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Introduction
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Problem Setting

Multicriteria Decision Aiding (MCDA)

multicriteria decision problems: classification, ranking, and
choice
objects (variants, alternatives, options, candidates)
evaluation criteria with explicit monotonic preference scales
consistent set of criteria – conditions of completeness,
monotonicity, and non-redundancy
information table, decision table
decision maker (user), DM
dominance relation
preference information
indirect preference information – decision examples
(in)consistency of decision examples
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Problem Setting

Table: Exemplary decision table with evaluations of students

Student Mathematics Physics Literature Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad
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Problem Setting

Multicriteria Decision Aiding (MCDA)

preference model – value function, outranking relation, set of
if-then decision rules
induction of preference model from decision examples
application of preference model → preference structure on a
set of objects
exploitation of preference structure → recommendation
importance of readability of a preference model
attractiveness of rule preference model
Dominance-based Rough Set Approach (DRSA) → structuring
of decision examples into lower and upper approximations +
induction and application of decision rules
Variable Consistency DRSA (VC-DRSA) → object consistency
measures (e.g., ε), monotonicity properties (m1)-(m4)
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Problem Setting

Machine Learning (ML)

learning on training objects, testing on unseen (test) objects
stochastic process generating the observed data (the “ground
truth”)
monotonic preference scales converting elementary features to
criteria are (usually) neither used nor revealed explicitly

Preference Learning (PL)

emerging as an important subfield of ML
“learning to rank” (recommender systems, information
retrieval)
minimization of a loss function
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Problem Setting

Beyond the frame of MCDA
DRSA can also handle monotonic relationships observed for
problems where preference are not considered, e.g.,

“the colder the weather, the higher the energy consumption”,
“the more a tomato is red, the more it is ripe”,
“the larger the mass and the smaller the distance, the larger
the gravity”.
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Multicriteria Ranking Problem

Multicriteria ranking problem is a decision problem in which a finite
set of objects A described by a set of criteria G = {g1, . . . , gn} has
to be ordered, either completely (total preorder, also called weak
order) or partially (partial preorder).

Each criterion gi ∈ G is modeled as a real-valued function

gi : A→ R,

with
cardinal scale (i.e., interval scale or ratio scale) or
ordinal scale (given a priori or resulting from an
order-preserving number-coding of non-numerical ordinal
evaluations).
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Multicriteria Ranking Problem

Cardinal criterion = criterion with cardinal scale.
One can measure the intensity of preference (positive or
negative) of object a over object b, taking into account
evaluations gi(a), gi(b), a, b ∈ A, using any function

ki : R2 → R

non-decreasing w.r.t. the first evaluation, and non-increasing
w.r.t. the second evaluation.
Greco S, Matarazzo B, Słowiński R, Rough sets theory for
multicriteria decision analysis, European J. Operational
Research 129(1), 2001, pp. 1–47.
For the sake of simplicity, it is assumed that

ki(gi(a), gi(b)) = ∆i(a, b) = gi(a)− gi(b).

Ordinal criterion = criterion with ordinal scale.
Differences of evaluations are not meaningful.
One can only establish an order of evaluations gi(a), a ∈ A.
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Multicriteria Ranking Problem – Example

Car ranking problem

Order a given set of 14 cars from the best to the worst (with
possible ties), taking into account the following criteria:

1 maximum speed in km/h (to be maximized),
2 comfort: low ≺ medium ≺ high (to be maximized),
3 price in EUR (to be minimized),
4 fuel consumption per 100 km (to be minimized).
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Multicriteria Ranking Problem

Existing MCDA approaches

Multiple Attribute Utility Theory (MAUT) → UTA, GRIP,
AHP, PAPRIKA, . . . .
outranking methods → ELECTRE III and IV, ELECTREGKMS,
PROMETHEE I and II, PROMETHEEGKS, . . .
previous decision rule-based approaches (α, β, γ, and δ)

Existing PL approaches

SVMrank

RankBoost
Ensembles of decision rules
. . .
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General Motivations

Practical importance of the ranking problem.
Many methods applied to solve this problem:

are hard to use (i.e., require too much cognitive effort on the
part of a DM),
are not always appropriate (e.g., in case of ordinal attributes),
produce preference/classification models that are not
meaningful to a DM.

Main difficulty consists in aggregation of different criteria;
usually such aggregation is performed arbitrary, using weights
or aggregation operators like sum, average or distance metrics.
Need for multicriteria modeling method that allows to:

include domain knowledge,
handle possible inconsistencies w.r.t. dominance relation,
avoid using aggregation operators.
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Motivations for Application of DRSA

Dominance-based Rough Set Approach (DRSA), introduced by
Greco, Matarazzo and Słowiński in 90’s:

handles inconsistencies in decision examples, resulting, e.g.,
from imprecise of incomplete information,
takes into account domain knowledge:

domains of attributes, i.e., sets of values that an attribute may
take while being meaningful for user’s perception,
division of attributes into condition and decision attributes,
preference order in the domains of attributes and monotonic
relationships between attributes,

works with heterogeneous attributes – nominal, ordinal
(without conversion) and cardinal (no need of discretization),
enables to infer decision rule model (inductive learning).
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Motivations for Using Decision Rule Model

Advantages of decision rules:
comprehensible form of knowledge representation,
combination of elementary conditions instead of (arbitrary)
aggregation of criteria/features,
can represent any function (more general than utility functions
or binary relations),
give account of most complex interactions among criteria,
accept ordinal evaluation scales,
exploit only ordinal properties of criteria/marginal similarity
functions,
support “backtracking”,
can explain past decisions and predict future decisions,
“resistant” to irrelevant attributes.
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Application of VC-DRSA to
Multicriteria Ranking Problem
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How Multicriteria Ranking Fits MCDA Framework?

Summary of main features
recommendation = ranking,
decision examples = pairwise comparisons of reference objects,
dominance relation on pairs of objects,
consistency of pairs of objects,
pairwise comparison table (PCT),
PCT-oriented adaptation of (VC-)DRSA,
decision rules concern pairs of objects.
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Methodology for Multicriteria Ranking – VC-DRSArank

The only objective information concerning set A of objects is the
dominance relation D over A:

aDb⇔ gi(a) � gi(b) for all gi ∈ G.

However, usually this relation leaves many objects incomparable.

In order to make the objects more comparable, the DM has to
supply some preference information.
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Methodology for Multicriteria Ranking – VC-DRSArank

Sources of preference information:

pairwise comparisons (or ranking, or ordinal classification) of
some reference objects (set AR), i.e., objects relatively well
known to the DM,
ranking of reference objects, called reference ranking,
ordinal classification.
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Methodology for Multicriteria Ranking – VC-DRSArank

Preference information is used to induce a preference model in
terms of a set of “ if . . . then . . . ” decision rules.

After acceptance by the DM, this model can be used to build
a ranking (complete or partial) of all objects from set A.
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Methodology for Multicriteria Ranking – VC-DRSArank

Two problem settings are considered:

(1) set G is a consistent set of criteria, i.e., G satisfies the
properties of:

completeness (all relevant criteria are considered),
monotonicity (the better the evaluation of an object on
considered criteria, the more it is preferable to another object),
non-redundancy (there is no criterion which could be removed
without violating one of the previous two properties),

(2) set G is a not necessarily consistent set of criteria.

Setting (1) → sMCDA; typical for Multiple Criteria Decision Aiding.
Setting (2) → sML; typical for Machine Learning.

21



Pairwise Comparison Table (PCT)

Defined by pairwise comparisons of reference objects.
B ⊆ AR ×AR = set of pairs of compared reference objects.
Given objects a, b ∈ AR, a 6= b, the DM can declare that:

“a is at least as good as b” (a outranks b, denoted by aSb) or
“a is NOT at least as good as b” (a does not outrank b,
denoted by aScb)

or (s)he can abstain from any judgment.
aSa is fixed for every a ∈ AR.
For sMCDA, aSb is fixed for a, b ∈ AR such that aDb.
When comparing objects a, b ∈ AR on a cardinal criterion, one
puts in the corresponding column of PCT value
ki(gi(a), gi(b)) = ∆i(a, b), i.e., difference of evaluations.
When comparing objects a, b ∈ AR on an ordinal criterion, one
puts in the corresponding column of PCT ordered pair of
evaluations (gi(a), gi(b)).
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Pairwise Comparison Table (PCT)

Exemplary PCT, where g1 – cardinal criterion, gn – ordinal criterion:

Pair of ref. Evaluations of pair on criteria Preference
objects g1 . . . gn information
(a, b) ∆1(a, b) . . . (gn(a), gn(b)) aSb

(b, a) ∆1(b, a) . . . (gn(b), gn(a)) bSca

(b, c) ∆1(b, c) . . . (gn(b), gn(c)) bSc

. . . . . . . . . . . . . . .

(d, e) ∆1(d, e) . . . (gn(d), gn(e)) dSce
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Dominance Relation for Pairs of Objects

Dominance principle - monotonic relationship expected to hold
“If a is preferred to b at least as much as c is preferred to d with
respect to each gi ∈ G, then the comprehensive preference of a
over b is not weaker than the comprehensive preference of c over d”.
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Dominance Relation for Pairs of Objects

Marginal dominance relation Di
2 for pairs (a, b), (c, d) ∈ B

For cardinal criterion gi ∈ G:

(a, b)Di
2(c, d)⇔ ∆i(a, b) � ∆i(c, d)

For ordinal criterion gi ∈ G:

(a, b)Di
2(c, d)⇔ gi(a) � gi(c) and gi(d) � gi(b)
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Dominance Relation for Pairs of Objects

Dominance relation D2 for pairs (a, b), (c, d) ∈ B

(a, b)D2(c, d) if (a, b)Di
2(c, d) for all gi ∈ G, i.e.,

if a is preferred to b at least as much as c is preferred to d for all
gi ∈ G.

26



Dominance Cones

For a pair of objects (a, b) ∈ B:

positive dominance cone D+
2 (a, b) = {(c, d) ∈ B : (c, d)D2(a, b)},

negative dominance cone D−2 (a, b) = {(c, d) ∈ B : (a, b)D2(c, d)}.
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Example of Inconsistent Preference Information
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Inconsistency of the Preference Information

Preference information (pairwise comparisons of reference objects)
may be inconsistent w.r.t. dominance relation D2 due to:

uncertainty of information – hesitation of the DM, unstable
preferences,
incomplete determination of the set G of criteria,
granularity of information.

The inconsistency is handled using a dominance-based rough set
approach. Before learning of a rule-based preference model of the
DM, pairs of objects contained in a PCT are structured by
calculation of lower approximations of S and Sc.

In this way, one restricts a priori the set of pairs of objects on which
the preference model is build to a subset of sufficiently consistent
pairs of objects. The goal is to obtain a reliable preference model.
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Adaptation of DRSA – approximation of S and Sc

Lower approximations of S and Sc

S = {(a, b) ∈ B : D+
2 (a, b) ⊆ S},

Sc = {(a, b) ∈ B : D−2 (a, b) ⊆ Sc}.

Upper approximations of S and Sc

S =
⋃

(a,b)∈S

D+
2 (a, b),

Sc =
⋃

(a,b)∈Sc

D−2 (a, b).

Boundaries of S and Sc

Bn(S) = S − S,
Bn(Sc) = Sc − Sc.
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Adaptation of ε-VC-DRSA – approximation of S and Sc

Błaszczyński J, Greco S, Słowiński R, Szeląg M, Monotonic
Variable Consistency Rough Set Approaches, International J. of
Approximate Reasoning, 50(7), 2009, pp. 979–999.

Consistency is quantified using cost-type consistency measures
εS , εSc : B → [0, 1], defined as:

εS(a, b) =
|D+

2 (a, b) ∩ Sc|
|Sc|

, εSc(a, b) =
|D−2 (a, b) ∩ S|

|S|
.

Parameterized lower approximations of S and Sc

S = {(a, b) ∈ S : εS(a, b) ≤ θS},
Sc = {(a, b) ∈ Sc : εSc(a, b) ≤ θSc},

where cost-type consistency thresholds θS , θSc ∈ [0, 1).
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Adaptation of ε-VC-DRSA – Positive Regions of S and Sc

Positive regions of relations S and Sc:

POS(S) =
⋃

(a,b)∈S

D+
2 (a, b),

POS(Sc) =
⋃

(a,b)∈Sc

D−2 (a, b).

Positive regions defined above contain sufficiently consistent pairs
of objects, i.e., pairs belonging to lower approximations of relation
S or Sc, and can also contain some inconsistent pairs of objects
which fall into dominance cones D+

2 (·, ·) or D−2 (·, ·) originating in
pairs of objects from lower approximations of relation S or Sc,
respectively.
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Adaptation of ε-VC-DRSA – Quality of Approximation

The coefficient
γ(S, Sc) =

|S ∪ Sc|
|B|

defines quality of approximation of S and Sc by set G.

γ(S, Sc) ∈ [0, 1], and γ(S, Sc) = 1 indicates that the lower
approximations of S and Sc contain all the pairs of objects from
relations S and Sc, respectively.
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Decision Rules

Decision rules are induced in order to generalize description of
sufficiently consistent pairs of objects from SPCT (i.e., pairs of
objects from parameterized lower approximations of S and Sc).
Only minimal decision rules are considered. A decision rule
suggesting assignment to S (Sc) is minimal, if there is no
other rule suggesting assignment to S (resp. Sc), which has
not stronger conditions and not worse consistency.
Each rule is supported by at least one object from respective
lower approximation and is allowed to cover only objects from
respective positive region.

Decision rules constitute a preference model of the DM who gave
the pairwise comparisons of reference objects.
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Decision Rules

Decision rules are induced using VC-DomLEMa sequential covering
algorithm, which generates minimal set of decision rules.

aBłaszczyński J, Słowiński R, Szeląg M, Sequential Covering Rule Induction
Algorithm for Variable Consistency Rough Set Approaches, Information
Sciences, 181, 2011, 987-1002.

Rule consistency is measured by cost-type rule consistency measure
ε̂T : RT → [0, 1] defined as:

ε̂T (rT ) =

∣∣‖rT ‖ ∩ ¬T ∣∣
|¬T |

,

where T ∈ {S, Sc}, RT = set of rules suggesting assignment to
relation T , rT ∈ RT , ‖rT ‖ = the set of pairs of objects covered by
rT , ¬T = B \ T . For each rT ∈ RT , ε̂T (rT ) ≤ θT has to hold.
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Decision Rules

Exemplary S-decision rule (induced from S):

If ∆maxSpeed(a, b) ≥ 25 ∧
comfort(a) ≥ 3 ∧ comfort(b) ≤ 2

then aSb.
“If car a has max speed at least 25 km/h greater than car b
(cardinal criterion) and car a has comfort at least 3 while car b has
comfort at most 2 (ordinal criterion),
then car a is at least as good as car b”.

Exemplary Sc-decision rule, (induced from Sc):

If ∆maxSpeed(a, b) ≤ 20 ∧
comfort(a) ≤ 2 ∧ comfort(y) ≥ 1

then aScb.

As it can be seen from above, decision rules make use of ordinal
properties of criteria only.
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Application of Decision Rules

Application of induced decision rules on set A of objects to be
ranked yields a preference structure on A.
Each pair of objects (a, b) ∈ A×A can be covered by some
decision rules suggesting assignment to relation S and/or to
relation Sc. It can also be not covered by any rule. In order to
address these possibilities, two relations over set A, denoted by
S and Sc, are defined.
Relations S and Sc:

depend on adopted problem setting (sMCDA or sML),
can be defined as crisp or valued relations,
can be defined differently when are valued relations.
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Application of Decision Rules – Crisp Relations

sMCDA

S ={(a, b) ∈ A×A : (∃ rS ∈ RS : rS covers (a, b)) or a D b},
Sc ={(a, b) ∈ A×A : (∃ rSc ∈ RSc : rSc covers (a, b))

and not a D b}.

sML

S ={(a, b) ∈ A×A : (∃ rS ∈ RS : rS covers (a, b)) or a = b},
Sc ={(a, b) ∈ A×A : (∃ rSc ∈ RSc : rSc covers (a, b))

and not a = b}.

Relation S is reflexive and relation Sc is irreflexive. Moreover,
relations S and Sc are, in general, neither transitive nor complete.
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Application of Decision Rules – Valued Relations

1 Each rule rT covering pair (a, b) is treated as an argument
(piece of evidence) for assignment of this pair to relation T .

2 Strength σ of each argument (rule rT ) defined as:
(σ1) σ(rT ) =

(
1− ε̂T (rT )

)
(“credibility”), or

(σ2) σ(rT ) =
(
1− ε̂T (rT )

)
cf(rT ) (product of “credibility” and

coverage factor),

where cf(rT ) denotes coverage factor of rule rT , defined as
the ratio of the number of pairs of objects supporting rT and
the cardinality of relation T .

3 Aggregated strength of the arguments supporting assignment
of pair (a, b) to relation T is calculated as maximum strength
of these arguments.
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Application of Decision Rules – Valued Relations

sMCDA

S(a, b) =

{
max{σ(rS) : rS ∈ RS , rS covers (a, b)}, if not a D b
1, if a D b

Sc(a, b) =

{
max{σ(rSc) : rSc ∈ RSc , rSc covers (a, b)}, if not a D b
0, if a D b

sML

S(a, b) =

{
max{σ(rS) : rS ∈ RS , rS covers (a, b)}, if not a = b
1, if a = b

Sc(a, b) =

{
max{σ(rSc) : rSc ∈ RSc , rSc covers (a, b)}, if not a = b
0, if a = b

Relation S is reflexive and relation Sc is irreflexive.
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Application of Decision Rules – S/Sc summary

Six versions of VC-DRSArank

VC-DRSArank
c 0|1 – sMCDA, S and Sc crisp,

VC-DRSArank
c 0-1cr – sMCDA, S and Sc valued,

value → max “credibility”,
VC-DRSArank

c 0-1× – sMCDA, S and Sc valued,
value → max “credibility” × coverage factor,

VC-DRSArank
nc 0|1 – sML, S and Sc crisp,

VC-DRSArank
nc 0-1cr – sML, S and Sc valued,

value → max “credibility”„
VC-DRSArank

nc 0-1× – sML, S and Sc valued,
value → max “credibility” × coverage factor.
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Application of Decision Rules

Relations S and Sc can be jointly represented by a directed
multigraph G called preference graph. Each vertex (node) va of G
corresponds to exactly one object a ∈ A. G contains two types of
arcs: S-arcs and Sc-arcs.

In case of crisp relations, an S-arc (Sc-arc) from vertex va to vertex
vb indicates that aSb (resp. aScb).

In case of valued relations, each S-arc (Sc-arc) from vertex va to
vertex vb is assigned the weight equal to S(a, b) (resp. Sc(a, b)).

A final recommendation for the multicriteria ranking problem at
hand, in terms of a total/partial preorder over set A, can be
obtained upon a suitable exploitation of the preference graph.
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Exploitation of Preference Graph

Two ways of exploitation of preference graph G:
1 direct exploitation of relations S and Sc by the Net Flow Score

(NFS) procedure that induces a total preorder over A by
employing scoring function SNF : A→ R defined as:

SNF (a) =
∑

b∈A\{a}

S(a, b)− S(b, a)− Sc(a, b) + Sc(b, a)

2 transformation of preference graph G to another graph G′
representing single valued relation R over set A, then
exploitation of this relation using a ranking method (RM) �,
i.e., a function assigning a total or partial preorder � (A,R)
over A to any finite set A and any valued relation R over A.
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Exploitation of Preference Graph

Valued relation R is defined as:

R(a, b) =
S(a, b) + (1− Sc(a, b))

2
,

where a, b ∈ A.

Scoring function SNF can be expressed in terms of R as:

SNF (a) = 2
[ ∑
b∈A\{a}

R(a, b)−R(b, a)
]
.

Relation R is reflexive.
If relations S and Sc are crisp, then R(a, b) ∈ {0, 12 , 1}, for any
(a, b) ∈ A×A – three-valued relation.
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Literature Review of Ranking Methods

Net Flow Rule (NFR) – yields a weak order using scoring
function SD : A→ R defined as:
SD(a) =

∑
b∈A\{a}

R(a, b)−R(b, a).

Iterative Net Flow Rule (It.NFR) – yields a weak order by
iterative application of scoring function SD.
Min in Favor (MiF) – yields a weak order using scoring
function mF : A→ R defined as: mF (a) = min

b∈A\{a}
R(a, b).

Iterative Min in Favor (It.MiF) – yields a weak order by
iterative application of scoring function mF .
Leaving and Entering Flows (L/E) – yields a partial preorder
being the intersection of two weak orders obtained using
scoring functions SF and −SA, defined as:
SF (a) =

∑
b∈A\{a}

R(a, b), −SA(a) = −
∑

b∈A\{a}
R(b, a).
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Desirable Properties of Ranking Methods
three-valued relation R general relation R
neutrality (N) neutrality (N)
monotonicity (M) monotonicity (M)
covering compatibility (CC) covering compatibility (CC)
discrimination (D) independence of non-discriminating

objects (INDO)
faithfulness (F ) independence of circuits (IC)
data-preservation (DP ) ordinality (O)
independence of non-discriminating continuity (C)
objects (INDO)
independence of circuits (IC) faithfulness (F )
ordinality (O) data-preservation (DP )
greatest-faithfulness (GF ) greatest-faithfulness (GF )

Given priority orders reflect relative importance of the properties.

http://www.cs.put.poznan.pl/mszelag/Research/rankingINS2014.pdf,
str. 17-20
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Desirable Properties of Ranking Methods

(N) – a ranking method does not discriminate between
objects just because of their labels (or, in other words, their
order in the considered set A),
(M) – improving an object cannot decrease its position in the
ranking and, moreover, deteriorating an object cannot improve
its position in the ranking,
(CC) – when a “covers” b, b should not be ranked before a; in
case of exploitation of valued relation R, property CC of
applied RM guaranties that the final ranking produced by this
method respects dominance relation D over set A,
(D) – for each set of objects A there exists at least one valued
relation R over A such that the ranking obtained by a
considered RM is a total order over set A,
(F ) – a RM applied to a weak order preserves it,
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Desirable Properties of Ranking Methods

(DP ) – when it is possible to obtain a partial preorder on the
basis of given transitive crisp relation without deleting
information contained in this relation, a RM does so,
(INDO) – when there is a subset of objects that compare in
the same way to all other objects, the ranking of the other
objects is not affected by the presence of this subset,
(IC) – the ranking is not affected by adding the same positive
or negative value to the weights of all arcs in any cycle of G′,
(O) – ordinality implies that a RM should not make use of the
“cardinal” properties of exploited valued relation,
(C) – “small” changes in an exploited valued relation should
not lead to radical changes in the final ranking produced by a
RM,
(GF ) – if there are some greatest elements of a given set A,
then the top-ranked objects should be chosen among them.
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Desirable Properties of Ranking Methods – 3-valued R
Property / RM NFR It.NFR MiF It.MiF L/E

N T T T T T
M T F T F T
CC T T T T T
D T T F T T
F T T F T T
DP T T T T T

INDO T T F F T
IC T F F F F
O F F T T F
GF F F T T T

where:
T = presence of given property, F = lack of given property,
bold – proof in the literature

All considered ranking methods yield final ranking that respects the
dominance relation on set A (since they have property CC).
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Desirable Properties of Ranking Methods – arbitrary R
Property / RM NFR It.NFR MiF It.MiF L/E

N T T T T T
M T F T F T
CC T T T T T

INDO T T F F T
IC T F F F F
O F F T T F
C T F T F T
F T T F T T
DP T T T T T
GF F F T T T

where:
T = presence of given property, F = lack of given property,
bold – proof in the literature

All considered ranking methods yield final ranking that respects the
dominance relation on set A (since they have property CC).
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Desirable Properties of Ranking Methods – Conclusions

In view of the considered list of desirable properties, the best
ranking method for exploitation of valued relation R is the Net Flow
Rule method. This is because it satisfies most (eight out of ten) of
the properties (which is, however, true also for the L/E ranking
method) and, moreover, satisfies the first eight/five properties.

NFR ranking method is attractive also because it represents an
intuitive way of reasoning about relative worth of objects in set A,
as it takes into account both positive and negative arguments
concerning each object (i.e., strength and weakness of each object).

Exploitation of relation R using NFR ranking method yields the
same ranking (weak order) as direct exploitation of relations S and
Sc using scoring function SNF .
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Analysis of the Final Ranking

Kendall rank correlation coefficient τ ∈ [−1, 1]

τ(�AR ,�A) – measures rank correlation between 2 total preorders.

Modified Kendall rank correlation coefficient τ¬I ∈ [−1, 1]

τ¬I(�AR ,�A) – measures rank correlation between two total
preorders but does not take into account the pairs of objects
(a, b) ∈ AR ×AR such that a and b are considered indifferent
according to the input preference information on AR.

New concordance measure τ ′a (generalizing τ)
aM. Szeląg, Application of the Dominance-based Rough Set Approach to

Ranking and Similarity-based Classification Problems, Ph.D. th., 2015

τ ′(S, Sc,�A) – measures concordance between pairwise
comparisons in terms of S and Sc and final ranking being a partial
preorder.
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Illustrative Example

Notebooks
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Experimental Verification of
VC-DRSArank
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Experimental Setup

Comparisons of six variants of VC-DRSArank and SVMrank

method.
In VC-DRSArank, exploitation of preference structure using
NFR ranking method.
Comparison on 14 ordinal classification problems of different
data set consistency; results of SVMrank could not be
obtained for 3 data sets (marked by ‘(-)’).
To limit computational time, larger data sets were shrinked
(preserving class distribution) to have at most around 350
objects (data sets marked in the table by suffix ‘∗’).
Remark: 317 training objects results in around 100,000
pairwise comparisons!
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Experimental Setup – Data Sets

10-fold stratified cross-validation (repeated 3 times).
In each fold, preference information concerning training part
AR of each data set was obtained from ordinal classification,
i.e., if class of a is not worse than class of b then aSb,
otherwise aScb.
For sMCDA, if ordinal classification implied aScb but aDb,
then the preference information was “corrected” by assuming
aSb.
In each fold, performance on test part A of each data set was
measured in terms of τ(�i

A,�
f
A) and τ¬I(�i

A,�
f
A).

Tested consistency thresholds:
θS = θSc , θS , θSc ∈ {0, 0.01, 0.05, 0.1, 0.15}.
Tested values of SVMrank’s C parameter (trade-off between
training error and margin):
C ∈ {0.001, 0.01, 0.1, 1, 10}.
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Experimental Setup – Data Sets

Table: Characteristics of data sets and average values of measure
γ(S, Sc) for θS = θSc = 0 and not necessarily consistent set of criteria

Id Data set #Obj. #Crit. #Class. γ(S, Sc)
1 (-) car 324∗ 6 4 0.9732
2 housing 253∗ 13 4 0.9703
3 cpu 209 6 4 0.7545
4 denbosch 119 8 2 0.7291
5 bank-g 353∗ 16 2 0.7210
6 fame 332∗ 10 5 0.6454
7 (-) windsor 273∗ 10 4 0.6084
8 breast-w 350∗ 9 2 0.6048
9 balance-scale 313∗ 4 3 0.4886
10 ESL 244∗ 4 9 0.3360
11 (-) breast-c 286 7 2 0.2494
12 SWD 334∗ 10 4 0.1844
13 LEV 334∗ 4 5 0.1219
14 ERA 334∗ 4 9 0.0087

57



Experimental Results

Table: Performance in terms of measure τ
Data set Vrank

c 0|1 Vrank
c 0-1cr Vrank

c 0-1× Vrank
nc 0|1 Vrank

nc 0-1cr Vrank
nc 0-1× SVMrank

housing
0.6727(2.5) 0.6727(2.5) 0.6562(6) 0.6727(2.5) 0.6727(2.5) 0.6607(5) 0.6534(7)

±0.0433 ±0.0433 ±0.0560 ±0.0433 ±0.0433 ±0.0567 ±0.0523

cpu
0.7873(1.5) 0.7786(6) 0.7735(7) 0.7873(1.5) 0.7788(5) 0.7796(4) 0.7858(3)

±0.0155 ±0.0147 ±0.0154 ±0.0155 ±0.0147 ±0.0114 ±0.0061

denbosch
0.5125(1.5) 0.4774(4) 0.4570(7) 0.5125(1.5) 0.4792(3) 0.4754(5) 0.4747(6)

±0.1102 ±0.0937 ±0.0861 ±0.1100 ±0.0915 ±0.0925 ±0.0843

bank-g
0.2696(1) 0.2543(4) 0.2500(6) 0.2691(2) 0.2494(7) 0.2505(5) 0.2688(3)

±0.0344 ±0.0286 ±0.0293 ±0.0342 ±0.0318 ±0.0289 ±0.0191

fame
0.7097(4) 0.7070(6) 0.7030(7) 0.7097(3) 0.7072(5) 0.7132(1) 0.7131(2)

±0.0306 ±0.0315 ±0.0286 ±0.0307 ±0.0312 ±0.0270 ±0.0317

breast-w
0.5387(1) 0.4839(4) 0.4696(6) 0.5385(2) 0.5078(3) 0.4819(5) 0.4678(7)

±0.0458 ±0.0097 ±0.0062 ±0.0458 ±0.0219 ±0.0178 ±0.0078

balance-scale
0.5787(1.5) 0.5772(3.5) 0.5659(7) 0.5787(1.5) 0.5772(3.5) 0.5665(6) 0.5670(5)

±0.0210 ±0.0224 ±0.0206 ±0.0210 ±0.0224 ±0.0200 ±0.0226

ESL
0.7650(1) 0.7607(3) 0.7556(7) 0.7648(2) 0.7599(4) 0.7592(5) 0.7574(6)

±0.0446 ±0.0416 ±0.0351 ±0.0370 ±0.0374 ±0.0374 ±0.0403

SWD
0.4074(3) 0.4045(6) 0.4132(2) 0.4054(4) 0.4020(7) 0.4157(1) 0.4046(5)

±0.0934 ±0.0938 ±0.0965 ±0.0954 ±0.0945 ±0.0967 ±0.0986

LEV
0.5452(5) 0.5424(7) 0.5573(3) 0.5474(4) 0.5424(6) 0.5634(1) 0.5615(2)

±0.0717 ±0.0713 ±0.0734 ±0.0719 ±0.0751 ±0.0789 ±0.0753

ERA
0.3658(6) 0.3656(7) 0.3837(3) 0.3685(4) 0.3671(5) 0.3876(2) 0.3976(1)

±0.0946 ±0.0936 ±0.0901 ±0.0919 ±0.0934 ±0.0892 ±0.0871

avg rank (14) 2.57 (2nd) 4.68 (5th) 5.64 (6th) 2.25 (1st) 4.21 (4th) 3.79 (3rd) –
avg rank (11) 2.55 (1st) 4.82 (5th) 5.55 (6th) 2.55 (1st) 4.64 (4th) 3.64 (2nd) 4.27 (3rd)
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Experimental Results

Table: Performance in terms of measure τ¬I

Data set Vrank
c 0|1 Vrank

c 0-1cr Vrank
c 0-1× Vrank

nc 0|1 Vrank
nc 0-1cr Vrank

nc 0-1× SVMrank

housing
0.8566(2.5) 0.8566(2.5) 0.8418(6) 0.8566(2.5) 0.8566(2.5) 0.8475(5) 0.8382(7)

±0.0538 ±0.0538 ±0.0721 ±0.0538 ±0.0538 ±0.0729 ±0.0673

cpu
0 .9866 (5.5) 0 .9888 (3.5) 0 .9823 (7) 0 .9866 (5.5) 0 .9888 (3.5) 0 .9897 (2) 0.9980(1)

±0.0211 ±0.0184 ±0.0187 ±0.0211 ±0.0184 ±0.0139 ±0.0064

denbosch
0.8485(6) 0.8533(3) 0.8378(7) 0.8494(5) 0.8500(4) 0.8715(1) 0.8704(2)

±0.1701 ±0.1262 ±0.1579 ±0.1687 ±0.1695 ±0.1697 ±0.1546

bank-g
0 .9064 (4) 0 .9055 (5.5) 0 .9256 (3) 0 .9047 (7) 0 .9055 (5.5) 0 .9272 (2) 0.9970(1)

±0.0989 ±0.0986 ±0.0908 ±0.1042 ±0.1015 ±0.0893 ±0.0142

fame
0.8769(6) 0.8778(4) 0.8728(7) 0.8772(5) 0.8780(3) 0.8855(1) 0.8850(2)

±0.0381 ±0.0392 ±0.0362 ±0.0382 ±0.0388 ±0.0338 ±0.0394

breast-w
0.9952(4.5) 0.9952(4.5) 0.9957(1) 0.9952(4.5) 0.9952(4.5) 0.9954(2) 0.9923(7)

±0.0095 ±0.0096 ±0.0090 ±0.0095 ±0.0094 ±0.0086 ±0.0141

balance-scale
0.9637(1.5) 0.9635(3) 0.9614(7) 0.9637(1.5) 0.9631(4) 0.9624(6) 0.9630(5)

±0.0319 ±0.0313 ±0.0318 ±0.0319 ±0.0318 ±0.0304 ±0.0299

ESL
0.9089(3) 0.9101(1) 0.9041(7) 0.9086(4) 0.9093(2) 0.9085(5) 0.9062(6)

±0.0446 ±0.0443 ±0.0366 ±0.0447 ±0.0398 ±0.0396 ±0.0436

SWD
0.5805(5) 0.5807(4) 0.5933(2) 0.5770(7) 0.5772(6) 0.5970(1) 0.5810(3)

±0.1359 ±0.1359 ±0.1397 ±0.1367 ±0.1369 ±0.1400 ±0.1426

LEV
0.7317(6) 0.7322(5) 0.7526(3) 0.7289(7) 0.7323(4) 0.7609(1) 0.7583(2)

±0.0951 ±0.0955 ±0.0983 ±0.0952 ±0.1009 ±0.1059 ±0.1011

ERA
0.4075(7) 0.4084(6) 0.4288(3) 0.4108(4) 0.4101(5) 0.4332(2) 0.4445(1)

±0.1057 ±0.1046 ±0.1005 ±0.1030 ±0.1045 ±0.1000 ±0.0969

avg rank (14) 4.43 (4th) 3.61 (2nd) 4.71 (5th) 4.43 (4th) 3.82 (3rd) 2.86 (1st) –
avg rank (11) 4.64 (5th) 3.77 (3rd) 4.82 (6th) 4.82 (6th) 4.05 (4th) 2.55 (1st) 3.36 (2nd)
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Experimental Results

Table: Best parameter values for the six versions of VC-DRSArank (in
short Vrank) and for SVMrank – performance measured using τ

