
GIT GIT WorkflowsWorkflows

ReferencesReferences (and (and sourcessources of of thethe followingfollowing graphicsgraphics):):

 WorkflowsWorkflows comparisoncomparison by by AtlassianAtlassian

((https://www.atlassian.com/git/tutorials/comparinghttps://www.atlassian.com/git/tutorials/comparing--workflowsworkflows))

 A A successfulsuccessful Git Git branchingbranching model by Vincent model by Vincent DriessenDriessen A A successfulsuccessful Git Git branchingbranching model by Vincent model by Vincent DriessenDriessen

((http://nvie.com/posts/ahttp://nvie.com/posts/a--successfulsuccessful--gitgit--branchingbranching--modelmodel))

 GitFlowGitFlow: safely merge develop changes to a feature branch: safely merge develop changes to a feature branch

((http://stackoverflow.com/questions/21661263/gitflowhttp://stackoverflow.com/questions/21661263/gitflow--safelysafely--

mergemerge--developdevelop--changeschanges--toto--aa--featurefeature--

branch/21674420#21674420branch/21674420#21674420))

 DiscussionDiscussion on pros and on pros and conscons of of GitFlowGitFlow

((https://barro.github.io/2016/02/ahttps://barro.github.io/2016/02/a--succesfulsuccesful--gitgit--branchingbranching--

modelmodel--consideredconsidered--harmfulharmful))

GitGit

CentralizedCentralized WorkflowWorkflow

MaryBill John

CentralizedCentralized WorkflowWorkflow

 One central One central repositoryrepository ((originorigin),), clonedcloned by by
developersdevelopers

 OnlyOnly mastermaster branchesbranches areare requiredrequired OnlyOnly mastermaster branchesbranches areare requiredrequired

 Project development Project development in the same way as in the same way as withwith
SVNSVN

 AdvantagesAdvantages comparingcomparing to SVN:to SVN:

 eacheach developer developer hashas a a locallocal copycopy of of thethe projectproject

 eacheach developer developer cancan workwork inin an an isolatedisolated environment environment

((locallocal commitscommits)) –– deferreddeferred synchronizationsynchronization

CentralizedCentralized WorkflowWorkflow

 PublishingPublishing changeschanges –– pushpush master to central master to central
repositoryrepository ((equivequiv. to . to svnsvn commitcommit, but , but addsadds allall
locallocal commitscommits to central master to central master branchbranch))

CentralizedCentralized WorkflowWorkflow

 IfIf pushpush failsfails –– fetchfetch fromfrom central central reporepo and and
rebaserebase locallocal commitscommits on top of on top of themthem

 IfIf locallocal changeschanges conflictconflict withwith upstreamupstream commitcommit, ,  IfIf locallocal changeschanges conflictconflict withwith upstreamupstream commitcommit, ,
GIT GIT pausespauses rebasingrebasing –– manualmanual conflictconflict

resolutionresolution

CentralizedCentralized WorkflowWorkflow -- exampleexample

 First, First, initializationinitialization of of emptyempty central central reporepo oror
import of an import of an existingexisting reporepo

 Central Central reporepo mustmust be be barebare Central Central reporepo mustmust be be barebare

sshssh user@hostuser@host gitgit init init ----bare /path/to/repo.gitbare /path/to/repo.git

 DevelopersDevelopers clone central clone central reporepo ((originorigin))

 PublishingPublishing of of locallocal commitscommits::

 git git pushpush originorigin mastermaster

 gitgit pull pull ----rebase origin masterrebase origin master ((ifif pushpush failsfails; ; avoidsavoids

mergemerge commitcommit))

CentralizedCentralized WorkflowWorkflow -- exampleexample

CentralizedCentralized WorkflowWorkflow -- exampleexample

 RebasingRebasing –– transferringtransferring each local commit to the each local commit to the
updated master branch one at a timeupdated master branch one at a time

 ThisThis allowsallows to to catch merge conflicts on a catch merge conflicts on a  ThisThis allowsallows to to catch merge conflicts on a catch merge conflicts on a
commitcommit--byby--commit basis rather than resolving commit basis rather than resolving
all of them in one massive merge commitall of them in one massive merge commit

CentralizedCentralized WorkflowWorkflow -- exampleexample

 OnceOnce mergemerge conflictsconflicts areare resolvedresolved::

git git addadd <<somesome--filefile> (> (stagingstaging))

git git rebaserebase ----continuecontinuegit git rebaserebase ----continuecontinue

 OnceOnce somethingsomething goesgoes badbad::

git git rebaserebase ----abortabort

 OnceOnce gitgit pull pull ----rebase origin masterrebase origin master donedone::

git git pushpush originorigin mastermaster

FeatureFeature BranchBranch WorkflowWorkflow

FeatureFeature BranchBranch WorkflowWorkflow

 AAllll feature development should take place in a feature development should take place in a
dedicated branch instead of the master branchdedicated branch instead of the master branch
((encapsulationencapsulation))

 Feature branches should have descriptive names, Feature branches should have descriptive names,
like animatedlike animated--menumenu--items or issueitems or issue--#1061#1061

 PullPull requestsrequests –– enableenable discussiondiscussion aroundaround a a
branchbranch ((featurefeature)) before it gets integrated into the before it gets integrated into the
official projectofficial project (master branch); see, e.g., (master branch); see, e.g., GerritGerrit

 ThusThus, m, master aster shouldshould notnot contain broken codecontain broken code

FeatureFeature BranchBranch WorkflowWorkflow

 FFeatureeature branches can (and should) be pushed to branches can (and should) be pushed to
the central repository.the central repository.

 This makes it possible to share a feature with This makes it possible to share a feature with  This makes it possible to share a feature with This makes it possible to share a feature with
other developers without touching official code.other developers without touching official code.

 TThis is also a convenient way to back up his is also a convenient way to back up
everybody’s local commits.everybody’s local commits.

 PublishingPublishing changeschanges: : synchronizingsynchronizing locallocal master master
withwith origin’sorigin’s master, master, mergingmerging featurefeature branchbranch intointo
master, master, pushingpushing master back to central master back to central reporepo

FeatureFeature BranchBranch WorkflowWorkflow -- exampleexample

 Mary begins a new featureMary begins a new feature::

gitgit checkout checkout --b b marysmarys--feature masterfeature master

 Mary edits, stages, and commits changes in the Mary edits, stages, and commits changes in the  Mary edits, stages, and commits changes in the Mary edits, stages, and commits changes in the
usual fashion, building up her feature with as many usual fashion, building up her feature with as many
commits as necessary:commits as necessary:

gitgit statusstatus

gitgit add <someadd <some--file>file>

gitgit commitcommit

FeatureFeature BranchBranch WorkflowWorkflow -- exampleexample

 BeforeBefore lunch, Mary lunch, Mary pushespushes herher featurefeature branchbranch to to
central central reporepo (backup, (backup, accessaccess for for otherother
collaboratorscollaborators))

gitgit push push --u origin u origin marysmarys--featurefeature

((--u flag adds it as a remote tracking branchu flag adds it as a remote tracking branch))

 AfterAfter lunch, Mary lunch, Mary completescompletes herher featurefeature (al(all l
commitscommits) and) and publishespublishes itit::

git git pushpush

FeatureFeature BranchBranch WorkflowWorkflow -- exampleexample

 Then, she Then, she fifirreses the the pull requestpull request ((mergemerge requestrequest))
in her in her GitGit GUI asking to GUI asking to merge merge marysmarys--feature feature

into masterinto master, and team members will be notified , and team members will be notified
automaticallyautomatically

Bill

FeatureFeature BranchBranch WorkflowWorkflow -- exampleexample

 Bill gets the pull request and takes a look at Bill gets the pull request and takes a look at marysmarys--
feature. He decides he wants to make a few feature. He decides he wants to make a few
changes before integrating it into the official changes before integrating it into the official
project, and he and Mary have some backproject, and he and Mary have some back--andand--
forth via the pull request.forth via the pull request.

 To make the changes, Mary uses the exact same To make the changes, Mary uses the exact same
process as she did to create the first iteration of her process as she did to create the first iteration of her
feature. feature. HHerer activity shows up in the pull request, activity shows up in the pull request,
and Bill can still make comments along the way.and Bill can still make comments along the way.

FeatureFeature BranchBranch WorkflowWorkflow -- exampleexample

 Bill could pull Bill could pull marysmarys--feature into his local repo and feature into his local repo and
work on it on his own. Any commits he added work on it on his own. Any commits he added
would also show up in the pull request.would also show up in the pull request.

 Once Bill is ready to accept the pull request, Once Bill is ready to accept the pull request,
someone needs to merge the feature:someone needs to merge the feature:

gitgit checkout mastercheckout master

gitgit pullpull

gitgit pull origin pull origin marysmarys--featurefeature

gitgit pushpush

FeatureFeature BranchBranch WorkflowWorkflow -- exampleexample

 This process often results in a This process often results in a merge commitmerge commit

((exceptexcept for for fastfast forwardforward mergemerge, , ifif master master diddid not not
changedchanged sincesince branchingbranching marysmarys--featurefeature))

 InsteadInstead, , it’s it’s alsoalso possible to possible to rebaserebase the feature the feature
onto the tip of master before executing the onto the tip of master before executing the
merge, resulting in a fastmerge, resulting in a fast--forward mergeforward merge (and (and
linearlinear historyhistory))

GitflowGitflow WorkflowWorkflow

GitflowGitflow WorkflowWorkflow

GitflowGitflow WorkflowWorkflow

 ProposedProposed by Vincent by Vincent DriessenDriessen atat 20102010

 StStrictrict branching model designed around the branching model designed around the
project releaseproject releaseproject releaseproject release

 RRobustobust framework for managing larger projectsframework for managing larger projects

 AAssignsssigns very specific very specific rolesroles to different branches to different branches
and defines how and when they should interactand defines how and when they should interact

 As As beforebefore, one , one central central barebare repository as the repository as the
communication hub for all developerscommunication hub for all developers

GitflowGitflow WorkflowWorkflow

 TwoTwo „„infiniteinfinite” ” branchesbranches::

 mastermaster -- stores the official release historystores the official release history

 developdevelop -- integration branch for featuresintegration branch for featuresdevelopdevelop -- integration branch for featuresintegration branch for features

GitflowGitflow WorkflowWorkflow

 Each new feature should reside in its own Each new feature should reside in its own
branch, which can be pushed to the central branch, which can be pushed to the central
repository for backup/collaboration.repository for backup/collaboration.

 FeatureFeature branchesbranches branchbranch fromfrom developdevelop

 When a feature is complete, it gets merged back When a feature is complete, it gets merged back
into developinto develop

 FFeatureeature branches combined with the develop branches combined with the develop
branch is, for all intents and purposes, the branch is, for all intents and purposes, the
Feature Branch WorkflowFeature Branch Workflow

GitflowGitflow WorkflowWorkflow

GitflowGitflow WorkflowWorkflow

 Once develop has acquired enough features for Once develop has acquired enough features for
a release (or a predetermined release date is a release (or a predetermined release date is
approaching), a approaching), a release branch release branch isis forkedforked off of off of
develop.develop.

 NNamingaming convention: releaseconvention: release--* or release/** or release/*

 ThisThis starts the next release cycle, so starts the next release cycle, so no new no new

features can be added after this pointfeatures can be added after this point -- only only
bug fixes, documentation generation, and other bug fixes, documentation generation, and other
releaserelease--oriented tasks should go in this branch.oriented tasks should go in this branch.

GitflowGitflow WorkflowWorkflow

 Once it's ready to ship, the release gets merged Once it's ready to ship, the release gets merged
into master and tagged with a version number.into master and tagged with a version number.

 IIt should be merged back into developt should be merged back into develop.. IIt should be merged back into developt should be merged back into develop..

 Using a dedicated branch to prepare releases Using a dedicated branch to prepare releases
makes it possible for one team to polish the makes it possible for one team to polish the
current release while another team continues current release while another team continues
working on features for the next release.working on features for the next release.

GitflowGitflow WorkflowWorkflow

GitflowGitflow WorkflowWorkflow

 Maintenance or “Maintenance or “hotfixhotfix” branches are used to ” branches are used to
quickly patch production releases.quickly patch production releases.

 TheyThey forkfork fromfrom mastermaster TheyThey forkfork fromfrom mastermaster

 As soon as the fix is complete, it should be As soon as the fix is complete, it should be
merged into both master and develop (or the merged into both master and develop (or the
current release branch), and master should be current release branch), and master should be
taggedtagged with an updated version number.with an updated version number.

 MMaintenanceaintenance branches branches -- ad hoc release branches ad hoc release branches
that work directly with master.that work directly with master.

GitflowGitflow WorkflowWorkflow

GitflowGitflow WorkflowWorkflow -- exampleexample

 ExamplesExamples concernsconcerns a single a single releaserelease cyclecycle, and , and
assumesassumes presencepresence of a central of a central reporepo

 1) one developer 1) one developer createcreate developdevelop branchbranch:: 1) one developer 1) one developer createcreate developdevelop branchbranch::

gitgit branch developbranch develop

gitgit push push --u origin developu origin develop

 2) 2) othersothers clone and clone and tracktrack developdevelop::

gitgit clone ssh://user@host/path/to/repo.gitclone ssh://user@host/path/to/repo.git

gitgit checkout checkout --b develop origin/developb develop origin/develop

GitflowGitflow WorkflowWorkflow -- exampleexample

 3) John and Mary 3) John and Mary create separate branches for create separate branches for
their respective featurestheir respective features ((branchingbranching fromfrom
developdevelop):):

gitgit checkout checkout --b someb some--feature developfeature develop

 4) 4) Both of them add commits to the feature Both of them add commits to the feature
branch in the usual fashion: edit, stage, commit:branch in the usual fashion: edit, stage, commit:

gitgit statusstatus

gitgit add <someadd <some--file>file>

gitgit commitcommit

GitflowGitflow WorkflowWorkflow -- exampleexample

 5) 5) MaryMary finishesfinishes her featureher feature. . SheShe cancan firefire a a pull pull
request request oror merge it into her local develop and merge it into her local develop and
push it to the central repository:push it to the central repository:

gitgit checkout develop checkout develop gitgit checkout develop checkout develop

gitgit pullpull

gitgit merge somemerge some--featurefeature

gitgit pushpush

gitgit branch branch --d somed some--featurefeature

(git (git pushpush --d d originorigin somesome--featurefeature))

