Afgz4eywL21jsFJyr6XPzXiuJyFBgA/ADY0zztVbtZZktxmOM8RljZhN4tp4rItOvsbptxyEi9wHnjDF7+/pPell2zbHYKTh1IpIDEPx9Lri8T817rSQi8QRC86YxpiS42LHjMcZcBD4GluPMcSwEHhCRKuBt4DYReYMwjsVOwXkP+Hbw8rcJHCt8sfxREUkMNvCdAHxmQX29ksBZRH4FHDHG/EePmxw1HhHJEpH04OVk4HbgKA4bB4Ax5nljTJ4xpoBAs+e/GmOeIJxjsejA7S2gFugikPZnCTTf/RD4PPg7o8f6LxB4p+MYgXbwlh989qhtEYHd+n6gIvhzj9PGA8wEyoPjOAi8GFzuqHH0Mq5b+b83B8I2Fp05oFQI7PRSTSnH0OAoFQINjlIh0OAoFQINjlIh0OAoFQINjlIh0OAoFYL/BQUocLeddUG4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(3,3))\n", "\n", "plt.plot([100,200,300,400],[0.1,0.2,0.8,0.9])\n", "plt.show()\n", "plt.savefig('myplot.pdf')\n", "plt.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }