
Monte Carlo Tree Search (MCTS)

Wojciech Jaśkowski, Marcin Szubert

Zakład Inteligentnych Systemów Wspomagania Decyzji
Instytut Informatyki

Politechnika Poznańska

21 października 2014

Monte Carlo Tree Search (MCTS)

Wojciech Jaśkowski, Marcin Szubert

Zakład Inteligentnych Systemów Wspomagania Decyzji
Instytut Informatyki

Politechnika Poznańska

21 października 2014

1. Dzień dobry Państwu
2. Chciałbym opowiedzieć o metodach MCTS, które zyskaly ostatnio duza popularnosc

szczegolnie w swiecie zwiazanym ze sztuczna inteligencja w grach.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 2 / 46 W. Jaśkowski, M. Szubert

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

1. Plan mojej prezentacji jest nastepujacy
2. W pierwszej kolejnosci powiem o ogolnej klasie problemow dla ktorych mozna stosowac

metody MCTS
3. Sa to problemy zwiazane z sekwencyjnym podejmowaniem decyzji
4. Powiem o tym jakie sa typowe podejscia do rozwiazywania takich problemow i jak na ich tle

prezentuja sie metody MCTS
5. Nastepnie przejde do specyficznego przypadku problemow SPD jakim sa gry, w szczegolnosci

gry kombinatoryczne
6. W szczegolnosci powiem o grze Go, ktora stanowi wyzwanie dla metod sztucznej inteligencji

i przyczynila sie do
7. Przechodząc do meritum
8. W dalszej kolejnosci przedstawie typowe podejscia polegajace na przeszukiwaniu drzewa gry

z ktorych rozwinela sie metoda MCTS

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 3 / 46 W. Jaśkowski, M. Szubert

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Sequential Decision Making

Environment

action a

Agent

state s reward r

The agent and the environment interact at discrete time steps:

st st+1at

rt+1 st+2at+1

rt+2

Goal: select actions that maximize the sum of future rewards, when the
consequences of those actions may not be revealed for many steps.

Monte Carlo Tree Search (MCTS) 4 / 46 W. Jaśkowski, M. Szubert

Sequential Decision Making

Environment

action a

Agent

state s reward r

The agent and the environment interact at discrete time steps:

st st+1at

rt+1 st+2at+1

rt+2

Goal: select actions that maximize the sum of future rewards, when the
consequences of those actions may not be revealed for many steps.

1. W takich problemach autonomiczny i inteligentny agent zostaje umieszczony w nieznanym
środowisku i uczy się podejmowania następujących po sobie decyzji

2. Uczenie w oparciu o interakcje zachodzące w dyskretnych jednostkach czasu
3. Rysunek przedstawia typowy scenariusz takich interakcji
4. W pierwszym kroku agent obserwuje bieżący stan środowiska
5. Na podstawie dotychczas wypracowanej strategii i bieżącego stanu środowiska, agent

wykonuje akcje.
6. W wyniku akcji środowisko zmienia swój stan, a agent może otrzymać od środowiska

nagrodę pełniącą rolę wzmocnienia (potencjalnie negatywne)
7. Wśród przykładów sekwencyjnych problemów decyzyjnych można wyróżnić m.in. kierowanie

samochodem, szeregowanie zadań czy też grę w szachy.
8. 1.5 min =¿ 10.5 min

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Sequential Decision Making

Environment

action a

Agent

state s reward r

Example 1: Playing Chess

agent player
environment game, opponent

state state of the board
action game move

rewards outcomes

The agent and the environment interact at discrete time steps:

st st+1at

rt+1 st+2at+1

rt+2

Goal: select actions that maximize the sum of future rewards, when the
consequences of those actions may not be revealed for many steps.

Monte Carlo Tree Search (MCTS) 4 / 46 W. Jaśkowski, M. Szubert

Sequential Decision Making

Environment

action a

Agent

state s reward r

Example 1: Playing Chess

agent player
environment game, opponent

state state of the board
action game move

rewards outcomes

The agent and the environment interact at discrete time steps:

st st+1at

rt+1 st+2at+1

rt+2

Goal: select actions that maximize the sum of future rewards, when the
consequences of those actions may not be revealed for many steps.

1. W takich problemach autonomiczny i inteligentny agent zostaje umieszczony w nieznanym
środowisku i uczy się podejmowania następujących po sobie decyzji

2. Uczenie w oparciu o interakcje zachodzące w dyskretnych jednostkach czasu
3. Rysunek przedstawia typowy scenariusz takich interakcji
4. W pierwszym kroku agent obserwuje bieżący stan środowiska
5. Na podstawie dotychczas wypracowanej strategii i bieżącego stanu środowiska, agent

wykonuje akcje.
6. W wyniku akcji środowisko zmienia swój stan, a agent może otrzymać od środowiska

nagrodę pełniącą rolę wzmocnienia (potencjalnie negatywne)
7. Wśród przykładów sekwencyjnych problemów decyzyjnych można wyróżnić m.in. kierowanie

samochodem, szeregowanie zadań czy też grę w szachy.
8. 1.5 min =¿ 10.5 min

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Sequential Decision Making

Environment

action a

Agent

state s reward r

Example 2: Packing a Knapsack

agent camper
environment knapsack

state remaining capacity
action packing an item

rewards values of items

The agent and the environment interact at discrete time steps:

st st+1at

rt+1 st+2at+1

rt+2

Goal: select actions that maximize the sum of future rewards, when the
consequences of those actions may not be revealed for many steps.

Monte Carlo Tree Search (MCTS) 4 / 46 W. Jaśkowski, M. Szubert

Sequential Decision Making

Environment

action a

Agent

state s reward r

Example 2: Packing a Knapsack

agent camper
environment knapsack

state remaining capacity
action packing an item

rewards values of items

The agent and the environment interact at discrete time steps:

st st+1at

rt+1 st+2at+1

rt+2

Goal: select actions that maximize the sum of future rewards, when the
consequences of those actions may not be revealed for many steps.

1. W takich problemach autonomiczny i inteligentny agent zostaje umieszczony w nieznanym
środowisku i uczy się podejmowania następujących po sobie decyzji

2. Uczenie w oparciu o interakcje zachodzące w dyskretnych jednostkach czasu
3. Rysunek przedstawia typowy scenariusz takich interakcji
4. W pierwszym kroku agent obserwuje bieżący stan środowiska
5. Na podstawie dotychczas wypracowanej strategii i bieżącego stanu środowiska, agent

wykonuje akcje.
6. W wyniku akcji środowisko zmienia swój stan, a agent może otrzymać od środowiska

nagrodę pełniącą rolę wzmocnienia (potencjalnie negatywne)
7. Wśród przykładów sekwencyjnych problemów decyzyjnych można wyróżnić m.in. kierowanie

samochodem, szeregowanie zadań czy też grę w szachy.
8. 1.5 min =¿ 10.5 min

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Sequential Decision ProblemsRL application areas

Process Control
23%

Other
8%

Finance
4%

Autonomic Computing
6% Traffic

6%
Robotics

13%

Resource Management
18%

Networking
21%

Survey by Csaba Szepesvari
of 77 recent application
papers, based on an IEEE.org
search for the keywords
“RL” and “application”

signal processing
natural language processing

web services
brain-computer interfaces

aircraft control
engine control

bio/chemical reactors

sensor networks
routing
call admission control
network resource management

power systems
inventory control
supply chains
customer service

mobile robots, motion control, Robocup, visionstoplight control, trains, unmanned vehicles

load balancing
memory management

algorithm tuning

option pricing
asset management

Sutton, R. (2009). Multidisciplinary Symposium on Reinforcement Learning.

Monte Carlo Tree Search (MCTS) 5 / 46 W. Jaśkowski, M. Szubert

Sequential Decision ProblemsRL application areas

Process Control
23%

Other
8%

Finance
4%

Autonomic Computing
6% Traffic

6%
Robotics

13%

Resource Management
18%

Networking
21%

Survey by Csaba Szepesvari
of 77 recent application
papers, based on an IEEE.org
search for the keywords
“RL” and “application”

signal processing
natural language processing

web services
brain-computer interfaces

aircraft control
engine control

bio/chemical reactors

sensor networks
routing
call admission control
network resource management

power systems
inventory control
supply chains
customer service

mobile robots, motion control, Robocup, visionstoplight control, trains, unmanned vehicles

load balancing
memory management

algorithm tuning

option pricing
asset management

Sutton, R. (2009). Multidisciplinary Symposium on Reinforcement Learning.

1. Na zakończenie krótkiego opisu uczenia się ze wzmocnieniem
2. Warto zwrócić uwagę, że przedstawione metody znajdują praktyczne zastosowanie w wielu

dziedzinach
3. Zastosowania ilustruje diagram przedstawiony na konferencji ICML przez Richarda Suttona,

ktory jest jednym z najwiekszych autorytetow
4. Zastosowania są różnorodne:
5. Począwszy od sterowania silnikami/samolotami przez zarządzanie zasobami sieciowymi,
routing i zarządzanie zasobami w systemach produkcyjnych aż po naturalne zastosowania
w robotyce

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Markov Decision Process (MDP)

A Markov Decision Process models the environment as 〈S ,A,T ,R, I , γ〉.

S — set of states

A — set of actions

T — transition function
T (st , at , st+1) = Pr(st+1|st , at)
R — reward function
R(st , at , st+1) = rt+1 ∈ R
I — initial state distribution

��

��
���

���

��
���

����
����

����

����

����	�

����

��

��
��
�

����

��

��
�
����

����

�

��

Optimal decision making policy

π∗ = arg max
π : S→A

Eπ

[∞∑

t=0

rt+1 | s0 ∼ I

]

Monte Carlo Tree Search (MCTS) 6 / 46 W. Jaśkowski, M. Szubert

Markov Decision Process (MDP)

A Markov Decision Process models the environment as 〈S ,A,T ,R, I , γ〉.

S — set of states

A — set of actions

T — transition function
T (st , at , st+1) = Pr(st+1|st , at)
R — reward function
R(st , at , st+1) = rt+1 ∈ R
I — initial state distribution

��

��
���

���

��
���

����
����

����

����

����	�

����

��

��
��
�

����

��

��
�
����

����

�

��

Optimal decision making policy

π∗ = arg max
π : S→A

Eπ

[∞∑

t=0

rt+1 | s0 ∼ I

]

1. Proces decyzyjny Markowa definiowany jest jako szóstka uporządkowana złożona z
następujących elementów:

2. zbiór stanów — bieżący stan całkowicie opisuje proces - zawiera wszelkie informacje
potrzebne do podjęcia decyzji

3. zbiór akcji, który może być funkcją bieżącego stanu środowiska
4. funkcja tranzycji określająca prawdopodobieństwo przejścia między stanami, własność
Markowa

5. funkcja nagrody zwraca rzeczywiste wartości wzmocnienia po tranzycji
6. rozkład I określa od którego stanu rozpoczną się interakcje
7. współczynnik dyskontowania okresla jak krotkowzroczny powinien byc uczen
8. Rysunek przedstawia graf tranzycji przykładowego procesu decyzyjnego Markowa
9. W formalizmu MDP mozna zdefiniowac optymalna strategie podejmowania decyzji
10. Jest to taka funkcja pi przyporzadkowujaca kazdemu stanowi akcje, ktora maksymalizuje...
11. Wiedzac jak powinna wygladac optymalna strategia

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Markov Decision Process (MDP)

A Markov Decision Process models the environment as 〈S ,A,T ,R, I , γ〉.

S — set of states

A — set of actions

T — transition function
T (st , at , st+1) = Pr(st+1|st , at)
R — reward function
R(st , at , st+1) = rt+1 ∈ R
I — initial state distribution

��

��
���

���

��
���

����
����

����

����

����	�

����

��

��
��
�

����

��

��
�
����

����

�

��

Optimal decision making policy

π∗ = arg max
π : S→A

Eπ

[∞∑

t=0

rt+1 | s0 ∼ I

]

Monte Carlo Tree Search (MCTS) 6 / 46 W. Jaśkowski, M. Szubert

Markov Decision Process (MDP)

A Markov Decision Process models the environment as 〈S ,A,T ,R, I , γ〉.

S — set of states

A — set of actions

T — transition function
T (st , at , st+1) = Pr(st+1|st , at)
R — reward function
R(st , at , st+1) = rt+1 ∈ R
I — initial state distribution

��

��
���

���

��
���

����
����

����

����

����	�

����

��

��
��
�

����

��

��
�
����

����

�

��

Optimal decision making policy

π∗ = arg max
π : S→A

Eπ

[∞∑

t=0

rt+1 | s0 ∼ I

]

1. Proces decyzyjny Markowa definiowany jest jako szóstka uporządkowana złożona z
następujących elementów:

2. zbiór stanów — bieżący stan całkowicie opisuje proces - zawiera wszelkie informacje
potrzebne do podjęcia decyzji

3. zbiór akcji, który może być funkcją bieżącego stanu środowiska
4. funkcja tranzycji określająca prawdopodobieństwo przejścia między stanami, własność
Markowa

5. funkcja nagrody zwraca rzeczywiste wartości wzmocnienia po tranzycji
6. rozkład I określa od którego stanu rozpoczną się interakcje
7. współczynnik dyskontowania okresla jak krotkowzroczny powinien byc uczen
8. Rysunek przedstawia graf tranzycji przykładowego procesu decyzyjnego Markowa
9. W formalizmu MDP mozna zdefiniowac optymalna strategie podejmowania decyzji
10. Jest to taka funkcja pi przyporzadkowujaca kazdemu stanowi akcje, ktora maksymalizuje...
11. Wiedzac jak powinna wygladac optymalna strategia

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Two approaches to policy optimization

Model-free approach (Reinforcement Learning)

Relies on samples of training experience (st , at , rt+1, st+1) gathered
during agent-environment interactions.

Environment

action

Agent

Learning algorithm

⇡Policy

training experience

(st, at, rt+1, st+1)

state
st

reward
rt+1at

Model-based approach (Planning)

Requires the knowledge of the MDP (i.e., transition function T and
reward function R), e.g. dynamic programming.

Curse of dimensionality — number of states grows exponentially as
the dimension of the problem (number of state variables) increases.

Monte Carlo Tree Search (MCTS) 7 / 46 W. Jaśkowski, M. Szubert

Two approaches to policy optimization

Model-free approach (Reinforcement Learning)

Relies on samples of training experience (st , at , rt+1, st+1) gathered
during agent-environment interactions.

Environment

action

Agent

Learning algorithm

⇡Policy

training experience

(st, at, rt+1, st+1)

state
st

reward
rt+1at

Model-based approach (Planning)

Requires the knowledge of the MDP (i.e., transition function T and
reward function R), e.g. dynamic programming.

Curse of dimensionality — number of states grows exponentially as
the dimension of the problem (number of state variables) increases.

1. Pytanie brzmi zatem jak znaleźć optymalną strategię? - Istnieją 2 główne podejścia
2. Pierwsze z nich Model-Free nie wymaga znajomosci srodowiska, lecz zakłada że tego

środowiska można się nauczyć
3. Oparte jest na próbkach doświadczenia uczącego zebranych podczas interakcji
4. Takie podejście odpowiada naturalnemu procesowi uczenia się metodą prób i błędów
5. W roli algorytmów uczących przetwarzajacych i wnioskujacych na podstawie zdobywane

doświadczenie - wykorzystuje się dwa rodzaje metod
6. Metody wykorzystujące funkcję wartości jako krok pośredni do strategii
7. Drugie podejście Model-Based - wymaga znajomosci modelu środowiska (MDP)
8. Znając funkcję tranzycji i nagrody można zaplanować sekwencję przyszłych akcji.
9. Do tego rodzaju metod zalicza się zarówno zaproponowane przez Bellmana DP, jak i właśnie

metody MCTS - istnieja miedzy nimi jednak dwie duze roznice o ktorych zaraz bede mowil
10. Roznice te powoduja, ze o ile MCTS mozna stosowac w zlozonych MDP, tak DP cierpia z
powodu klatwy wymiarowosci

11. Termin ten zaproponowal Bellman na okreslenie problemow wynikajacych z wykladniczego
wzrostu rozmiaru przestrzeni stanow wraz ze wzrostem liczby zmiennych ten stan
opisujacych

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Two approaches to policy optimization

Model-free approach (Reinforcement Learning)

Relies on samples of training experience (st , at , rt+1, st+1) gathered
during agent-environment interactions.

Direct policy search methods, e.g. evolutionary algorithms.

Methods based on value functions, e.g. temporal difference learning.

V π(s) = Eπ

[∞∑

k=0

rt+k+1|st = s

]

Model-based approach (Planning)

Requires the knowledge of the MDP (i.e., transition function T and
reward function R), e.g. dynamic programming.

Curse of dimensionality — number of states grows exponentially as
the dimension of the problem (number of state variables) increases.

Monte Carlo Tree Search (MCTS) 7 / 46 W. Jaśkowski, M. Szubert

Two approaches to policy optimization

Model-free approach (Reinforcement Learning)

Relies on samples of training experience (st , at , rt+1, st+1) gathered
during agent-environment interactions.

Direct policy search methods, e.g. evolutionary algorithms.

Methods based on value functions, e.g. temporal difference learning.

V π(s) = Eπ

[∞∑

k=0

rt+k+1|st = s

]

Model-based approach (Planning)

Requires the knowledge of the MDP (i.e., transition function T and
reward function R), e.g. dynamic programming.

Curse of dimensionality — number of states grows exponentially as
the dimension of the problem (number of state variables) increases.

1. Pytanie brzmi zatem jak znaleźć optymalną strategię? - Istnieją 2 główne podejścia
2. Pierwsze z nich Model-Free nie wymaga znajomosci srodowiska, lecz zakłada że tego

środowiska można się nauczyć
3. Oparte jest na próbkach doświadczenia uczącego zebranych podczas interakcji
4. Takie podejście odpowiada naturalnemu procesowi uczenia się metodą prób i błędów
5. W roli algorytmów uczących przetwarzajacych i wnioskujacych na podstawie zdobywane

doświadczenie - wykorzystuje się dwa rodzaje metod
6. Metody wykorzystujące funkcję wartości jako krok pośredni do strategii
7. Drugie podejście Model-Based - wymaga znajomosci modelu środowiska (MDP)
8. Znając funkcję tranzycji i nagrody można zaplanować sekwencję przyszłych akcji.
9. Do tego rodzaju metod zalicza się zarówno zaproponowane przez Bellmana DP, jak i właśnie

metody MCTS - istnieja miedzy nimi jednak dwie duze roznice o ktorych zaraz bede mowil
10. Roznice te powoduja, ze o ile MCTS mozna stosowac w zlozonych MDP, tak DP cierpia z
powodu klatwy wymiarowosci

11. Termin ten zaproponowal Bellman na okreslenie problemow wynikajacych z wykladniczego
wzrostu rozmiaru przestrzeni stanow wraz ze wzrostem liczby zmiennych ten stan
opisujacych

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Two approaches to policy optimization

Model-free approach (Reinforcement Learning)

Relies on samples of training experience (st , at , rt+1, st+1) gathered
during agent-environment interactions.

Direct policy search methods, e.g. evolutionary algorithms.

Methods based on value functions, e.g. temporal difference learning.

V π(s) = Eπ

[∞∑

k=0

rt+k+1|st = s

]

Model-based approach (Planning)

Requires the knowledge of the MDP (i.e., transition function T and
reward function R), e.g. dynamic programming.

Curse of dimensionality — number of states grows exponentially as
the dimension of the problem (number of state variables) increases.

Monte Carlo Tree Search (MCTS) 7 / 46 W. Jaśkowski, M. Szubert

Two approaches to policy optimization

Model-free approach (Reinforcement Learning)

Relies on samples of training experience (st , at , rt+1, st+1) gathered
during agent-environment interactions.

Direct policy search methods, e.g. evolutionary algorithms.

Methods based on value functions, e.g. temporal difference learning.

V π(s) = Eπ

[∞∑

k=0

rt+k+1|st = s

]

Model-based approach (Planning)

Requires the knowledge of the MDP (i.e., transition function T and
reward function R), e.g. dynamic programming.

Curse of dimensionality — number of states grows exponentially as
the dimension of the problem (number of state variables) increases.

1. Pytanie brzmi zatem jak znaleźć optymalną strategię? - Istnieją 2 główne podejścia
2. Pierwsze z nich Model-Free nie wymaga znajomosci srodowiska, lecz zakłada że tego

środowiska można się nauczyć
3. Oparte jest na próbkach doświadczenia uczącego zebranych podczas interakcji
4. Takie podejście odpowiada naturalnemu procesowi uczenia się metodą prób i błędów
5. W roli algorytmów uczących przetwarzajacych i wnioskujacych na podstawie zdobywane

doświadczenie - wykorzystuje się dwa rodzaje metod
6. Metody wykorzystujące funkcję wartości jako krok pośredni do strategii
7. Drugie podejście Model-Based - wymaga znajomosci modelu środowiska (MDP)
8. Znając funkcję tranzycji i nagrody można zaplanować sekwencję przyszłych akcji.
9. Do tego rodzaju metod zalicza się zarówno zaproponowane przez Bellmana DP, jak i właśnie

metody MCTS - istnieja miedzy nimi jednak dwie duze roznice o ktorych zaraz bede mowil
10. Roznice te powoduja, ze o ile MCTS mozna stosowac w zlozonych MDP, tak DP cierpia z
powodu klatwy wymiarowosci

11. Termin ten zaproponowal Bellman na okreslenie problemow wynikajacych z wykladniczego
wzrostu rozmiaru przestrzeni stanow wraz ze wzrostem liczby zmiennych ten stan
opisujacych

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Planning in Large MDPs

Classical Planning Assumptions

MDP is given explicitly by tables of rewards and transition probabilities.

The output is a total mapping π from states to actions.

Sample-Based / Simulation-Based Planning

A natural way to specify a large MDP is to use a generative model, or
simulator, of the MDP.

(st, at)

(st+1, rt+1)

Planning algorithms can employ a simulator to generate sample
sequences of experience.

Monte Carlo Tree Search (MCTS) 8 / 46 W. Jaśkowski, M. Szubert

Planning in Large MDPs

Classical Planning Assumptions

MDP is given explicitly by tables of rewards and transition probabilities.

The output is a total mapping π from states to actions.

Sample-Based / Simulation-Based Planning

A natural way to specify a large MDP is to use a generative model, or
simulator, of the MDP.

(st, at)

(st+1, rt+1)

Planning algorithms can employ a simulator to generate sample
sequences of experience.

1. Aby możliwe było planowanie w złożonych MDP o dużych przestrzeniach stanów - a to
umożliwiają metody MCTS, należy zrewidowować założenia jakie przyjmują klasyczne
metody

2. W odniesieniu do dwoch zalozen klasycznych metod planowania, pokaze dwie kluczowe
koncepcyjne roznice miedzy klasycznymi metodami typu DP a nowoczesnymi metodami
MCTS

3. Po pierwsze

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Planning in Large MDPs

Classical Planning Assumptions

MDP is given explicitly by tables of rewards and transition probabilities.

The output is a total mapping π from states to actions.

Online Planning (Search)

Offline algorithms have to find a policy for the entire state space.

Online algorithms focus on computing good local policies at each
decision step during the execution.

Policy construction Policy executionOffline Planning

Online Planning

Monte Carlo Tree Search (MCTS) 8 / 46 W. Jaśkowski, M. Szubert

Planning in Large MDPs

Classical Planning Assumptions

MDP is given explicitly by tables of rewards and transition probabilities.

The output is a total mapping π from states to actions.

Online Planning (Search)

Offline algorithms have to find a policy for the entire state space.

Online algorithms focus on computing good local policies at each
decision step during the execution.

Policy construction Policy executionOffline Planning

Online Planning

1. Aby możliwe było planowanie w złożonych MDP o dużych przestrzeniach stanów - a to
umożliwiają metody MCTS, należy zrewidowować założenia jakie przyjmują klasyczne
metody

2. W odniesieniu do dwoch zalozen klasycznych metod planowania, pokaze dwie kluczowe
koncepcyjne roznice miedzy klasycznymi metodami typu DP a nowoczesnymi metodami
MCTS

3. Po pierwsze

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Planning in Large MDPs

Online Sample-Based Planning (Search)

Given current state s0:

use the simulator to draw samples for many state-action pairs,

organize sampled states into a look-ahead search tree rooted at s0,

compute the next action to take from s0.

A SPARSE SAMPLING ALGORITHM 199

The graphical structure of M ′ will be given by a directed tree in which each node is
labeled by a state, and each directed edge to a child is labeled by an action and a reward.
For the sake of simplicity, let us consider only the two-action case here, with actions a1

and a2. Each node will have C children in which the edge to the child is labeled a1, and C
children in which the edge to the child is labeled a2.

The root node of M ′ is labeled by the state of interest s, and we generate the 2C children
of s in the obvious way: we call the generative model C times on the state-action pair (s, a1)

to get the a1-children, and on C times on (s, a2) to get the a2-children. The edges to these
children are also labeled by the rewards returned by the generative model, and the child
nodes themselves are labeled by the states returned. We will build this (2C)-ary tree to some
depth to be determined. Note that M ′ is essentially a sparse look-ahead tree.

We can also think of M ′ as an MDP in which the start state is s, and in which taking
an action from a node in the tree causes a transition to a (uniformly) random child of that
node with the corresponding action label; the childless leaf nodes are considered absorbing
states. Under this interpretation, we can compute the optimal action to take from the root s
in M ′. Figure 2 shows a conceptual picture of this tree for a run of the algorithm from an
input state s0, for C = 3. (C will typically be much larger). From the root s0, we try action
a1 three times and action a2 three times. From each of the resulting states, we also try each
action C times, and so on down to depth H in the tree. Zero values assigned to the leaves
then correspond to our estimates of V̂ ∗

0 , which are “backed-up” to find estimates of V̂ ∗
1 for

their parents, which are in turn backed-up to their parents, and so on, up to the root to find
an estimate of V̂ ∗

H (s0).
The central claim we establish about M ′ is that its size can be independent of the number

of states in M , yet still result in our choosing near-optimal actions at the root. We do this
by establishing bounds on the required depth H of the tree and the required degree C .

Recall that the optimal policy at s is given by π∗(s) = arg maxa Q∗(s, a), and therefore
is completely determined by, and easily calculated from, Q∗(s, ·). Estimating the Q-values

Figure 2. Sparse look-ahead tree of states constructed by the algorithm (shown with C = 3, actions a1, a2).A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes, Kearns M., Mansour Y., Ng, A.Y., 2002

Monte Carlo Tree Search (MCTS) 9 / 46 W. Jaśkowski, M. Szubert

Planning in Large MDPs

Online Sample-Based Planning (Search)

Given current state s0:

use the simulator to draw samples for many state-action pairs,

organize sampled states into a look-ahead search tree rooted at s0,

compute the next action to take from s0.

A SPARSE SAMPLING ALGORITHM 199

The graphical structure of M ′ will be given by a directed tree in which each node is
labeled by a state, and each directed edge to a child is labeled by an action and a reward.
For the sake of simplicity, let us consider only the two-action case here, with actions a1

and a2. Each node will have C children in which the edge to the child is labeled a1, and C
children in which the edge to the child is labeled a2.

The root node of M ′ is labeled by the state of interest s, and we generate the 2C children
of s in the obvious way: we call the generative model C times on the state-action pair (s, a1)

to get the a1-children, and on C times on (s, a2) to get the a2-children. The edges to these
children are also labeled by the rewards returned by the generative model, and the child
nodes themselves are labeled by the states returned. We will build this (2C)-ary tree to some
depth to be determined. Note that M ′ is essentially a sparse look-ahead tree.

We can also think of M ′ as an MDP in which the start state is s, and in which taking
an action from a node in the tree causes a transition to a (uniformly) random child of that
node with the corresponding action label; the childless leaf nodes are considered absorbing
states. Under this interpretation, we can compute the optimal action to take from the root s
in M ′. Figure 2 shows a conceptual picture of this tree for a run of the algorithm from an
input state s0, for C = 3. (C will typically be much larger). From the root s0, we try action
a1 three times and action a2 three times. From each of the resulting states, we also try each
action C times, and so on down to depth H in the tree. Zero values assigned to the leaves
then correspond to our estimates of V̂ ∗

0 , which are “backed-up” to find estimates of V̂ ∗
1 for

their parents, which are in turn backed-up to their parents, and so on, up to the root to find
an estimate of V̂ ∗

H (s0).
The central claim we establish about M ′ is that its size can be independent of the number

of states in M , yet still result in our choosing near-optimal actions at the root. We do this
by establishing bounds on the required depth H of the tree and the required degree C .

Recall that the optimal policy at s is given by π∗(s) = arg maxa Q∗(s, a), and therefore
is completely determined by, and easily calculated from, Q∗(s, ·). Estimating the Q-values

Figure 2. Sparse look-ahead tree of states constructed by the algorithm (shown with C = 3, actions a1, a2).A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes, Kearns M., Mansour Y., Ng, A.Y., 2002

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 10 / 46 W. Jaśkowski, M. Szubert

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Games

Game Theory

Game theory extends decision making to situations in which multiple
agents interact. A game can be defined as a set of established rules that
allows the interaction of players to produce specified outcomes.

Combinatorial Games

Games with two players that are zero-sum, perfect information,
deterministic, discrete and sequential.

chancedeterministic

imperfect information

perfect information

bridge, poker,
scrabble, nuclear warbattleships

backgammon,
monopoly

chess, checkers,
go, othello

Monte Carlo Tree Search (MCTS) 11 / 46 W. Jaśkowski, M. Szubert

Games

Game Theory

Game theory extends decision making to situations in which multiple
agents interact. A game can be defined as a set of established rules that
allows the interaction of players to produce specified outcomes.

Combinatorial Games

Games with two players that are zero-sum, perfect information,
deterministic, discrete and sequential.

chancedeterministic

imperfect information

perfect information

bridge, poker,
scrabble, nuclear warbattleships

backgammon,
monopoly

chess, checkers,
go, othello

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Why Combinatorial Games?

Games provide a convenient vehicle for the development of learning
procedures as contrasted with a problem taken from life, since many of the
complications of detail are removed.

Some Studies in Machine Learning Using the Game of Checkers, Samuel A., 1959

Closed micro-worlds with simple rules.

Clear benchmarks of performance both
between different programs and against
human intelligence.
Excellent testbeds for AI:

Chess is the Drosophila of AI.
Games are to AI as grand prix racing
is to automobile design.

Monte Carlo Tree Search (MCTS) 12 / 46 W. Jaśkowski, M. Szubert

Why Combinatorial Games?

Games provide a convenient vehicle for the development of learning
procedures as contrasted with a problem taken from life, since many of the
complications of detail are removed.

Some Studies in Machine Learning Using the Game of Checkers, Samuel A., 1959

Closed micro-worlds with simple rules.

Clear benchmarks of performance both
between different programs and against
human intelligence.
Excellent testbeds for AI:

Chess is the Drosophila of AI.
Games are to AI as grand prix racing
is to automobile design.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Game Complexity

http://xkcd.com/1002/

1013
Tic-tac-toe 4

4

State-space
complexity

Connect 4

Game Branching
factor

103

25010171Go

351050Chess

101028Othello

2.81020Checkers

Monte Carlo Tree Search (MCTS) 13 / 46 W. Jaśkowski, M. Szubert

Game Complexity

http://xkcd.com/1002/

1013
Tic-tac-toe 4

4

State-space
complexity

Connect 4

Game Branching
factor

103

25010171Go

351050Chess

101028Othello

2.81020Checkers

1. Warto zwrocic jednak uwage, ze wiele gier rozwazanych w historii AI nie stanowi juz
wyzwania

2. O trudnosci danej gry swiadcza m.in. dwie cechy - liczba stanow i branching factor
3. Ze wszystkich gier przedstawionych na slajdzie, najwiekszym wyzwaniem jest gra Go

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

The Trouble with Go

Enormous combinatorial complexity
(large state and action space).

Long term influence of moves (delayed
reward, temporal credit assignment).

No good heuristics for evaluating a
state (in contrast to chess or checkers).

1

2 3

45

6 7

8

9

10 11

12

1314

15

16

1718 19

20

2122

23

24

25

26 2728

29

30

31

32

33

34

35

36

37

38 40

41

43

39 at 33 42 at 36 44 at 33

Figure 1: The first victory of a computer pro-
gram, Fuego (White) against a 9 dan professional
Go player, Zhou Junxun (Black), in an even game.

the empty locations on the board that are unambiguously
controlled by one player. The game ends when both players
pass, at which time the two players count their scores. Each
player receives one point for every location of territory that
they control, and one point for each captured stone. White
receives a bonus, known as komi, compensating for the fact
that black played first. The player with the highest score
wins. The precise scoring details vary according to regional
rules; however, all major scoring systems almost always lead
to the same result. Figure 1 shows a complete game of 9⇥9
Go.

The handicap is the number of compensation stones that
the black player is allowed to place on the board before al-
ternating play. The goal of handicap is to allow players of
di↵erent strength to play competitively. “Even games” are
games with handicap 0 and a komi of 7.5 (the komi can vary
according to regional rules).

The ranks of amateur Go players are ordered by decreas-
ing kyu and then increasing dan, where the di↵erence in
rank corresponds to the number of handicap stones required
to maintain parity. Professional players are ordered by in-
creasing dan, on a second scale (Figure 2). The title “top
professional” is given to a professional player who has re-
cently won at least one major tournament.

2.2 Go: A Grand Challenge for AI
Since the introduction of Monte-Carlo tree search in 2006,

the ranks of computer Go programs have jumped from weak
kyu level to the professional dan level in 9 ⇥ 9 Go, and to
strong amateur dan level in 19 ⇥ 19 Go (see Section 5).

The game of Go is di�cult for computer programs for a
number of reasons. First, the combinatorial complexity of
the game is enormous. There are many possible moves in
each turn: approximately 200 in Go, compared to 37 for
chess. Furthermore, the length of a typical game is around
300 turns, compared to 57 in chess. In fact, there are more
than 10170 possible positions in Go, compared to 1047 in
chess; and approximately 10360 legal move sequences in Go,
compared to 10123 in chess [22].

Another factor that makes Go challenging is the long-term
influence of moves: the placement of a stone at the begin-
ning of the game can significantly a↵ect the outcome of the

30 kyu 1 kyu 1 dan 7 dan 1 dan 9 dan

Beginner Master Professional

Figure 2: Performance ranks in Go, in increasing
order of strength from left to right.

game hundreds of moves later. Simple heuristics for evalu-
ating a position, such as counting the total material advan-
tage, have proven to be very successful in chess and checkers.
However, they are not as helpful in Go since the territorial
advantage of one player is often compensated by the oppo-
nent’s better strategic position. As a result, the best known
heuristic functions evaluate positions at beginner level. All
this makes the game of Go an excellent challenge for AI tech-
niques, since a successful Go program must simultaneously
cope with the vast complexity of the game, the long-term
e↵ects of moves, and the importance of the strategic values
of positions. Many real-world, sequential decision making
problems are di�cult for exactly the same reasons. There-
fore, progress in Go can lead to advances that are significant
beyond computer Go and may ultimately contribute to ad-
vancing the field of AI as a whole. One support for this
claim is the fact that Monte-Carlo tree search, which was
originally introduced in Go, has already started to achieve
notable successes in other areas within AI [25, 20].

3. MONTE-CARLO TREE SEARCH
The common approach used by all the strongest current

computer Go programs is Monte-Carlo tree search (MCTS)
[12]. In this section, we first introduce game trees and dis-
cuss traditional approaches to game tree search. Next, we
discuss how Monte-Carlo techniques can be used to evalu-
ate positions. Finally, we introduce the UCT strategy [18],
which guides the development of the search tree towards
positions with large estimated value or high uncertainty.

3.1 Game Tree Search
We begin by discussing search algorithms for two-player

games in general. In such games, there are two players,
whom we shall call Black and White. The players move
in an alternating manner and the games are assumed to
be deterministic and to be perfect information. Determin-
ism rules out games of chance involving, e.g., dice throws
or shu✏ed cards in a deck. Perfect information rules out
games where the players have private information such as
cards that are hidden from the other players. More specifi-
cally, perfect information means that, knowing the rules of
the game, each player can compute the distribution of game
outcomes (which is a single game outcome, if deterministic)
given any fixed future sequence of actions. Another way of
putting this latter condition is to say that both players have
perfect knowledge of the game’s state. In board games such
as Go, chess and checkers, disregarding subtleties such as
castling restrictions in chess and ko rules in Go, the state is
identical to the board position, i.e., the configuration of all
pieces on the board.

The rules of the game determine the terminal states in
which the game ends. There is a reward associated with
each terminal state, which determines how much Black earns
if the game ends in that state. There are no intermediate

Many real-world, sequential decision making problems are difficult for
exactly the same reasons. Therefore, progress in Go can lead to advances
that are significant beyond computer Go and may ultimately contribute to
advancing the field of AI as a whole.

The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions,
Gelly S., Kocsis L, Shoenauer M., Sebag M., Silver D., Szepesvari C., 2012

Monte Carlo Tree Search (MCTS) 14 / 46 W. Jaśkowski, M. Szubert

The Trouble with Go

Enormous combinatorial complexity
(large state and action space).

Long term influence of moves (delayed
reward, temporal credit assignment).

No good heuristics for evaluating a
state (in contrast to chess or checkers).

1

2 3

45

6 7

8

9

10 11

12

1314

15

16

1718 19

20

2122

23

24

25

26 2728

29

30

31

32

33

34

35

36

37

38 40

41

43

39 at 33 42 at 36 44 at 33

Figure 1: The first victory of a computer pro-
gram, Fuego (White) against a 9 dan professional
Go player, Zhou Junxun (Black), in an even game.

the empty locations on the board that are unambiguously
controlled by one player. The game ends when both players
pass, at which time the two players count their scores. Each
player receives one point for every location of territory that
they control, and one point for each captured stone. White
receives a bonus, known as komi, compensating for the fact
that black played first. The player with the highest score
wins. The precise scoring details vary according to regional
rules; however, all major scoring systems almost always lead
to the same result. Figure 1 shows a complete game of 9⇥9
Go.

The handicap is the number of compensation stones that
the black player is allowed to place on the board before al-
ternating play. The goal of handicap is to allow players of
di↵erent strength to play competitively. “Even games” are
games with handicap 0 and a komi of 7.5 (the komi can vary
according to regional rules).

The ranks of amateur Go players are ordered by decreas-
ing kyu and then increasing dan, where the di↵erence in
rank corresponds to the number of handicap stones required
to maintain parity. Professional players are ordered by in-
creasing dan, on a second scale (Figure 2). The title “top
professional” is given to a professional player who has re-
cently won at least one major tournament.

2.2 Go: A Grand Challenge for AI
Since the introduction of Monte-Carlo tree search in 2006,

the ranks of computer Go programs have jumped from weak
kyu level to the professional dan level in 9 ⇥ 9 Go, and to
strong amateur dan level in 19 ⇥ 19 Go (see Section 5).

The game of Go is di�cult for computer programs for a
number of reasons. First, the combinatorial complexity of
the game is enormous. There are many possible moves in
each turn: approximately 200 in Go, compared to 37 for
chess. Furthermore, the length of a typical game is around
300 turns, compared to 57 in chess. In fact, there are more
than 10170 possible positions in Go, compared to 1047 in
chess; and approximately 10360 legal move sequences in Go,
compared to 10123 in chess [22].

Another factor that makes Go challenging is the long-term
influence of moves: the placement of a stone at the begin-
ning of the game can significantly a↵ect the outcome of the

30 kyu 1 kyu 1 dan 7 dan 1 dan 9 dan

Beginner Master Professional

Figure 2: Performance ranks in Go, in increasing
order of strength from left to right.

game hundreds of moves later. Simple heuristics for evalu-
ating a position, such as counting the total material advan-
tage, have proven to be very successful in chess and checkers.
However, they are not as helpful in Go since the territorial
advantage of one player is often compensated by the oppo-
nent’s better strategic position. As a result, the best known
heuristic functions evaluate positions at beginner level. All
this makes the game of Go an excellent challenge for AI tech-
niques, since a successful Go program must simultaneously
cope with the vast complexity of the game, the long-term
e↵ects of moves, and the importance of the strategic values
of positions. Many real-world, sequential decision making
problems are di�cult for exactly the same reasons. There-
fore, progress in Go can lead to advances that are significant
beyond computer Go and may ultimately contribute to ad-
vancing the field of AI as a whole. One support for this
claim is the fact that Monte-Carlo tree search, which was
originally introduced in Go, has already started to achieve
notable successes in other areas within AI [25, 20].

3. MONTE-CARLO TREE SEARCH
The common approach used by all the strongest current

computer Go programs is Monte-Carlo tree search (MCTS)
[12]. In this section, we first introduce game trees and dis-
cuss traditional approaches to game tree search. Next, we
discuss how Monte-Carlo techniques can be used to evalu-
ate positions. Finally, we introduce the UCT strategy [18],
which guides the development of the search tree towards
positions with large estimated value or high uncertainty.

3.1 Game Tree Search
We begin by discussing search algorithms for two-player

games in general. In such games, there are two players,
whom we shall call Black and White. The players move
in an alternating manner and the games are assumed to
be deterministic and to be perfect information. Determin-
ism rules out games of chance involving, e.g., dice throws
or shu✏ed cards in a deck. Perfect information rules out
games where the players have private information such as
cards that are hidden from the other players. More specifi-
cally, perfect information means that, knowing the rules of
the game, each player can compute the distribution of game
outcomes (which is a single game outcome, if deterministic)
given any fixed future sequence of actions. Another way of
putting this latter condition is to say that both players have
perfect knowledge of the game’s state. In board games such
as Go, chess and checkers, disregarding subtleties such as
castling restrictions in chess and ko rules in Go, the state is
identical to the board position, i.e., the configuration of all
pieces on the board.

The rules of the game determine the terminal states in
which the game ends. There is a reward associated with
each terminal state, which determines how much Black earns
if the game ends in that state. There are no intermediate

Many real-world, sequential decision making problems are difficult for
exactly the same reasons. Therefore, progress in Go can lead to advances
that are significant beyond computer Go and may ultimately contribute to
advancing the field of AI as a whole.

The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions,
Gelly S., Kocsis L, Shoenauer M., Sebag M., Silver D., Szepesvari C., 2012

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 15 / 46 W. Jaśkowski, M. Szubert

Odniose sie teraz do algorytmow planowania online zaprezentowanych w punkcie 1 i pokaze

przyklady takich algorytmow stosowane w kontekscie gier do przeszukiwania drzewa gry

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Game Tree

Game Search Challenge

• Not quite the same as simple searching

• There is a malicious opponent!

– It is trying to make things good for itself, and bad for us
– We have to simulate the opponent’s decision

• Main idea: utility from a single agent’s perspective

– Define a max player (who wants to maximize its utility)
– And a min player (who wants to minimize it).

COMP-424, Lecture 6 - January 23, 2013 7

Example: Tic-Tac-Toe

!"#$#"% &'()"#*(+,--#.(-+-)*/0-+"*+$0,10-2++

3

4*/+50/*+-'6+.,60-7+%*'+8,10+,('"#$#"%+&'()"#*(+"8,"+,--#.(-+1,$'0- ,))*/9#(.+"*+

:*#("+*&+1#0;+*&+:$,%0/+<+=>?2

@$,%0/+<+#-+"/%#(.+"*+6,A#6#50+"8#-+'"#$#"%+&(7+@$,%0/+3+"/#0-+"*+6#(#6#502

B6:*/",("+CDEFG+H0/0+;0+,--'60 :$,%0/-+),(+-00+"*+"80+I*""*6+*&+"80+-0,/)8+"/00+

,(9+:$,%+*:"#6,$$%

COMP-424, Lecture 6 - January 23, 2013 8

Utility / Reward

Game tree organizes the possible future action sequences into a tree.

The root represents the initial state, while each other node
represents non-empty finite action sequence of two players.

Monte Carlo Tree Search (MCTS) 16 / 46 W. Jaśkowski, M. Szubert

Game Tree

Game Search Challenge

• Not quite the same as simple searching

• There is a malicious opponent!

– It is trying to make things good for itself, and bad for us
– We have to simulate the opponent’s decision

• Main idea: utility from a single agent’s perspective

– Define a max player (who wants to maximize its utility)
– And a min player (who wants to minimize it).

COMP-424, Lecture 6 - January 23, 2013 7

Example: Tic-Tac-Toe

!"#$#"% &'()"#*(+,--#.(-+-)*/0-+"*+$0,10-2++

3

4*/+50/*+-'6+.,60-7+%*'+8,10+,('"#$#"%+&'()"#*(+"8,"+,--#.(-+1,$'0- ,))*/9#(.+"*+

:*#("+*&+1#0;+*&+:$,%0/+<+=>?2

@$,%0/+<+#-+"/%#(.+"*+6,A#6#50+"8#-+'"#$#"%+&(7+@$,%0/+3+"/#0-+"*+6#(#6#502

B6:*/",("+CDEFG+H0/0+;0+,--'60 :$,%0/-+),(+-00+"*+"80+I*""*6+*&+"80+-0,/)8+"/00+

,(9+:$,%+*:"#6,$$%

COMP-424, Lecture 6 - January 23, 2013 8

Utility / Reward

Game tree organizes the possible future action sequences into a tree.

The root represents the initial state, while each other node
represents non-empty finite action sequence of two players.

1. Drzewo gry jest szczegolnym przypadkiem drzewa stanow w sekwencyjnym procesie
decyzyjnym

2. Przedstawia ono mozliwe sekwencje przyszlych decyzji rozpoczynajace sie w biezacym stanie
srodowiska

3. Gry dwuosobowe
4. Liście niosą ze sobą nagrody
5. Ten sam stan moze wystepowac w wielu miejscach w grze - DAG

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Minimax Search for Online Planning

Expand a complete search tree, until terminal states have been
reached and their utilities can be computed.
Go back up from the leaves towards the current state of the game.

At each min node, back up the worst value among children.
At each max node, back up the best value among children.

108 COMMUNICATIONS OF THE ACM | MARCH 2012 | VOL. 55 | NO. 3

research highlights

outcomes (which is a single game outcome, if deterministic)
given any fixed future sequence of actions. Another way of
putting this latter condition is to say that both players have
perfect knowledge of the game’s state. In board games such
as Go, chess, and checkers, disregarding subtleties such as
castling restrictions in chess and ko rules in Go, the state is
identical to the board position, that is, the configuration of
all pieces on the board.

The rules of the game determine the terminal states in
which the game ends. There is a reward associated with each
terminal state, which determines as to how much Black earns
if the game ends in that state. There are no intermediate
rewards, that is, the reward associated with each nontermi-
nal state is zero. The goal of Black is to get the highest final
reward, while the goal of White is to minimize Black’s reward.

A game tree organizes the possible future action sequences
into a tree structure. The root of the tree represents the ini-
tial state (and the empty action sequence), while each other
node represents some nonempty, finite action sequence
of the two players. Each finite action sequence leads deter-
ministically to a state, which we associate with the node
 corresponding to that action sequence (Figure 3).

Note that the same state can be associated with many
nodes of the tree, because the same state can often be
reached by many distinct action sequences, known as trans-
positions. In this case, the game can be represented more
compactly by a directed acyclic graph over the set of states.

The optimal value of a game tree node is the best possible
value that the player at that node can guarantee for himself,
assuming that the opponent plays the best possible counter-
strategy. The mapping from the nodes (or states) to these val-
ues is called the optimal value function. Similarly, the optimal
action value of a move at a node is defined to be the optimal
value of the child node for that move.

If the optimal values of all children are known, then it
is trivial to select the optimal move at the parent: the Black
(White) player simply chooses the move with the high-
est (lowest) action-value. Assuming that the tree is finite,
the optimal value of each node can be computed by work-
ing backward from the leaves, using a recursive procedure
known as minimax search.

While minimax search leads to optimal actions, it is
utterly intractable for most interesting games; the compu-
tation is proportional to the size of the game tree, which
grows exponentially with its depth. A more practical alter-
native is to consider a subtree of the game tree with limited
depth. In this case, computation begins at the leaves of
the subtree. The (unknown) true optimal values at the leaf
nodes are replaced with values returned by a heuristic evalu-
ation function. If the evaluation function is of sufficiently
“high quality,” the action computed is expected to be near-
optimal. The computation can be sped up by various tech-
niques, the most well-known being a − b pruning, which is
often used together with iterative deepening.

The evaluation function is typically provided by human
experts, or it can be tuned either using supervised learning
based on a database of games or using reinforcement learn-
ing and self-play.22 Programs based on variants of minimax
search with a − b pruning have outperformed human world
champions in chess, checkers, and othello.22

3.2. Monte-Carlo simulation
In some games of interest, for example in the game of Go,
it has proven hard to encode or learn an evaluation function
of sufficient quality to achieve good performance in a mini-
max search. Instead of constructing an evaluation function,
an alternative idea is to first construct a policy (sometimes
called a playout policy) and then to use that policy to esti-
mate the values of states. A policy is a mapping from states
to actions; in other words, a policy determines the way to
play the game. Given a policy pair (one policy for each player,
which if symmetric can be represented by a single policy),
a value estimate for a state s can be obtained by simulation:
start in state s and follow the respective policies in an alter-
nating manner from s until the end of the game, and use the
reward in the terminal state as the value of state s. In some
games, it is easier to estimate the value indirectly by simula-
tion, that is, it may be easier to come up with a simple policy
that leads to good value estimates via simulation than to
estimate those values directly.

A major problem with the approach described so far
is that it can be very sensitive to the choice of policy. For
example, a good policy may choose an optimal action in 90%
of states but a suboptimal action in the remaining 10% of
states. Because the policy is fixed, the value estimates will
suffer from systematic errors, as simulation will always pro-
duce a single, fixed sequence of actions from a given state.
These errors may often have disastrous consequences, lead-
ing to poor evaluations and an exploitable strategy.

Monte-Carlo methods address this problem by adding
explicit randomization to the policy and using the expected
reward of that policy as the value estimate. The potential
benefit of randomization is twofold: it can reduce the influ-
ence of systematic errors and it also allows one to make a
distinction between states where it is “easy to win” (i.e.,
from where most reasonable policy pairs lead to a high
reward terminal state) and states where it is “hard to win.”
This distinction pays off because real-world opponents are
also imperfect, and therefore it is worthwhile to bias the
game toward states with many available winning strategies.

-2

-2

+7 -2 +9 -4

-4

+5 +9 -6 -4-4 -2+7 +3

max

min

max

min

a1 a2 a1

a1

b1 b1b2 b2

a2

a2

a1 a1a2 a2

Figure 3. A minimax game tree for a small two-player game. Black
selects actions to maximize his value; White selects actions to
minimize her value.

Monte Carlo Tree Search (MCTS) 17 / 46 W. Jaśkowski, M. Szubert

Minimax Search for Online Planning

Expand a complete search tree, until terminal states have been
reached and their utilities can be computed.
Go back up from the leaves towards the current state of the game.

At each min node, back up the worst value among children.
At each max node, back up the best value among children.

108 COMMUNICATIONS OF THE ACM | MARCH 2012 | VOL. 55 | NO. 3

research highlights

outcomes (which is a single game outcome, if deterministic)
given any fixed future sequence of actions. Another way of
putting this latter condition is to say that both players have
perfect knowledge of the game’s state. In board games such
as Go, chess, and checkers, disregarding subtleties such as
castling restrictions in chess and ko rules in Go, the state is
identical to the board position, that is, the configuration of
all pieces on the board.

The rules of the game determine the terminal states in
which the game ends. There is a reward associated with each
terminal state, which determines as to how much Black earns
if the game ends in that state. There are no intermediate
rewards, that is, the reward associated with each nontermi-
nal state is zero. The goal of Black is to get the highest final
reward, while the goal of White is to minimize Black’s reward.

A game tree organizes the possible future action sequences
into a tree structure. The root of the tree represents the ini-
tial state (and the empty action sequence), while each other
node represents some nonempty, finite action sequence
of the two players. Each finite action sequence leads deter-
ministically to a state, which we associate with the node
 corresponding to that action sequence (Figure 3).

Note that the same state can be associated with many
nodes of the tree, because the same state can often be
reached by many distinct action sequences, known as trans-
positions. In this case, the game can be represented more
compactly by a directed acyclic graph over the set of states.

The optimal value of a game tree node is the best possible
value that the player at that node can guarantee for himself,
assuming that the opponent plays the best possible counter-
strategy. The mapping from the nodes (or states) to these val-
ues is called the optimal value function. Similarly, the optimal
action value of a move at a node is defined to be the optimal
value of the child node for that move.

If the optimal values of all children are known, then it
is trivial to select the optimal move at the parent: the Black
(White) player simply chooses the move with the high-
est (lowest) action-value. Assuming that the tree is finite,
the optimal value of each node can be computed by work-
ing backward from the leaves, using a recursive procedure
known as minimax search.

While minimax search leads to optimal actions, it is
utterly intractable for most interesting games; the compu-
tation is proportional to the size of the game tree, which
grows exponentially with its depth. A more practical alter-
native is to consider a subtree of the game tree with limited
depth. In this case, computation begins at the leaves of
the subtree. The (unknown) true optimal values at the leaf
nodes are replaced with values returned by a heuristic evalu-
ation function. If the evaluation function is of sufficiently
“high quality,” the action computed is expected to be near-
optimal. The computation can be sped up by various tech-
niques, the most well-known being a − b pruning, which is
often used together with iterative deepening.

The evaluation function is typically provided by human
experts, or it can be tuned either using supervised learning
based on a database of games or using reinforcement learn-
ing and self-play.22 Programs based on variants of minimax
search with a − b pruning have outperformed human world
champions in chess, checkers, and othello.22

3.2. Monte-Carlo simulation
In some games of interest, for example in the game of Go,
it has proven hard to encode or learn an evaluation function
of sufficient quality to achieve good performance in a mini-
max search. Instead of constructing an evaluation function,
an alternative idea is to first construct a policy (sometimes
called a playout policy) and then to use that policy to esti-
mate the values of states. A policy is a mapping from states
to actions; in other words, a policy determines the way to
play the game. Given a policy pair (one policy for each player,
which if symmetric can be represented by a single policy),
a value estimate for a state s can be obtained by simulation:
start in state s and follow the respective policies in an alter-
nating manner from s until the end of the game, and use the
reward in the terminal state as the value of state s. In some
games, it is easier to estimate the value indirectly by simula-
tion, that is, it may be easier to come up with a simple policy
that leads to good value estimates via simulation than to
estimate those values directly.

A major problem with the approach described so far
is that it can be very sensitive to the choice of policy. For
example, a good policy may choose an optimal action in 90%
of states but a suboptimal action in the remaining 10% of
states. Because the policy is fixed, the value estimates will
suffer from systematic errors, as simulation will always pro-
duce a single, fixed sequence of actions from a given state.
These errors may often have disastrous consequences, lead-
ing to poor evaluations and an exploitable strategy.

Monte-Carlo methods address this problem by adding
explicit randomization to the policy and using the expected
reward of that policy as the value estimate. The potential
benefit of randomization is twofold: it can reduce the influ-
ence of systematic errors and it also allows one to make a
distinction between states where it is “easy to win” (i.e.,
from where most reasonable policy pairs lead to a high
reward terminal state) and states where it is “hard to win.”
This distinction pays off because real-world opponents are
also imperfect, and therefore it is worthwhile to bias the
game toward states with many available winning strategies.

-2

-2

+7 -2 +9 -4

-4

+5 +9 -6 -4-4 -2+7 +3

max

min

max

min

a1 a2 a1

a1

b1 b1b2 b2

a2

a2

a1 a1a2 a2

Figure 3. A minimax game tree for a small two-player game. Black
selects actions to maximize his value; White selects actions to
minimize her value.

1. The algorithm called the Minimax algorithm was invented by Von Neumann and
Morgenstern in 1944, as part of game theory.

2. The root of the tree is the current board position, it is MAXs turn to play
3. MAX generates the tree as much as it can, and picks the best move assuming that MIN will

also choose the moves for herself.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Dealing with Huge Trees

While minimax search leads to optimal actions, it is intractable for most
interesting games; the computation time is proportional to the size of the
game tree, which grows exponentially with its depth.

Size of the full game tree — O(bm).

Impractical to search to the end of
the game.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

A subtree of limited depth.

Heuristic evaluation function
estimates values of leaf nodes.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Depth limit +
Position evaluation function (E)

Monte Carlo Tree Search (MCTS) 18 / 46 W. Jaśkowski, M. Szubert

Dealing with Huge Trees

While minimax search leads to optimal actions, it is intractable for most
interesting games; the computation time is proportional to the size of the
game tree, which grows exponentially with its depth.

Size of the full game tree — O(bm).

Impractical to search to the end of
the game.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

A subtree of limited depth.

Heuristic evaluation function
estimates values of leaf nodes.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Depth limit +
Position evaluation function (E)

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

How to Evaluate a Game Position (State)?
Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

Chapter 6 22

If the features of the board can be judged independently, then a
good choice is a weighted linear function:

E (s) = w1f1(s) + w2f2(s) + ...+ wnfn(s)

Monte Carlo Tree Search (MCTS) 19 / 46 W. Jaśkowski, M. Szubert

How to Evaluate a Game Position (State)?
Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

Chapter 6 22

If the features of the board can be judged independently, then a
good choice is a weighted linear function:

E (s) = w1f1(s) + w2f2(s) + ...+ wnfn(s)

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

How to Evaluate a Game Position (State)?

Beginners evaluate position by giving each piece a value ...

+9 +3 +3 +5 +1

-9 -3 -3 -5 -1

... and summing up values of pieces in a given state.

Monte Carlo Tree Search (MCTS) 20 / 46 W. Jaśkowski, M. Szubert

How to Evaluate a Game Position (State)?

Beginners evaluate position by giving each piece a value ...

+9 +3 +3 +5 +1

-9 -3 -3 -5 -1

... and summing up values of pieces in a given state.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

How to Evaluate a Game Position (State)?

Experts evaluate position using sophisticated features, but:
hard to extract these features,
hard to quantify their weights.

Sophisticated Evaluation Function

Experts evaluate position using sophisticated features

Knight on outpost

Weak kingside pawn structure

e.g. Deep Blue evaluates position using 8000 features

+0.5

+0.7

knight on outpost

Sophisticated Evaluation Function

Experts evaluate position using sophisticated features

Knight on outpost

Weak kingside pawn structure

e.g. Deep Blue evaluates position using 8000 features

+0.5

+0.7

weak kingside
pawn structure

Deep Blue employed more than 8000 features.

Evaluation functions can be learned by e.g. temporal difference
learning or evolutionary algorithms.

Monte Carlo Tree Search (MCTS) 21 / 46 W. Jaśkowski, M. Szubert

How to Evaluate a Game Position (State)?

Experts evaluate position using sophisticated features, but:
hard to extract these features,
hard to quantify their weights.

Sophisticated Evaluation Function

Experts evaluate position using sophisticated features

Knight on outpost

Weak kingside pawn structure

e.g. Deep Blue evaluates position using 8000 features

+0.5

+0.7

knight on outpost

Sophisticated Evaluation Function

Experts evaluate position using sophisticated features

Knight on outpost

Weak kingside pawn structure

e.g. Deep Blue evaluates position using 8000 features

+0.5

+0.7

weak kingside
pawn structure

Deep Blue employed more than 8000 features.

Evaluation functions can be learned by e.g. temporal difference
learning or evolutionary algorithms.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Minimax Search Enhancements

Alpha-Beta Pruning

Branch and Bound pruning of nodes outside window [α, β].

Can double the search depth with optimal ordering.

Monte Carlo Tree Search (MCTS) 22 / 46 W. Jaśkowski, M. Szubert

Minimax Search Enhancements

Alpha-Beta Pruning

Branch and Bound pruning of nodes outside window [α, β].

Can double the search depth with optimal ordering.

1. Kończąc temat podstawowego algorytmu przeszukiwania drzewa gry, minimax
2. Warto wspomnieć o tym, że zaproponowanych zostało wiele usprawnień
3. Jednym z najpopularniejszych jest mechanizm przycinania drzewa alpha-beta
4. Podczas przeszukiwania drzewa utrzymywany jest przedział wartosci [alpha, beta]
5. alpha = maksymalny wynik gracza MAX
6. beta = minimalny wynik gracza MIN
7. Pozwala to odcinać gałęzie drzewa które nie wpłyną na optymalną grę
8. DZięki tym oszczędnościom możliwe jest zwiększenie głębokości przeszukiwania

maksymalnie dwukrotnie
9. Programs based on variants of minimax search with alpha-beta pruning have
outperformed human world champions in chess, checkers, and othello.

10. Ale nie dla Go. gdzie podstawowy problem polega na tym, ze trudno jest zaprojektowac
sensowna funkcje oceny heurystycznej

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 23 / 46 W. Jaśkowski, M. Szubert

Odpowiedzia na ten problem sa wlasnie szeroko rozumiane metody Monte Carlo

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Monte Carlo Simulations

Motivation

problem: evaluation functions might be hard to learn or design

solution 1: construct a playout policy to estimate values of states

drawbacks: sensitive to the choice of policy and systematic errors
solution 2: Monte-Carlo adds explicit randomization.

reduce influence of systematic errors
distinctions between states: ”easy to win” vs. ”hard to win”

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Classical Approach: Depth limit +
Position evaluation function (E)

Monte Carlo Approach:
simulated playouts

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Monte Carlo Tree Search (MCTS) 24 / 46 W. Jaśkowski, M. Szubert

Monte Carlo Simulations

Motivation

problem: evaluation functions might be hard to learn or design

solution 1: construct a playout policy to estimate values of states

drawbacks: sensitive to the choice of policy and systematic errors
solution 2: Monte-Carlo adds explicit randomization.

reduce influence of systematic errors
distinctions between states: ”easy to win” vs. ”hard to win”

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Classical Approach: Depth limit +
Position evaluation function (E)

Monte Carlo Approach:
simulated playouts

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 121. Zanim przejde do metody MCTS, powiem o historycznie wcześniejszych metodach
wykorzystujacych tzw. symulacje Monte Carlo do ewaluacji stanu

2. Bezposrednia motywacja dla tych metod sa wlasnie sytuacje gdzie klasyczne podejscie sie
nie sprawdza

3. Alternatywa dla uzycia funkcji ewaluacji na plytkim poziomie przeszukiwania jest
skonstruowanie Tzw. Playout Policy i rozwiniecie drzewa do konca wg. tej strategii

4. Użycie końcowych wyników do estymacji wartości bieżącego stanu
5. Jesli uzylibysmy deterministycznej strategii i sama gra jest deterministyczna wowczas...
6. Estymacja byłaby obciazona systematycznym bledem
7. Dlatego tez metody MC opieraja sie z reguly na losowych strategiach, wrecz jednorodnie

losowych

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Monte Carlo Simulations

Motivation

problem: evaluation functions might be hard to learn or design

solution 1: construct a playout policy to estimate values of states

drawbacks: sensitive to the choice of policy and systematic errors
solution 2: Monte-Carlo adds explicit randomization.

reduce influence of systematic errors
distinctions between states: ”easy to win” vs. ”hard to win”

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Classical Approach: Depth limit +
Position evaluation function (E)

Monte Carlo Approach:
simulated playouts

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Monte Carlo Tree Search (MCTS) 24 / 46 W. Jaśkowski, M. Szubert

Monte Carlo Simulations

Motivation

problem: evaluation functions might be hard to learn or design

solution 1: construct a playout policy to estimate values of states

drawbacks: sensitive to the choice of policy and systematic errors
solution 2: Monte-Carlo adds explicit randomization.

reduce influence of systematic errors
distinctions between states: ”easy to win” vs. ”hard to win”

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Classical Approach: Depth limit +
Position evaluation function (E)

Monte Carlo Approach:
simulated playouts

Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 121. Zanim przejde do metody MCTS, powiem o historycznie wcześniejszych metodach
wykorzystujacych tzw. symulacje Monte Carlo do ewaluacji stanu

2. Bezposrednia motywacja dla tych metod sa wlasnie sytuacje gdzie klasyczne podejscie sie
nie sprawdza

3. Alternatywa dla uzycia funkcji ewaluacji na plytkim poziomie przeszukiwania jest
skonstruowanie Tzw. Playout Policy i rozwiniecie drzewa do konca wg. tej strategii

4. Użycie końcowych wyników do estymacji wartości bieżącego stanu
5. Jesli uzylibysmy deterministycznej strategii i sama gra jest deterministyczna wowczas...
6. Estymacja byłaby obciazona systematycznym bledem
7. Dlatego tez metody MC opieraja sie z reguly na losowych strategiach, wrecz jednorodnie

losowych

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Flat Monte Carlo

Move Selection

N playouts for each move — sample possible continuation using a
randomized playing policy for both players.

Pick the most valuable move — the value of the move is the average
of the evaluations obtained at the end of the lines of play.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.

Rémi Coulom The Monte Carlo Revolution in Go 7 / 12

Monte Carlo Tree Search (MCTS) 25 / 46 W. Jaśkowski, M. Szubert

Flat Monte Carlo

Move Selection

N playouts for each move — sample possible continuation using a
randomized playing policy for both players.

Pick the most valuable move — the value of the move is the average
of the evaluations obtained at the end of the lines of play.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.

Rémi Coulom The Monte Carlo Revolution in Go 7 / 12

1. Konkretnym algorytmem planowania opartym na tym pomysle jest Flat MC

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Problem with Flat Monte Carlo

Short-sighted evaluation

For instance, random simulations for a move may look good at first, but
if it turns out that this move can be followed up by a killer opponent
move, its evaluation may decrease when it is searched deeper.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.

Rémi Coulom The Monte Carlo Revolution in Go 7 / 12

Introduction
Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

3/92/69/15

Principle

More playouts to best
moves

Apply recursively

Under some simple
conditions: proven
convergence to optimal
move when
#playouts⇥ ⇤

Rémi Coulom The Monte Carlo Revolution in Go 8 / 12

Monte Carlo Tree Search (MCTS) 26 / 46 W. Jaśkowski, M. Szubert

Problem with Flat Monte Carlo

Short-sighted evaluation

For instance, random simulations for a move may look good at first, but
if it turns out that this move can be followed up by a killer opponent
move, its evaluation may decrease when it is searched deeper.

Introduction
Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.

Rémi Coulom The Monte Carlo Revolution in Go 7 / 12

Introduction
Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

3/92/69/15

Principle

More playouts to best
moves

Apply recursively

Under some simple
conditions: proven
convergence to optimal
move when
#playouts⇥ ⇤

Rémi Coulom The Monte Carlo Revolution in Go 8 / 12

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Monte Carlo Simulations + Tree Search

Monte Carlo Tree Search

Combines Monte-Carlo simulation
with game tree search.

Run a number of simulations and
selectively build up a search tree.
Gradually adapt and improve the
simulation policy:

tree policy — intelligent moves,
default policy — random moves.

The values of nodes are estimated
by Monte Carlo simulations.

www.hr.is!

MCTS in CADIA Player"

•  Selection"
–  UCT / RAVE"
–  (+tie-breaking)"

•  Expansion"
–  Add one node per

simulation"
•  Back-propagation"

–  Averaging"
–  Learning / updating"

•  Playout"
–  Using knowledge learned

online"
8 Maastricht, September 2010

Tree
Policy

Default
Policy

Monte Carlo Tree Search (MCTS) 27 / 46 W. Jaśkowski, M. Szubert

Monte Carlo Simulations + Tree Search

Monte Carlo Tree Search

Combines Monte-Carlo simulation
with game tree search.

Run a number of simulations and
selectively build up a search tree.
Gradually adapt and improve the
simulation policy:

tree policy — intelligent moves,
default policy — random moves.

The values of nodes are estimated
by Monte Carlo simulations.

www.hr.is!

MCTS in CADIA Player"

•  Selection"
–  UCT / RAVE"
–  (+tie-breaking)"

•  Expansion"
–  Add one node per

simulation"
•  Back-propagation"

–  Averaging"
–  Learning / updating"

•  Playout"
–  Using knowledge learned

online"
8 Maastricht, September 2010

Tree
Policy

Default
Policy

1. Monte-Carlo tree search (MCTS) combines Monte-Carlo simulation with game tree search.
It proceeds by selectively growing a game tree. As in minimax search, each node in the tree
corresponds to a single state of the game. However, unlike minimax search, the values of
nodes (including both leaf nodes and interior nodes) are now estimated by Monte- Carlo
simulation.

2. One of the key ideas of MCTS is to gradually adapt and improve this simulation policy. As
more simulations are run, the game tree grows larger and the Monte-Carlo values at the
nodes become more accurate, providing a great deal of useful information that can be used
to bias the policy to- wards selecting actions which lead to child nodes with high values.

3. The algorithm progressively builds a partial game tree, guided by the results of previ- ous
exploration of that tree.

4. The tree is used to estimate the values of moves, with these estimates (particularly those
for the most promising moves) becoming more accurate as the tree is built.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

The Family of MCTS Algorithms

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

Monte Carlo Tree Search (MCTS) 28 / 46 W. Jaśkowski, M. Szubert

The Family of MCTS Algorithms

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

1. Family of MCTS algorithms
2. Zmienne - tree policy, default policy

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

The Family of MCTS Algorithms

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

Monte Carlo Tree Search (MCTS) 28 / 46 W. Jaśkowski, M. Szubert

The Family of MCTS Algorithms

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

1. Family of MCTS algorithms
2. Zmienne - tree policy, default policy

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5
COMP-424, Lecture 6 - January 23, 2013 9

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5COMP-424, Lecture 6 - January 23, 2013 10

Monte Carlo Tree Search (MCTS) 29 / 46 W. Jaśkowski, M. Szubert

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5
COMP-424, Lecture 6 - January 23, 2013 9

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5COMP-424, Lecture 6 - January 23, 2013 10

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5
COMP-424, Lecture 6 - January 23, 2013 9

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5COMP-424, Lecture 6 - January 23, 2013 10

Monte Carlo Tree Search (MCTS) 29 / 46 W. Jaśkowski, M. Szubert

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5
COMP-424, Lecture 6 - January 23, 2013 9

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5COMP-424, Lecture 6 - January 23, 2013 10

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 11

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 12

Monte Carlo Tree Search (MCTS) 29 / 46 W. Jaśkowski, M. Szubert

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 11

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 12

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 11

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 12

Monte Carlo Tree Search (MCTS) 29 / 46 W. Jaśkowski, M. Szubert

MCTS: Step by step

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 11

Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

COMP-424, Lecture 6 - January 23, 2013 12

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 30 / 46 W. Jaśkowski, M. Szubert

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

UCT Algorithm

Upper Confidence Bounds for Trees (UCT)

The most popular algorithm in the MCTS family which is consistent, i.e.,
given enough time, the algorithm will find the optimal values for all nodes
of the tree, and can therefore select the optimal action at the root state.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

Exploitation-Exploration balance

The algorithm must balance between testing an alternative that looks
currently the best (to obtain a precise estimate) and the exploration of
other alternatives (to ensure that some good alternative is not missed).

Monte Carlo Tree Search (MCTS) 31 / 46 W. Jaśkowski, M. Szubert

UCT Algorithm

Upper Confidence Bounds for Trees (UCT)

The most popular algorithm in the MCTS family which is consistent, i.e.,
given enough time, the algorithm will find the optimal values for all nodes
of the tree, and can therefore select the optimal action at the root state.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

Exploitation-Exploration balance

The algorithm must balance between testing an alternative that looks
currently the best (to obtain a precise estimate) and the exploration of
other alternatives (to ensure that some good alternative is not missed).

1. W jaki sposob przechodzi po drzewie, w ktora strone rozbudowywac drzewo
2. In order to find the best move in the root, one has to determine the best moves in the

internal nodes as well.
3. Since the estimates of the values of moves rely on the estimates of the values of the (best)

successor nodes, we must have small estimation errors for the latter ones.
4. The problem reduces to getting the estimation error decay quickly.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

UCT Algorithm

Upper Confidence Bounds for Trees (UCT)

The most popular algorithm in the MCTS family which is consistent, i.e.,
given enough time, the algorithm will find the optimal values for all nodes
of the tree, and can therefore select the optimal action at the root state.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

Exploitation-Exploration balance

The algorithm must balance between testing an alternative that looks
currently the best (to obtain a precise estimate) and the exploration of
other alternatives (to ensure that some good alternative is not missed).

Monte Carlo Tree Search (MCTS) 31 / 46 W. Jaśkowski, M. Szubert

UCT Algorithm

Upper Confidence Bounds for Trees (UCT)

The most popular algorithm in the MCTS family which is consistent, i.e.,
given enough time, the algorithm will find the optimal values for all nodes
of the tree, and can therefore select the optimal action at the root state.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

Exploitation-Exploration balance

The algorithm must balance between testing an alternative that looks
currently the best (to obtain a precise estimate) and the exploration of
other alternatives (to ensure that some good alternative is not missed).

1. W jaki sposob przechodzi po drzewie, w ktora strone rozbudowywac drzewo
2. In order to find the best move in the root, one has to determine the best moves in the

internal nodes as well.
3. Since the estimates of the values of moves rely on the estimates of the values of the (best)

successor nodes, we must have small estimation errors for the latter ones.
4. The problem reduces to getting the estimation error decay quickly.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

MCTS Tree

MARCH 2012 | VOL. 55 | NO. 3 | COMMUNICATIONS OF THE ACM 109

Note that the concepts of “easy” and “hard” do not make
sense against a perfect opponent.

When the policy is randomized, computing the exact
expected value of a state under the policy can be as hard as
(or even harder than) computing its optimal value. Luckily,
Monte-Carlo methods can give a good approximation to the
expected value of a state. The idea is simply to run a num-
ber of simulations by sampling the actions according to the
randomized policy. The rewards from these simulations are
then averaged to give the Monte-Carlo value estimate of the
initial state.

In detail, the value of action a in position s0 (the root of
the game tree) is estimated as follows. Run N simulations
from state s0 until the end of the game, using a fixed random-
ized policy for both players. Let N(a) be the number of these
simulations in which a is the first action taken in state s0. Let
W(a) be the total reward collected by Black in these games.
Then, the value of action a is estimated by ()

()
W a
N a .

The use of Monte-Carlo methods in games dates back to
1973 when Widrow et al.24 applied Monte-Carlo simulation
to blackjack. The use of Monte-Carlo methods in imper-
fect information and stochastic games is quite natural.
However, the idea of artificially injecting noise into perfect
information, deterministic games is less natural; this idea
was first considered by Abramson.2 Applications of Monte-
Carlo methods to the game of Go are discussed by Bouzy and
Helmstetter.6

3.3. Monte-Carlo tree search
Monte-Carlo tree search (MCTS) combines Monte-Carlo
simulation with game tree search. It proceeds by selectively
growing a game tree. As in minimax search, each node in
the tree corresponds to a single state of the game. However,
unlike minimax search, the values of nodes (including both
leaf nodes and interior nodes) are now estimated by Monte-
Carlo simulation (Figure 4).

In the previous discussion of Monte-Carlo simulation, we
assumed that a single, fixed policy was used during simula-
tion. One of the key ideas of MCTS is to gradually adapt and
improve this simulation policy. As more simulations are run,

the game tree grows larger and the Monte-Carlo values at the
nodes become more accurate, providing a great deal of use-
ful information that can be used to bias the policy toward
selecting actions which lead to child nodes with high values.
On average, this bias improves the policy, resulting in simu-
lations that are closer to optimal. The stronger the bias, the
more selective the game tree will be, resulting in a strongly
asymmetric tree that expands the highest value nodes most
deeply. Nevertheless, the game tree will only typically con-
tain a small subtree of the overall game. At some point, the
simulation will reach a state that is not represented in the
tree. At this point, the algorithm reverts to a single, fixed pol-
icy, which is followed by both players until a terminal state
is reached, just like Monte-Carlo simulation. This part of the
simulation is known as a roll-out.

More specifically, MCTS can be described by four
phases. Until a stopping criterion is met (usually a limit on
available computation time), MCTS repeats four phases:
descent, roll-out, update, and growth. During the descent
phase, initiated at the current state s0, MCTS iteratively
selects the highest scoring child node (action) of the cur-
rent state. The score may simply be the value of the child
node, or may incorporate an exploration bonus (see next
section). At the end of the descent phase, that is, upon
reaching a leaf node of the current tree, the roll-out phase
begins, where just like in Monte-Carlo simulation, a fixed,
stochastic policy is used to select legal moves for both play-
ers until the game terminates. At the end of the roll-out, the
final position is scored to determine the reward of Black. In
the update phase, the statistics (number of visits and num-
ber of wins) attached to each node visited during descent
are updated according to the result of the game. In the
growth phase, the first state visited in the roll-out is added
to the tree, and its statistics are initialized.

3.4. Upper confidence bounds on trees (UCT)
An extremely desirable property of any game-tree-search
algorithm is consistency, that is, given enough time, the
search algorithm will find the optimal values for all nodes
of the tree, and can therefore select the optimal action at
the root state. The UCT algorithm is a consistent version of
Monte-Carlo tree search.

If all leaf value estimates were truly the optimal val-
ues, one could achieve consistency at the parent nodes by
applying greedy action selection, which simply chooses the
action with the highest value in each node. If all descen-
dants of a given node have optimal value estimates, then
greedy action selection produces optimal play from that
node onward, and therefore simulation will produce an
optimal value estimate for that node. By induction, the
value estimate for all nodes will eventually become opti-
mal, and ultimately this procedure will select an optimal
action at the root.

However, the value estimates are not usually opti-
mal for two reasons: (i) the policy is stochastic, so there
is some inherent randomness in the values, and (ii) the
policy is imperfect. Thus, going with the action that has
the highest value estimate can lead to suboptimal play,
for example, if the value of the optimal action was initially

0/1 6/7 2/3

3/4 0/1 1/12/2

0/1 2/2 1/1

1/1

01111111 1 100

9/12 Root

Search tree

Roll-outs

Reward

max

min

max

min

max

a1

a1 a2 a3

a3

b1

b1

b1 b2b3

a1

Figure 4. Estimating values of a minimax game tree by Monte-Carlo
tree search.

Monte Carlo Tree Search (MCTS) 32 / 46 W. Jaśkowski, M. Szubert

MCTS Tree

MARCH 2012 | VOL. 55 | NO. 3 | COMMUNICATIONS OF THE ACM 109

Note that the concepts of “easy” and “hard” do not make
sense against a perfect opponent.

When the policy is randomized, computing the exact
expected value of a state under the policy can be as hard as
(or even harder than) computing its optimal value. Luckily,
Monte-Carlo methods can give a good approximation to the
expected value of a state. The idea is simply to run a num-
ber of simulations by sampling the actions according to the
randomized policy. The rewards from these simulations are
then averaged to give the Monte-Carlo value estimate of the
initial state.

In detail, the value of action a in position s0 (the root of
the game tree) is estimated as follows. Run N simulations
from state s0 until the end of the game, using a fixed random-
ized policy for both players. Let N(a) be the number of these
simulations in which a is the first action taken in state s0. Let
W(a) be the total reward collected by Black in these games.
Then, the value of action a is estimated by ()

()
W a
N a .

The use of Monte-Carlo methods in games dates back to
1973 when Widrow et al.24 applied Monte-Carlo simulation
to blackjack. The use of Monte-Carlo methods in imper-
fect information and stochastic games is quite natural.
However, the idea of artificially injecting noise into perfect
information, deterministic games is less natural; this idea
was first considered by Abramson.2 Applications of Monte-
Carlo methods to the game of Go are discussed by Bouzy and
Helmstetter.6

3.3. Monte-Carlo tree search
Monte-Carlo tree search (MCTS) combines Monte-Carlo
simulation with game tree search. It proceeds by selectively
growing a game tree. As in minimax search, each node in
the tree corresponds to a single state of the game. However,
unlike minimax search, the values of nodes (including both
leaf nodes and interior nodes) are now estimated by Monte-
Carlo simulation (Figure 4).

