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Problem Statement

There is given a finite set U of objects described on attributes from
finite set A = C ∪D, where C denotes a set of condition
attributes, D denotes a set of decision attributes, and C ∩D = ∅.

Decision attributes make a partition of set U into a finite number
of n disjoint sets of objects, called decision classes. We denote this
partition, also called classification, by X = {X1, . . . , Xn}.
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Problem Statement

Ordinal classification problem with monotonicity constraints
Relationship between evaluation of objects on condition
attributes and their evaluation on the decision attribute.
Knowledge about orders (of preferences) on the value sets of
the attributes – criteria.
Semantic correlation: a better evaluation of an object on a
condition attribute with other evaluations being fixed should
not worsen its evaluation on decision attribute.
Inconsistency: violation of monotonicity constraints
(expressed by semantic correlation).

Examples of monotonicity constraints
“The lower the price and the higher the quality, the higher the
customer’s satisfaction”.
“The higher the mass and the lower the distance, the higher
the gravity”.
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Example
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Problem Statement

The goal is to build a classifier which, given the evaluations of
object y ∈ Xi on condition attributes, suggests assignment of y to
one of the classes from X .

A good classifier is characterized by:
high accuracy,
interpretability (i.e., it preserves monotonicity constraints),
traceability (glass box).

We can estimate accuracy of prediction of the classifier by:
the percentage of correctly classified objects (PCC),
the mean absolute difference between index of the class
suggested by a classifier and index of the class to which an
object belongs; this measure is called mean absolute error
(MAE).
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General Motivations

Multi-attribute/multi-criteria classification is an important,
non-trivial and practical problem.
Main dificulty consists in aggregation of different and usually
conflicting attributes/criteria; usually such aggregation is
performed arbitrary, using weights or aggregation operators like
sum, average or distance metrics.
Need for modeling method that allows to include domain
knowledge (like preference orders), can handle possible
inconsistencies in data, and avoids any aggregation operators.
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Motivations for Application of DRSA

Ordinal classification problem with monotonicity constraints can be
effectively solved using Dominance-based Rough Set Approach
(DRSA), which:

can handle inconsistencies in data (preprocessing), resulting
e.g. from imprecise of incomplete information,
takes into account domain knowledge:

domains of attributes, i.e. sets of values that an attribute may
take while being meaningful for user’s perception,
division of attributes into condition and decision attributes,
preference order in domains of attributes and semantic
correlation between attributes, both addressed by the
dominance principle,

works with heterogenous attributes – nominal, ordinal and
cardinal (no need of discretization),
enables to infer decision rule model from decision table
(disaggregation-aggregation paradigm).
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Motivations for Using Decision Rule Model

Advantages of decision rules:
comprehensible form of knowledge representation,
can represent any function (more general than utility functions
or binary relations),
resistant to irrelevant attributes (to certain degree),
do not require aggregation operators,
support “backtracing”,
can explain past decisions and predict future decisions.
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Dominance-based Rough Set Approach
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Basic notions and definitions

In rough set approaches, learning of a classifier is preceded by rough
set analysis of data presented as decision table. It consists in
checking the data for possible inconsistencies by calculation of
lower approximations of considered sets of objects.

Due to this type of data structuring, one may restrict a priori the
set of objects on which the classifier is learned to a subset of
sufficiently consistent objects belonging to lower approximations.

This restriction is motivated by a postulate for learning from
(sufficiently) consistent data, so that the knowledge gained from
this learning is (sufficiently) certain.
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Basic notions and definitions

The original Rough Set Approach proposed by Pawlak, called
Indiscernibility-based Rough Set Approach (IRSA):

concerns non-ordinal classification,
employs indiscernibility relation,
involves approximations of decision classes Xi.

Dominance-based Rough Set Approach (DRSA) proposed by Greco,
Matarazzo and Słowiński:

concerns ordinal classification with monotonicity constraints,
employs dominance relation,
involves approximations of unions of ordered decision classes:
upward unions X≥i =

⋃
t≥iXt, where i = 2, 3, . . . , n, and

downward unions X≤i =
⋃
t≤iXt, where i = 1, 2, . . . , n− 1.
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Basic notions and definitions

In case of non-ordinal classification handled by IRSA, set of
attributes A is composed of regular attributes only. Indiscernibility
relation makes a partition of U into disjoint blocks of objects called
granules. Moreover, I(y) denotes a set of objects indiscernible with
object y ∈ U .

In case of ordinal classification with monotonicity constraints
handled by DRSA, among condition attributes from C there is at
least one criterion, decision attribute d has preference-ordered value
set, and there exists a monotonic relationship between evaluation of
objects on criteria and their values on the decision attribute.

The positive dominance cone D+(y) is composed of objects that
for each qi ∈ C are not worse than object y.

The negative dominance cone D−(y) is composed of objects that
for each qi ∈ C are not better than object y.
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Basic notions and definitions

In the following, we are going to consider DRSA only.

In order to simplify notation, we use:
symbol X to denote a set of objects belonging to union of
classes X≥i or X≤i ,
symbol E(y) to denote any set D+(y) or D−(y), y ∈ U .

Moreover, if X and E(y) are used in the same equation, then for
X representing union of ordered classes X≥i (resp. X≤i ), E(y)
stands for dominance cone D+(y) (resp. D−(y)).
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Basic notions and definitions

The lower approximation of set X is defined as:

X = {y ∈ X : E(y) ⊆ X}. (1)

This definition of the lower approximation appears to be too
restrictive in practical applications. Therefore, various probabilistic
rough set approaches were proposed which extend the lower
approximation of set X by inclusion of objects with sufficient
evidence for membership to X. This evidence is quantified by
different object consistency measures.
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Basic notions and definitions

In the following, we consider Variable-Consistency DRSA
(VC-DRSA), where the definition of probabilistic lower
approximation of set X involves object consistency measure
ΘX : U → R+ ∪ {0}:

given a gain-type measure ΘX and a gain-threshold θX :

X = {y ∈ X : ΘX(y)≥ θX}. (2)

given a cost-type measure ΘX and a cost-threshold θX :

X = {y ∈ X : ΘX(y)≤ θX}. (3)
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Basic notions and definitions

Required monotonicity properties of object consistency measuresa

aJ. Błaszczyński, S. Greco, R. Słowiński, M. Szeląg, Monotonic Variable
Consistency Rough Set Approaches. International Journal of Approximate
Reasoning, 50(7), 2009, pp. 979-999

(m1): Monotonicity w.r.t. set of attributes P ⊆ C.
(m2): Monotonicity w.r.t. set of objects X ⊆ U , when set X
is augmented by new objects.
(m3): Monotonicity w.r.t. union of classes X≥i ⊆ U and
X≤i ⊆ U .
(m4): Monotonicity w.r.t. dominance relation D.

18



Basic notions and definitions

Let X,¬X ⊆ U , where ¬X = U −X, y ∈ U . We consider the
following cost-type object consistency measure εX :

εX(y) =
|E(y) ∩ ¬X|
|¬X|

. (4)

This measure has properties (m1), (m2), and (m4).
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Basic notions and definitions
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Basic notions and definitions

We define the positive region of X as:

POS(X) =
⋃
y∈X

E(y). (5)

One can observe that POS(X) ⊇ X.

Basing on the definition of the positive region of set X, we also
define negative and boundary regions of an approximated set as
follows:

NEG(X) = POS(¬X)− POS(X), (6)
BND(X) = (U − POS(X))−NEG(X). (7)
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Decision Rules
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Decision Rules

Probabilistic lower approximations are basis for induction of
(probabilistic) decision rules which are a simple and
comprehensive representation of knowledge:

if elementary conditions then decision (prediction).

Condition part of a rule is a conjunction of elementary
conditions concerning individual attributes/criteria.
Decision part of a rule suggests an assignment to a union of
decision classes.
Rules are characterized by rule consistency measures.
Rules explain decisions observed in data and can be used to
classify a new object to one of the predefined decision classes.
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Decision Rules

Set X is the basis for induction of a set RX of decision rules
that suggest assignment to X.
Each rule from RX is supported by at least one object from
X, and it covers object(s) from POS(X).
The elementary conditions (selectors) that form a rule
rX ∈ RX are built using evaluations of objects belonging to X
only.
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Decision Rules