Data set Vrank
c 0|1 Vrank

c 0-1cr Vrank
c 0-1× Vrank

nc 0|1 Vrank
nc 0-1cr Vrank

nc 0-1× SVMrank

(-) car 0.1 0 0.1 0.1 0 0.1 –
housing 0 0 0.01 0 0 0.01 0.1

cpu 0.05 0.05 0.05 0.05 0.05 0.01 0.1
denbosch 0.01 0 0.05 0.01 0 0.01 0.01

bank-g 0.01 0 0.01 0.01 0 0.01 0.001
fame 0.01 0.01 0.01 0.01 0.01 0.01 0.001

(-) windsor 0.01 0 0.05 0.01 0.01 0.01 –
breast-w 0.01 0 0.1 0.01 0 0 0.001

balance-scale 0.05 0 0.15 0.05 0 0 1
ESL 0.01 0.01 0.15 0.15 0.15 0.15 1

(-) breast-c 0.1 0 0.15 0 0 0 –
SWD 0.01 0.01 0.1 0.01 0.01 0.01 0.001
LEV 0.01 0.01 0.1 0.15 0.15 0.1 10
ERA 0.01 0.01 0.1 0.01 0.01 0.1 0.01
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Experimental Results

Table: Best parameter values for the six versions of VC-DRSArank (in
short Vrank) and for SVMrank – performance measured using τ¬I

Data set Vrank
c 0|1 Vrank

c 0-1cr Vrank
c 0-1× Vrank

nc 0|1 Vrank
nc 0-1cr Vrank

nc 0-1× SVMrank

(-) car 0.01 0.01 0.1 0.01 0.01 0.01 –
housing 0 0 0.01 0 0 0.01 0.1

cpu 0.05 0.05 0.05 0.05 0.05 0.01 0.1
denbosch 0.01 0.05 0.05 0.01 0.01 0.01 0.01

bank-g 0.05 0.05 0.01 0.01 0.01 0.01 0.1
fame 0.01 0.01 0.01 0.01 0.01 0.01 0.001

(-) windsor 0.01 0.01 0.05 0.01 0.01 0.01 –
breast-w 0 0 0.1 0.1 0.1 0.1 0.001

balance-scale 0.05 0.1 0.15 0.05 0.1 0 1
ESL 0.01 0.01 0.15 0.01 0.15 0.15 1

(-) breast-c 0.1 0.1 0.15 0.15 0.15 0.15 –
SWD 0.01 0.01 0.1 0.01 0.01 0.01 0.001
LEV 0.01 0.01 0.1 0.01 0.15 0.1 10
ERA 0.01 0.01 0.1 0.01 0.01 0.05 0.01
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Experimental Results – Most Important Conclusions

VC-DRSArank is highly competitive to SVMrank. Considering
its wider applicability (all 14 data sets), and interpretability of
decision rules, it seems to be more attractive for a DM.
Arguably, values of τ¬I , directly addressing correct prediction
of preference and inverse preference relations, should be
considered more important than values of τ .
The choice of the best version of VC-DRSArank depends on
the chosen performance measure:

τ → “crisp” versions VC-DRSArank
c 0|1 and VC-DRSArank

nc 0|1,
τ¬I → “valued” version VC-DRSArank

nc 0-1× ,

The version VC-DRSArank
c 0-1× is systematically (i.e., for both

performance measures) the worst version of VC-DRSArank →
not recommended.
Employing ε-VC-DRSA improves performance, especially in
terms of τ¬I – in most of the cases the largest avg. value was
obtained for θS = θSc > 0.
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Summary and Conclusions
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Summary and Conclusions

VC-DRSA is a flexible modeling method that allows to include
domain knowledge and handles inconsistencies in data.
VC-DRSA allows to work with heterogeneous attributes –
nominal, ordinal, and cardinal (no need of discretization).
Preference information in terms of pairwise comparisons of
some reference objects is relatively easy to elicit from the DM,
Presented methodology involves non-statistical processing of
preference information and induction of decision rules from
decision examples (pairwise comparisons of reference objects).
Applied rule preference model has many advantages, e.g.,
comprehensibility, generality, lack of aggregation operators.
Net Flow Rule appears to be the best ranking method for
exploitation of a valued relation over a set of objects.
Concordance with the current trend in MCDA which consists
in induction of preference model from decision examples.
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Summary and Conclusions (2)

Presented approach to preference learning in multicriteria
ranking is competitive to state-of-the-art SVMrank.
By adaptation of ε-VC-DRSA, it was possible to obtain better
average values of applied performance measures than in case
of adapting classical DRSA.
According to measure τ , the “crisp” versions of VC-DRSArank,
i.e., VC-DRSArank

c 0|1 and VC-DRSArank
nc 0|1, obtained in the

experiment the best (i.e., the lowest) average ranks over 11
data sets.
“Valued” version VC-DRSArank

nc 0-1× obtained the lowest average
rank with respect to measure τ¬I .
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Questions and Discussion

Thank you for your attention.

67


	Introduction
	Problem Setting
	Multicriteria Ranking Problem
	Motivations for Dominance-based Rough Set Approaches

	Application of VC-DRSA to Multicriteria Ranking Problem
	Preference Information
	Rough Approximation of Outranking and Non-outranking Relations
	Induction and Application of Decision Rules
	Exploitation of Preference Graph
	Ranking Methods
	Analysis of Final Ranking
	Illustrative Example

	Experimental verification of VC-DRSArank
	Summary and Conclusions