In the previous discussion of Monte-Carlo simulation, we
assumed that a single, fixed policy was used during simula-
tion. One of the key ideas of MCTS is to gradually adapt and
improve this simulation policy. As more simulations are run,

the game tree grows larger and the Monte-Carlo values at the
nodes become more accurate, providing a great deal of use-
ful information that can be used to bias the policy toward
selecting actions which lead to child nodes with high values.
On average, this bias improves the policy, resulting in simu-
lations that are closer to optimal. The stronger the bias, the
more selective the game tree will be, resulting in a strongly
asymmetric tree that expands the highest value nodes most
deeply. Nevertheless, the game tree will only typically con-
tain a small subtree of the overall game. At some point, the
simulation will reach a state that is not represented in the
tree. At this point, the algorithm reverts to a single, fixed pol-
icy, which is followed by both players until a terminal state
is reached, just like Monte-Carlo simulation. This part of the
simulation is known as a roll-out.

More specifically, MCTS can be described by four
phases. Until a stopping criterion is met (usually a limit on
available computation time), MCTS repeats four phases:
descent, roll-out, update, and growth. During the descent
phase, initiated at the current state s0, MCTS iteratively
selects the highest scoring child node (action) of the cur-
rent state. The score may simply be the value of the child
node, or may incorporate an exploration bonus (see next
section). At the end of the descent phase, that is, upon
reaching a leaf node of the current tree, the roll-out phase
begins, where just like in Monte-Carlo simulation, a fixed,
stochastic policy is used to select legal moves for both play-
ers until the game terminates. At the end of the roll-out, the
final position is scored to determine the reward of Black. In
the update phase, the statistics (number of visits and num-
ber of wins) attached to each node visited during descent
are updated according to the result of the game. In the
growth phase, the first state visited in the roll-out is added
to the tree, and its statistics are initialized.

3.4. Upper confidence bounds on trees (UCT)
An extremely desirable property of any game-tree-search
algorithm is consistency, that is, given enough time, the
search algorithm will find the optimal values for all nodes
of the tree, and can therefore select the optimal action at
the root state. The UCT algorithm is a consistent version of
Monte-Carlo tree search.

If all leaf value estimates were truly the optimal val-
ues, one could achieve consistency at the parent nodes by
applying greedy action selection, which simply chooses the
action with the highest value in each node. If all descen-
dants of a given node have optimal value estimates, then
greedy action selection produces optimal play from that
node onward, and therefore simulation will produce an
optimal value estimate for that node. By induction, the
value estimate for all nodes will eventually become opti-
mal, and ultimately this procedure will select an optimal
action at the root.

However, the value estimates are not usually opti-
mal for two reasons: (i) the policy is stochastic, so there
is some inherent randomness in the values, and (ii) the
policy is imperfect. Thus, going with the action that has
the highest value estimate can lead to suboptimal play,
for example, if the value of the optimal action was initially

0/1 6/7 2/3

3/4 0/1 1/12/2

0/1 2/2 1/1

1/1

01111111 1 100

9/12 Root

Search tree

Roll-outs

Reward

max

min

max

min

max

a1

a1 a2 a3

a3

b1

b1

b1 b2b3

a1

Figure 4. Estimating values of a minimax game tree by Monte-Carlo
tree search.

1. Problem balansowania miedzy eksploracja a eksploatacja pojawia sie w kazdym wezle w
drzewie

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Selection? Multi-armed bandit!

sequential decision problem

K actions

slot machines with unknown µ and
distributions

rewards: Xi,n for 1 ≤ i ≤ K and 1 ≤ n

goal: maximize cumulative reward

exploitation-exploration dilemma

solution: policy indicating which arm to
play based on past rewards

Monte Carlo Tree Search (MCTS) 33 / 46 W. Jaśkowski, M. Szubert

Selection? Multi-armed bandit!

sequential decision problem

K actions

slot machines with unknown µ and
distributions

rewards: Xi,n for 1 ≤ i ≤ K and 1 ≤ n

goal: maximize cumulative reward

exploitation-exploration dilemma

solution: policy indicating which arm to
play based on past rewards

1. Okazuje sie, ze kwestia znalezienia rownowagi pomiedzy eksploatacja a eksploracja
2. Byla dosc intensywnie studiowana w kontekscie prostego sekwencyjnego problemu

decyzyjnego
3. zwanego problemem wielorekiego bandyty
4. where i idicates the arm played
5. (must be estimated based on past observations)

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Solution to the bandit problem

Goal: minimize the regret:

R(n) = nµ∗ −
K∑

j=1

µjE[Tj(n)]

No policy with regret that grows slower than O(ln(n)) for a large
class of reward distributions [Lai & Robbins, 1985].

UCB1 [Agrawal, 1995] — Optimism in the face of uncertainty:

UCB1(j) = X̄j +

√
2 ln n
nj

Bounds (following from Hoeffding’s tail inequality):

P(
∣∣X̄j − µj

∣∣ ≥
√

2 ln n
nj

) ≤ n−4

Monte Carlo Tree Search (MCTS) 34 / 46 W. Jaśkowski, M. Szubert

Solution to the bandit problem

Goal: minimize the regret:

R(n) = nµ∗ −
K∑

j=1

µjE[Tj(n)]

No policy with regret that grows slower than O(ln(n)) for a large
class of reward distributions [Lai & Robbins, 1985].

UCB1 [Agrawal, 1995] — Optimism in the face of uncertainty:

UCB1(j) = X̄j +

√
2 ln n
nj

Bounds (following from Hoeffding’s tail inequality):

P(
∣∣X̄j − µj

∣∣ ≥
√

2 ln n
nj

) ≤ n−4

1. Proposed an algorithm, which, however was computationally ”hard”
2. Thus: ”solving” means having algorithm not worse asympotically
3. Prosta strategie ktora w tym rozumieniu jest optymalna zaproponowal Agrawal
4. Strategie te mozna nazwac strategia optymizmu w obliczu niepewnosci
5. Sprowadza sie ona do wyboru akcji ktora biorad pod uwage niepewnosc dotychczasowej

estymaty moze miec optymistycznie najwyzsza wartosc oczekiwana
6. Mozna to zapisac w nastepujacy sposob, dla kazdej akcji j defniujac tzw. UCB - gorne

ograniczenie ufnosci
7. Ograniczenie to oblicza sie jako empiryczna wartosc oczekiwana powiekszona o tzw.

optymistyczna poprawke
8. W konsekwencji otrzymujemy gorna granice przedzialu ufnosci w ktorym z duzym

prawdopodobienstwem (co wynika z nierownosci Hoeffdinga) znajduje sie wartosc
oczekiwana danej akcji

9. Wybierajac akcje w ten sposob, za kazdym razem albo wybierzemy wartosc optymalna albo
zredukujemy niepewnosc i szerokosc tego przedzialu dla akcji suboptymalnej

10. Tak wiec, suboptymalne akcje w koncu przestana byc wybierane

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Upper Confidence Bounds for Trees (UCT)

It was found to work also for non-stationary distributions in trees
[Kocsis & Szepesvari, 2006]

UCB1(j) = X̄j + C

√
2 ln n
nj

theoretically, C = 1; in practice chosen experimentally

Exploitation vs Exploration

• Exploitation
- Emphasises reward
- Focusses search

• Exploration
- Encourages exploration of less-tried nodes
- Reduces effect of unlucky playouts

• Exploration term C balances exploration vs exploitation

Cameron Browne, 2010

Exploit Explore

Confidence Bounds
• Confidence in the reward’s accuracy

• More visits = tighter bound

Cameron Browne, 2010

Most Urgent

• Most urgent node has the highest UCB

• Not highest reward

• Not widest spread

Cameron Browne, 2010

2. Expansion

• a) If unexplored child ⇒ expand

Random order reduces bias

• b) If terminal state ⇒ return

Cameron Browne, 2010

Monte Carlo Tree Search (MCTS) 35 / 46 W. Jaśkowski, M. Szubert

Upper Confidence Bounds for Trees (UCT)

It was found to work also for non-stationary distributions in trees
[Kocsis & Szepesvari, 2006]

UCB1(j) = X̄j + C

√
2 ln n
nj

theoretically, C = 1; in practice chosen experimentally

Exploitation vs Exploration

• Exploitation
- Emphasises reward
- Focusses search

• Exploration
- Encourages exploration of less-tried nodes
- Reduces effect of unlucky playouts

• Exploration term C balances exploration vs exploitation

Cameron Browne, 2010

Exploit Explore

Confidence Bounds
• Confidence in the reward’s accuracy

• More visits = tighter bound

Cameron Browne, 2010

Most Urgent

• Most urgent node has the highest UCB

• Not highest reward

• Not widest spread

Cameron Browne, 2010

2. Expansion

• a) If unexplored child ⇒ expand

Random order reduces bias

• b) If terminal state ⇒ return

Cameron Browne, 2010

1. Specyficzna klasa rozkladow niestacjonarnych
2. Kocsis i S udowodnili zbieznosc algorytmu UCT do wartosci minimaxowych
3. Not: highest rewards, highest/lowest bound, but most urgent
4. More visits = tighter bound

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Exploitation & exploration

6/10

0/1 4/5 0/1

1/10/1

5/7 0/2

1/1 2/3

QUCT (s, a) = Q(s, a) + C

s
2 ln n(s)

n(s, a)

Monte Carlo Tree Search (MCTS) 36 / 46 W. Jaśkowski, M. Szubert

Exploitation & exploration

6/10

0/1 4/5 0/1

1/10/1

5/7 0/2

1/1 2/3

QUCT (s, a) = Q(s, a) + C

s
2 ln n(s)

n(s, a)

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Exploitation & exploration

6/10

0/1 4/5 0/1

1/10/1

5/7 0/2

1/1 2/3

QUCT (s, a) = Q(s, a) + C

s
2 ln n(s)

n(s, a)

Monte Carlo Tree Search (MCTS) 36 / 46 W. Jaśkowski, M. Szubert

Exploitation & exploration

6/10

0/1 4/5 0/1

1/10/1

5/7 0/2

1/1 2/3

QUCT (s, a) = Q(s, a) + C

s
2 ln n(s)

n(s, a)

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Monte Carlo Tree Search (MCTS) 37 / 46 W. Jaśkowski, M. Szubert

Presentation Outline

1 Sequential Decision Making

2 Games

3 Game Tree Search

4 Monte Carlo Tree Search

5 Extensions & Domains

6 Conclusions

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Strengths — Anytime & Aheuristic

Anytime

Backpropagates the outcome of each game immediately.

Can be stopped at any time returning the currently best action.

More computing power generally leads to better performance.

Aheuristic

No specific domain knowledge required:
Available actions for a given state (legal moves).
Whether a given state is terminal (game over).

Intelligent moves with no tactical knowledge.

Ideal for General Game Playing.

Monte Carlo Tree Search (MCTS) 38 / 46 W. Jaśkowski, M. Szubert

Strengths — Anytime & Aheuristic

Anytime

Backpropagates the outcome of each game immediately.

Can be stopped at any time returning the currently best action.

More computing power generally leads to better performance.

Aheuristic

No specific domain knowledge required:
Available actions for a given state (legal moves).
Whether a given state is terminal (game over).

Intelligent moves with no tactical knowledge.

Ideal for General Game Playing.

1. allowing the algorithm to run for additional iterations often improves the result.
2. significant improvements in performance may often be achieved using domain-specific

knowledge.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Strengths — Anytime & Aheuristic

Anytime

Backpropagates the outcome of each game immediately.

Can be stopped at any time returning the currently best action.

More computing power generally leads to better performance.

Aheuristic

No specific domain knowledge required:
Available actions for a given state (legal moves).
Whether a given state is terminal (game over).

Intelligent moves with no tactical knowledge.

Ideal for General Game Playing.

Monte Carlo Tree Search (MCTS) 38 / 46 W. Jaśkowski, M. Szubert

Strengths — Anytime & Aheuristic

Anytime

Backpropagates the outcome of each game immediately.

Can be stopped at any time returning the currently best action.

More computing power generally leads to better performance.

Aheuristic

No specific domain knowledge required:
Available actions for a given state (legal moves).
Whether a given state is terminal (game over).

Intelligent moves with no tactical knowledge.

Ideal for General Game Playing.

1. allowing the algorithm to run for additional iterations often improves the result.
2. significant improvements in performance may often be achieved using domain-specific

knowledge.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Game Description Language

Monte Carlo Tree Search (MCTS) 39 / 46 W. Jaśkowski, M. Szubert

Game Description Language

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

General Game Playing Competitions

Held annually by Stanford /
AAAI since 2005.

UCT-based CadiaPlayer
won in 2007.

Currently all players use some
version of MCTS.

Monte Carlo Tree Search (MCTS) 40 / 46 W. Jaśkowski, M. Szubert

General Game Playing Competitions

Held annually by Stanford /
AAAI since 2005.

UCT-based CadiaPlayer
won in 2007.

Currently all players use some
version of MCTS.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Strengths — Asymmetry & Parallelisation

Asymmetric Tree Growth

Tree grows towards more promising areas.

No fixed ply — tree expands to fit search space.

Can go deeper than tradition game tree search.
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric

The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology

The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:

• Flat Monte Carlo: A Monte Carlo method with
uniform move selection and no tree growth.

• Flat UCB: A Monte Carlo method with bandit-based
move selection (2.4) but no tree growth.

• MCTS: A Monte Carlo method that builds a tree to
inform its policy online.

• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB

Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

Easy parallelisation due to independent nature of each simulation.

Monte Carlo Tree Search (MCTS) 41 / 46 W. Jaśkowski, M. Szubert

Strengths — Asymmetry & Parallelisation

Asymmetric Tree Growth

Tree grows towards more promising areas.

No fixed ply — tree expands to fit search space.

Can go deeper than tradition game tree search.
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric

The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology

The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:

• Flat Monte Carlo: A Monte Carlo method with
uniform move selection and no tree growth.

• Flat UCB: A Monte Carlo method with bandit-based
move selection (2.4) but no tree growth.

• MCTS: A Monte Carlo method that builds a tree to
inform its policy online.

• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB

Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

Easy parallelisation due to independent nature of each simulation.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Strengths — Asymmetry & Parallelisation

Asymmetric Tree Growth

Tree grows towards more promising areas.

No fixed ply — tree expands to fit search space.

Can go deeper than tradition game tree search.
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric

The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology

The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:

• Flat Monte Carlo: A Monte Carlo method with
uniform move selection and no tree growth.

• Flat UCB: A Monte Carlo method with bandit-based
move selection (2.4) but no tree growth.

• MCTS: A Monte Carlo method that builds a tree to
inform its policy online.

• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB

Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

Easy parallelisation due to independent nature of each simulation.

Monte Carlo Tree Search (MCTS) 41 / 46 W. Jaśkowski, M. Szubert

Strengths — Asymmetry & Parallelisation

Asymmetric Tree Growth

Tree grows towards more promising areas.

No fixed ply — tree expands to fit search space.

Can go deeper than tradition game tree search.
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric

The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology

The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:

• Flat Monte Carlo: A Monte Carlo method with
uniform move selection and no tree growth.

• Flat UCB: A Monte Carlo method with bandit-based
move selection (2.4) but no tree growth.

• MCTS: A Monte Carlo method that builds a tree to
inform its policy online.

• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB

Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

Easy parallelisation due to independent nature of each simulation.

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Convergence

Converges to optimal (minimax) values given infinite time.

Convergence speed might be improved by some modifications, but
still 90% studies use ”pure” UCT.

Diminishing Returns
• Twice the playouts ≠ twice the strength!

• 10x playouts → 2x strength

Cameron Browne, 2010

Fuego vs GnuGo

IV. Variations

Cameron Browne, 2010

Flat UCB

UCT

BAST

Learning in MCTS
TDL
TDMC(λ)
BAAL

Single-Player MCTS
FUSE

Multi-player MCTS
Coalition Reduction

Recursive Approaches
Reflexive MC
Nested MC
NRPA
Meta-MCTS
HGSTS

Sample-Based Planners
FSSS
TAG
RRTs
UNLEO
UCTSAT
ρUCT
MRW
MHSP

Multi-agent MCTS
Ensemble UCT

Real-time MCTS

Nondeterministic MCTS
Determinization
HOP
Sparse UCT
ISUCT
Multiple MCTS
UCT+
MCαβ
MCCFR
Modelling
Simultaneous Moves

Monte Carlo Tree Search (MCTS) 42 / 46 W. Jaśkowski, M. Szubert

Convergence

Converges to optimal (minimax) values given infinite time.

Convergence speed might be improved by some modifications, but
still 90% studies use ”pure” UCT.

Diminishing Returns
• Twice the playouts ≠ twice the strength!

• 10x playouts → 2x strength

Cameron Browne, 2010

Fuego vs GnuGo

IV. Variations

Cameron Browne, 2010

Flat UCB

UCT

BAST

Learning in MCTS
TDL
TDMC(λ)
BAAL

Single-Player MCTS
FUSE

Multi-player MCTS
Coalition Reduction

Recursive Approaches
Reflexive MC
Nested MC
NRPA
Meta-MCTS
HGSTS

Sample-Based Planners
FSSS
TAG
RRTs
UNLEO
UCTSAT
ρUCT
MRW
MHSP

Multi-agent MCTS
Ensemble UCT

Real-time MCTS

Nondeterministic MCTS
Determinization
HOP
Sparse UCT
ISUCT
Multiple MCTS
UCT+
MCαβ
MCCFR
Modelling
Simultaneous Moves

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Weaknesses

Memory intensive — tree must be kept in memory.

Needs a lot of samples (simulation must be cheap).

Tuning only by empirical studies — the dynamics of search are not
yet fully understood.

Intuitively, Monte-Carlo search methods work best when the estimated
values from shallow searches are similar to the estimated values from deeper
searches, in other words the mean reward of simulations is somewhat
indicative of the optimal value, at all stages of the search.

The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions,
Gelly S., Kocsis L, Shoenauer M., Sebag M., Silver D., Szepesvari C., 2012

Monte Carlo Tree Search (MCTS) 43 / 46 W. Jaśkowski, M. Szubert

Weaknesses

Memory intensive — tree must be kept in memory.

Needs a lot of samples (simulation must be cheap).

Tuning only by empirical studies — the dynamics of search are not
yet fully understood.

Intuitively, Monte-Carlo search methods work best when the estimated
values from shallow searches are similar to the estimated values from deeper
searches, in other words the mean reward of simulations is somewhat
indicative of the optimal value, at all stages of the search.

The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions,
Gelly S., Kocsis L, Shoenauer M., Sebag M., Silver D., Szepesvari C., 2012

1. Czyli gdy latwo szybko przegrac - wtedy symulacje skupiaja sie na takich wlasnie ruchach

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Applications of MCTS

MCTS in Other Games
World Champion AIs

• Go (2006-current)
General Game Playing (2007-current)
Hex (2008-current)
etc...

Unofficial World Champions

• Havannah
Arimaa
Morpion Solitaire
etc...

• Chess is the exception

Cameron Browne, 2010

Applications
Computer Go
MoGo
Fuego
CrazyStone
Leela
Many Faces of Go
SteenVreter
Zen

Realtime Games
Ms-PacMan
Real Time Strategy (RTS) Games
Tron
Dead End

Nondeterministic Games
Bridge
Poker
Magic: The Gathering
Backgammon

Solitaire (Puzzle) Games
Sudoku
Kakuro
Crosswords
Morpion Solitaire
SameGame
Bubble Breaker

Cameron Browne, 2010

Connection Games
Hex
Y
Havannah
Renkula
Lines of Action

Combinatorial Games
Amazons
Arimaa
Khet
Shogi
Mancala
Kriegspiel
Clobber
Othello
Blokus
Focus
Connect Four
Sum of Switches

Multiplayer Games
Settlers of Catan

General Game Playing
CadiaPlayer
Ary
Centurio

NON-GAME DOMAINS

Combinatorial Optimisation
Security
Mixed Integer Programming
Travelling Salesman Problem
Physics Simulations
Function Approximation

Constraint Satisfaction

Scheduling
Printer Scheduling
Production Management
Bus Regulation

Sample-Based Planning
Large State Spaces
Feature Selection

Procedural Content Generation
Language
Game Design
Art

Monte Carlo Tree Search (MCTS) 44 / 46 W. Jaśkowski, M. Szubert

Applications of MCTS

MCTS in Other Games
World Champion AIs

• Go (2006-current)
General Game Playing (2007-current)
Hex (2008-current)
etc...

Unofficial World Champions

• Havannah
Arimaa
Morpion Solitaire
etc...

• Chess is the exception

Cameron Browne, 2010

Applications
Computer Go
MoGo
Fuego
CrazyStone
Leela
Many Faces of Go
SteenVreter
Zen

Realtime Games
Ms-PacMan
Real Time Strategy (RTS) Games
Tron
Dead End

Nondeterministic Games
Bridge
Poker
Magic: The Gathering
Backgammon

Solitaire (Puzzle) Games
Sudoku
Kakuro
Crosswords
Morpion Solitaire
SameGame
Bubble Breaker

Cameron Browne, 2010

Connection Games
Hex
Y
Havannah
Renkula
Lines of Action

Combinatorial Games
Amazons
Arimaa
Khet
Shogi
Mancala
Kriegspiel
Clobber
Othello
Blokus
Focus
Connect Four
Sum of Switches

Multiplayer Games
Settlers of Catan

General Game Playing
CadiaPlayer
Ary
Centurio

NON-GAME DOMAINS

Combinatorial Optimisation
Security
Mixed Integer Programming
Travelling Salesman Problem
Physics Simulations
Function Approximation

Constraint Satisfaction

Scheduling
Printer Scheduling
Production Management
Bus Regulation

Sample-Based Planning
Large State Spaces
Feature Selection

Procedural Content Generation
Language
Game Design
Art

1. Application to many domains (not just games)

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Extensions of MCTS

Known Enhancements

Cameron Browne, 2010

Bandit-Based
UCB1-Tuned
Bayesian UCT
EXP3
HOOT

Selection
FPU
Decisive Moves
Move Groups
Transpositions
Progressive Bias
Opening Books
MCPG
Search Seeding
Parameter Tuning
History Heuristic
Progressive History

Learning
MAST
PAST
FAST

Parallelisation
Leaf
Root
Tree
UCT-Treesplit
Threading
Synchronisation

Considerations
Consistency
Parameterisation
Comparing
Enhancements

AMAF
Permutation
α-AMAF
Some-First
Cutoff
RAVE
Killer RAVE
RAVE-max
PoolRAVE

Game-Theoretic
MCTS-Solver
MC-PNS
Score Bounded MCTS

Pruning
Absolute
Relative
Domain Knowledge

Simulation
Rule-Based
Contextual
Fill the Board

History Heuristics
Evaluation
Balancing
Last Good Reply
Patterns

Backpropagation
Weighting
Score Bonus
Decay
Transposition Tables

Learning Types

Cameron Browne, 2010

Online Learning

• During play

• e.g. History heuristics, AMAF

Offline Learning

• Before play

• e.g. Opening books, patterns, position values, etc.

Monte Carlo Tree Search (MCTS) 45 / 46 W. Jaśkowski, M. Szubert

Extensions of MCTS

Known Enhancements

Cameron Browne, 2010

Bandit-Based
UCB1-Tuned
Bayesian UCT
EXP3
HOOT

Selection
FPU
Decisive Moves
Move Groups
Transpositions
Progressive Bias
Opening Books
MCPG
Search Seeding
Parameter Tuning
History Heuristic
Progressive History

Learning
MAST
PAST
FAST

Parallelisation
Leaf
Root
Tree
UCT-Treesplit
Threading
Synchronisation

Considerations
Consistency
Parameterisation
Comparing
Enhancements

AMAF
Permutation
α-AMAF
Some-First
Cutoff
RAVE
Killer RAVE
RAVE-max
PoolRAVE

Game-Theoretic
MCTS-Solver
MC-PNS
Score Bounded MCTS

Pruning
Absolute
Relative
Domain Knowledge

Simulation
Rule-Based
Contextual
Fill the Board

History Heuristics
Evaluation
Balancing
Last Good Reply
Patterns

Backpropagation
Weighting
Score Bonus
Decay
Transposition Tables

Learning Types

Cameron Browne, 2010

Online Learning

• During play

• e.g. History heuristics, AMAF

Offline Learning

• Before play

• e.g. Opening books, patterns, position values, etc.

1. Hot research topic in AI

Sequential Decision Making Games Game Tree Search MCTS Extensions Conclusions

Timeline of Events

1990 Abramson demonstrates that Monte Carlo simulations
can be used to evaluate value of state

1993 Brugmann applies Monte Carlo methods to the field of computer Go.
1998 MAVEN defeats the world scrabble champion.
2002 Auer et al. propose UCB1 for multi-armed bandit,

laying the theoretical foundation for UCT.
2006 Coulom describes Monte Carlo evaluations for tree-based search,

coining the term Monte Carlo tree search.
2006 Kocsis and Szepesvari associate UCB with tree-based search

to give the UCT algorithm.
2006 Gelly et al. apply UCT to computer Go with remarkable success.
2007 CadiaPlayer becomes world champion General Game Player.
2008 MoGo achieves dan (master) level at 9x9 Go.
2009 FueGo beats top human professional at 9x9 Go.
2013 Crazy Stone beats professional human player

at 19x19 Go with four handicap stones.

Monte Carlo Tree Search (MCTS) 46 / 46 W. Jaśkowski, M. Szubert

Timeline of Events

1990 Abramson demonstrates that Monte Carlo simulations
can be used to evaluate value of state

1993 Brugmann applies Monte Carlo methods to the field of computer Go.
1998 MAVEN defeats the world scrabble champion.
2002 Auer et al. propose UCB1 for multi-armed bandit,

laying the theoretical foundation for UCT.
2006 Coulom describes Monte Carlo evaluations for tree-based search,

coining the term Monte Carlo tree search.
2006 Kocsis and Szepesvari associate UCB with tree-based search

to give the UCT algorithm.
2006 Gelly et al. apply UCT to computer Go with remarkable success.
2007 CadiaPlayer becomes world champion General Game Player.
2008 MoGo achieves dan (master) level at 9x9 Go.
2009 FueGo beats top human professional at 9x9 Go.
2013 Crazy Stone beats professional human player

at 19x19 Go with four handicap stones.

1. MCTS revolutionized Go
2. In the past, there have been two primary techniques for decision-making in adversarial

games: minimax alpha-beta search and knowledge-based approaches.
3. Monte-Carlo tree search represents a new paradigm for planning in this challenging domain,

which may prove to have implications well beyond the two-player games for which it was
originally developed.

Q & A

Thank You

Q & A

Thank You

	Sequential Decision Making
	Games
	Game Tree Search