Induced rules have the following syntax:

if qi1(y) � ti1 ∧ . . . ∧ qip(y) � tip ∧ qip+1(y) = tip+1 ∧ . . . ∧ qiz(y) = tiz

then y ∈ X≥i , (8)
if qi1(y) � ti1 ∧ . . . ∧ qip(y) � tip ∧ qip+1(y) = tip+1 ∧ . . . ∧ qiz(y) = tiz

then y ∈ X≤i , (9)

where qi1 , . . . , qip denote criteria, and qip+1 , . . . , qiz denote regular
attributes; moreover, tij denotes a value taken from the value set
of attribute qij , ij ∈ {i1, . . . , iz} ⊆ {1, . . . , |C|}.
Symbols � and � indicate weak preference and inverse weak
preference w.r.t. single criterion, respectively. If qij ∈ C is a gain
(cost) criterion, then elementary condition qij (y) � tij means that
the evaluation of object y ∈ U on criterion qij is not worse than tij ,
ij ∈ {i1, . . . , ip}. Elementary conditions for regular attributes are of
the type qij (y) = tij , ij ∈ {ip+1, . . . , iz}.
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Example (chosen rules for windsor dataset)

(nbath ≥ 2) & (nstoreys ≥ 2) & (air_cond ≥ 1) & (desire_loc ≥
1) => (sale_price ≥ 3)

(lot_size ≥ 6240.0) & (nbath ≥ 2) & (drive ≥ 1) & (air_cond ≥
1) => (sale_price ≥ 3)

(nstoreys ≥ 4) => (sale_price ≥ 2)

(lot_size ≥ 10500.0) & (ngarage ≥ 1) => (sale_price ≥ 2)

(lot_size ≥ 10269.0) & (nbed ≥ 3) & (ngarage ≥ 1) =>
(sale_price ≥ 2)

(nbath ≥ 3) & (drive ≥ 1) => (sale_price ≥ 2)

(lot_size <= 2000.0) & (nbed <= 3) => (sale_price <= 0)

(nbath <= 1) & (nstoreys <= 1) & (drive <= 0) & (rec_room
<= 0) => (sale_price <= 1)
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Decision Rules

Decision rules can be characterized by many attractiveness
measures, like support, confidence, etc.

A decision rule that suggests assignment to set X is denoted by
rX . Condition part of rule rX is denoted by Φ(rX), while its
decision part is denoted by Ψ(rX). Moreover, ‖Φ(rX)‖ denotes the
set of objects satisfying condition part of the rule.

Rule consistency measure is any function Θ̂X : RX → R+ ∪ {0},
where RX is a set of rules suggesting assignment to X.
We consider the following cost-type rule consistency measure
ε̂X(rX):

ε̂X(rX) =

∣∣‖Φ(rX)‖ ∩ ¬X
∣∣

|¬X|
.

27



Decision Rules

Induced rules must satisfy the same constraints on consistency as
objects from the lower approximation which serves as a base for
rule induction. In particular, each rule rX ∈ RX is required to
satisfy threshold θ̂X , equal to threshold θX used to calculate
probabilistic lower approximation of X:

ε̂X(rX) ≤ θX ,∀rX ∈ RX .
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Decision Rules

Key concepts concerning rules induced from probabilistic lower
approximations:

A decision rule suggesting assignment to set X is discriminant
if it covers only objects belonging to positive region POS(X).
Rule is free of redundant conditions if removing any of its
elementary conditions causes that it is no more discriminant.
Rule is minimal if there is no other rule with not less general
conditions, not less specific decision, and not worse
consistency, i.e., rX is minimal if there does not exist other
rule rY , Y ⊆ U , such that ‖Φ(rY )‖ ⊇ ‖Φ(rX)‖, Y ⊆ X, and
ε̂X(rY ) � ε̂X(rX) (i.e., ε̂X(rY ) ≤ ε̂X(rX)).
Set of rules suggesting assignment to X is complete iff each
object y ∈ X is covered by at least one rule rX ∈ RX .
Rule rX ∈ RX is non-redundant in RX , if removing rX causes
that RX ceases to be complete.
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VCDomLEM Algorithm
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VCDomLEM Algorithm

VC-DomLEM is a sequential covering rule induction algorithm that
induces a minimal set of rules satisfying constraints on consistency.

VCDomLEM algorithm is composed of two parts:
Algorithm 1 – the main routine,
Algorithm 2 – V C-SequentialCoveringmix subroutine.
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VCDomLEM Algorithm

Algorithm 1: VC-DomLEM

Input : set X of upward unions of classes X≥i ∈ U , or downward
unions of classes X≤i ∈ U ,
rule consistency measure Θ̂X ,
set {θ̂X : X ∈ X} of rule consistency measure thresholds,
object covering option s.

Output: set of rules R.
R := ∅;1

foreach X ∈ X do2

AO(X) := AllowedObjects(X, s);3

RX := V C-SequentialCoveringmix(X,AO(X), Θ̂X , θ̂X);4

R := R ∪RX ;5

RemoveNonMinimalRules(R);6

end7
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VCDomLEM Algorithm

Each rule rX belonging to set RX is allowed to cover only objects
from set AO(X), calculated according to chosen option
s ∈ {1, 2, 3} (line 3).
We consider three reasonable options:

(1): AO(X) = POS(X),
(2): AO(X) = POS(X) ∪BND(X),
(3): AO(X) = U .

Minimality check performed in line 6 can be simplified if in line 2
upward or downward unions are considered from the most specific
(i.e., containing the smallest number of objects) to the most
general (i.e., containing the largest number of objects).
In such a case, only rules from set RX can be non-minimal.
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VCDomLEM Algorithm

Algorithm 2: VC-SequentialCoveringmix

Input : set X ⊆ U of positive objects,
set AO(X) ⊇ X of objects that can be covered,
rule consistency measure Θ̂X ,
rule consistency measure threshold θ̂X .

Output: set RX of rules suggesting assignment to X.
B := X;1
RX := ∅;2
while B 6= ∅ do3

rX := ∅;4
EC := ElementaryConditions(B);5
while (Θ̂X(rX) does not satisfy θ̂X) or (‖Φ(rX)‖ * AO(X)) do6

ec := BestElementaryCondition(EC, rX , Θ̂X , X);7
rX := rX ∪ ec;8
EC := ElementaryConditions(B ∩ ‖Φ(rX)‖);9

end10
RemoveRedundantElementaryConditions(rX , Θ̂X , θ̂X , AO(X));11
RX := RX ∪ rX ;12
B := B \ ‖Φ(rX)‖;13

end14
RemoveRedundantRules(RX , Θ̂X , X);15
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VCDomLEM Algorithm

The best elementary condition ec is chosen according to the
following criteria considered lexicographically:

1 the best value of chosen rule consistency measure Θ̂X for rule
rX ∪ ec,

2 the best value of
∣∣‖Φ(rX ∪ ec)‖ ∩X

∣∣,
where rX ∪ ec denotes a rule resulting from extension of rule rX by
new elementary condition ec.

If set RX contains redundant rules, an iterative procedure
eliminating redundancy is adopted (line 15). In each step of this
procedure, the rule to be removed is chosen according to the
following measures considered lexicographically:

1 the worst (i.e., the smallest) value of
∣∣‖Φ(rX)‖ ∩X

∣∣,
2 the worst value of Θ̂X(rX),
3 the smallest index of rX on the constructed list of rules.
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Experimental Verification
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Experimental Verification

The aim of the experiment was to evaluate the usefulness of
VC-DomLEM algorithm in terms of its predictive accuracy
(i.e., PCC and MAE).

VC-DomLEM algorithm, as implemented in the java Rough Set
(jRS) library, was compared to other methods on 12 ordinal data
sets.

In order to classify objects using induced rules, VC-DRSA
classification schemea was used.

aJ. Błaszczyński, S. Greco, R. Słowiński, Multi-criteria classification – A new
scheme for application of dominance-based decision rules, European Journal of
Operational Research 181(3) (2007) 1030–1044
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Experimental Verification

The other methods compared to VC-DomLEM were: two ordinal
classifiers that preserve monotonicity constraints, namely: Ordinal
Learning Model (OLM) and Ordinal Stochastic Dominance Learner
(OSDL), and four non-ordinal classifiers: Naive Bayes, Support
Vector Machine (SVM) with linear kernel, decision rule classifier
RIPPER, and decision tree classifier C4.5.
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Experimental Verification

Table: Characteristics of data sets

Id Data set Objects Attributes Classes
1 breast-c 286 7 2
2 breast-w 699 9 2
3 car 1296 6 4
4 cpu 209 6 4
5 bank-g 1411 16 2
6 fame 1328 10 5
7 denbosch 119 8 2
8 ERA 1000 4 9
9 ESL 488 4 9
10 LEV 1000 4 5
11 SWD 1000 10 4
12 windsor 546 10 4
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Experimental Verification

The predictive accuracy (PCC and MAE) was estimated by
stratified 10-fold cross-validation, repeated several times.

The tables with results contain the value of measure and its
standard deviation for each data set and each classifier.

For each data set we calculated a rank (given in brackets) of the
result of a classifier when compared to the other classifiers.

Last row of each table shows the average rank obtained by a given
classifier.

Moreover, for each data set, the best value of the predictive
accuracy measure, and those values which are within standard
deviation of the best value, are marked in bold.
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Experimental Verification

Table: Mean absolute error (MAE)

Id VC-DomLEM Naive SVM RIPPER C4.5 OLM OSDL
Bayes

1 0.2331 (1) 0.2564 (3) 0.3217 (6) 0.2960 (4) 0.2424 (2) 0.324 (7) 0.3065 (5)
+
−0.003297 +

−0.005943 +
−0.01244 +

−0.01154 +
−0.003297 +

−0.01835 +
−0.001648

2 0.03720 (2) 0.03958 (3) 0.03243 (1) 0.04483 (5) 0.05532 (6) 0.1764 (7) 0.04149 (4)
+
−0.002023 +

−0.0006744 +
−0.0006744 +

−0.004721 +
−0.00751 +

−0.00552 +
−0.001168

3 0.03421 (1) 0.1757 (6) 0.08668 (3) 0.2029 (7) 0.1168 (5) 0.09156 (4) 0.04141 (2)
+
−0.0007275 +

−0.002025 +
−0.002025 +

−0.01302 +
−0.003108 +

−0.005358 +
−0.0009624

4 0.08293 (1) 0.1707 (4) 0.4386 (7) 0.1611 (3) 0.1196 (2) 0.3461 (6) 0.3158 (5)
+
−0.01479 +

−0.009832 +
−0.01579 +

−0.01372 +
−0.01790 +

−0.02744 +
−0.01034

5 0.04559 (1) 0.1146 (5) 0.1280 (6) 0.0489 (2) 0.0515 (3) 0.05528 (4) 0.1545 (7)
+
−0.001456 +

−0.01371 +
−0.001205 +

−0.00352 +
−0.005251 +

−0.001736 +
−0

6 0.3406 (1.5) 0.4829 (5) 0.3406 (1.5) 0.3991 (4) 0.3863 (3) 1.577 (6) 1.592 (7)
+
−0.001878 +

−0.002906 +
−0.001775 +

−0.003195 +
−0.005253 +

−0.03791 +
−0.007555

7 0.1232 (1) 0.1289 (2) 0.2129 (6) 0.1737 (5) 0.1653 (4) 0.2633 (7) 0.1541 (3)
+
−0.01048 +

−0.01428 +
−0.003961 +

−0.02598 +
−0.01048 +

−0.02206 +
−0.003961

8 1.307 (2) 1.325 (5) 1.318 (3) 1.681 (7) 1.326 (6) 1.321 (4) 1.280 (1)
+
−0.002055 +

−0.003771 +
−0.007257 +

−0.01558 +
−0.006018 +

−0.01027 +
−0.00704

9 0.3702 (3) 0.3456 (2) 0.4262 (5) 0.4296 (6) 0.3736 (4) 0.474 (7) 0.3422 (1)
+
−0.01352 +

−0.003864 +
−0.01004 +

−0.01608 +
−0.01089 +

−0.01114 +
−0.005019

10 0.4813 (6) 0.475 (5) 0.4457 (4) 0.4277 (3) 0.426 (2) 0.615 (7) 0.4033 (1)
+
−0.004028 +

−0.004320 +
−0.003399 +

−0.00838 +
−0.01476 +

−0.0099 +
−0.003091

11 0.454 (4) 0.475 (6) 0.4503 (2) 0.452 (3) 0.4603 (5) 0.5707 (7) 0.433 (1)
+
−0.004320 +

−0.004320 +
−0.002867 +

−0.006481 +
−0.004497 +

−0.007717 +
−0.002160

12 0.5024 (1) 0.5488 (3) 0.5891 (5) 0.6825 (7) 0.652 (6) 0.5757 (4) 0.5153 (2)
+
−0.006226 +

−0.005662 +
−0.02101 +

−0.03332 +
−0.03721 +

−0.006044 +
−0.006044

2.04 4.08 4.13 4.67 4.00 5.83 3.25
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Experimental Verification

Table: Percentage of correctly classified objects (PCC)

Id VC-DomLEM Naive SVM RIPPER C4.5 OLM OSDL
Bayes

1 76.69 (1) 74.36 (3) 67.83 (6) 70.4 (4) 75.76 (2) 67.6 (7) 69.35 (5)
+
−0.3297 +

−0.5943 +
−1.244 +

−1.154 +
−0.3297 +

−1.835 +
−0.1648

2 96.28 (2) 96.04 (3) 96.76 (1) 95.52 (5) 94.47 (6) 82.36 (7) 95.85 (4)
+
−0.2023 +

−0.06744 +
−0.06744 +

−0.4721 +
−0.751 +

−0.552 +
−0.1168

3 97.15 (1) 84.72 (6) 92.18 (3) 84.41 (7) 89.84 (5) 91.72 (4) 96.53 (2)
+
−0.063 +

−0.1667 +
−0.2025 +

−1.309 +
−0.1819 +

−0.4425 +
−0.063

4 91.7 (1) 83.41 (4) 56.62 (7) 84.69 (3) 88.52 (2) 68.58 (6) 72.41 (5)
+
−1.479 +

−0.9832 +
−1.579 +

−1.409 +
−1.409 +

−2.772 +
−1.479

5 95.44 (1) 88.54 (5) 87.2 (6) 95.11 (2) 94.85 (3) 94.47 (4) 84.55 (7)
+
−0.1456 +

−1.371 +
−0.1205 +

−0.352 +
−0.5251 +

−0.1736 +
−0

6 67.55 (1) 56.22 (5) 67.1 (2) 63.55 (4) 64.33 (3) 27.43 (6) 22.04 (7)
+
−0.4642 +

−0.2328 +
−0.2217 +

−0.5635 +
−0.5844 +

−0.7179 +
−0.128

7 87.68 (1) 87.11 (2) 78.71 (6) 82.63 (5) 83.47 (4) 73.67 (7) 84.6 (3)
+
−1.048 +

−1.428 +
−0.3961 +

−2.598 +
−1.048 +

−2.206 +
−0.3961

8 26.9 (2) 25.03 (3) 24.27 (5) 20 (7) 27.83 (1) 23.97 (6) 24.7 (4)
+
−0.3742 +

−0.2494 +
−0.2494 +

−0.4243 +
−0.4028 +

−0.4643 +
−0.8165

9 66.73 (3) 67.49 (2) 62.7 (5) 61.61 (6) 66.33 (4) 55.46 (7) 68.3 (1)
+
−1.256 +

−0.3483 +
−0.6693 +

−1.555 +
−0.6966 +

−0.7545 +
−0.3483

10 55.63 (6) 56.17 (5) 58.87 (4) 60.83 (2) 60.73 (3) 45.43 (7) 63.03 (1)
+
−0.3771 +

−0.3399 +
−0.3091 +

−0.6128 +
−1.271 +

−0.8179 +
−0.2625

11 56.43 (6) 56.57 (5) 58.23 (2) 57.63 (3) 57.1 (4) 47.83 (7) 58.6 (1)
+
−0.4643 +

−0.4784 +
−0.2055 +

−0.66 +
−0.4320 +

−0.411 +
−0.4243

12 54.58 (2) 53.6 (3) 51.83 (4) 44.08 (7) 47.99 (6) 49.15 (5) 55.37 (1)
+
−0.7913 +

−0.2284 +
−1.813 +

−0.8236 +
−2.888 +

−0.7527 +
−0.3763

2.25 3.83 4.25 4.58 3.58 6.08 3.42
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Experimental Verification

From the results of the experiment, VC-DomLEM appears to be
better than the other compared classifiers – it has the best value of
the average rank of both predictive accuracy measures.

More detailed analysis of the results is presented in the literature
(see references).
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Conclusions
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Conclusions

DRSA is a flexible modeling method that allows to include
domain knowledge and can handle possible inconsistencies in
data by calculating lower approximations of sets.
DRSA allows to work with heterogeneous attributes – nominal,
ordinal and cardinal (no need of discretization).
Rule model has many advantages, e.g., comprehensibility, lack
of aggregation operators, predictive power, resistance to
irrelevant attributes.
VC-DomLEM is a sequential covering algorithm inducing
minimal decision rules in (VC-)DRSA.
Rule models that preserve monotonicity constraints are more
transparent than the other models.
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Software

jRS – java Rough Sets library (jRS):
www.cs.put.poznan.pl/mszelag/Software/software.
html,
jMAF – java Multi-criteria and Multi-attribute Analysis
Framework:
www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html,
ruleLearn – library of methods supporting learning and
application of decision rules:
https://github.com/ruleLearn/rulelearn,
RuleVisualization – web application for visualization and
exploration of monotonic decision rules:
http://www.cs.put.poznan.pl/mszelag/Software/
RuleVisualization/RuleVisualization.html
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