GitflowGitflow WorkflowWorkflow -- exampleexample

 6) 6) Mary starts to prepare the first official release of Mary starts to prepare the first official release of
the projectthe project::

gitgit checkout checkout --b releaseb release--0.1 develop0.1 developgitgit checkout checkout --b releaseb release--0.1 develop0.1 develop

 This branch is a place to clean up the release, test This branch is a place to clean up the release, test
everything, update the documentation, and do any everything, update the documentation, and do any
other kind of preparation for the upcoming release.other kind of preparation for the upcoming release.

 As soon as Mary creates this branch and pushes it As soon as Mary creates this branch and pushes it
to the central repo, the release is featureto the central repo, the release is feature--frozen.frozen.

GitflowGitflow WorkflowWorkflow -- exampleexample

 7) 7) Once the Once the releaserelease is ready to ship, Mary is ready to ship, Mary
merges it into master and develop, then deletes merges it into master and develop, then deletes
the release branch.the release branch.

 It’s important to merge back into develop It’s important to merge back into develop
because critical updates may have been added to because critical updates may have been added to
the release branch and they need to be accessible the release branch and they need to be accessible
to new features.to new features.

 IIf Mary’s organization stresses code review, this f Mary’s organization stresses code review, this
would be an ideal place for a pull request.would be an ideal place for a pull request.

GitflowGitflow WorkflowWorkflow -- exampleexample
git git checkoutcheckout mastermaster

git git pullpull

git git mergemerge releaserelease--0.10.1

git git pushpush

git git checkoutcheckout developdevelop

git git pullpull

git git mergemerge releaserelease--0.10.1

git git pushpush

git git branchbranch --d released release--0.10.1

git git tagtag --a 0.1 a 0.1 --m "m "InitialInitial public public releaserelease" master" master

git git pushpush ----tagstags

GitflowGitflow WorkflowWorkflow -- exampleexample

 8) 8) IfIf a a bugbug isis foundfound inin thethe currentcurrent releaserelease, , John John
creates a maintenance branch off of master, fixes creates a maintenance branch off of master, fixes
the issue with as many commits as necessary, then the issue with as many commits as necessary, then
merges it directly back into mastermerges it directly back into master::

gitgit checkout checkout --b issueb issue--#001 master#001 master

Fix the bug# Fix the bug

gitgit checkout checkout mastermaster

git git pullpull

gitgit merge issuemerge issue--#001#001

gitgit pushpush

GitflowGitflow WorkflowWorkflow -- exampleexample

 MMaintenanceaintenance branches contain important branches contain important
updates that need to be included in develop, so updates that need to be included in develop, so
John John needs to perform that merge as well. Then, needs to perform that merge as well. Then,
he’s free to delete the branch:he’s free to delete the branch:

gitgit checkout checkout developdevelop

git git pullpull

gitgit merge issuemerge issue--#001#001

gitgit pushpush

gitgit branch branch --d issued issue--#001#001

GitflowGitflow WorkflowWorkflow -- remarksremarks

 CI on developCI on develop

 Simple Simple feature mergefeature merge: first develop into feature branch, : first develop into feature branch,

thenthen ((afterafter teststests)) result back into developresult back into develop

Simple Simple release mergerelease merge: first master into release branch, : first master into release branch,  Simple Simple release mergerelease merge: first master into release branch, : first master into release branch,

then then ((afterafter teststests)) result back into masterresult back into master

 DDefaultefault branch checked out from GIT repo: develop branch checked out from GIT repo: develop

(HEAD points to the head of develop)(HEAD points to the head of develop)

 MMergingerging with with ----nono--ff (create a merge commit even when ff (create a merge commit even when

the merge resolves as a fastthe merge resolves as a fast--forward)forward)

 Tag (1st &) Tag (1st &) lastlast commitcommit on on featurefeature//releaserelease//hotfixhotfix branchbranch??

GitflowGitflow WorkflowWorkflow ––

mergingmerging
 AdvancedAdvanced featurefeature//releaserelease

mergemerge ((withwith stagingstaging branchbranch,,

usefuluseful, , e.ge.g., for ., for testingtesting))usefuluseful, , e.ge.g., for ., for testingtesting))

 TestsTests areare essentialessential whenwhen integinteg--

ratingrating a a branchbranch, as , as eveneven nonnon--

conflictconflict mergemerge maymay brakebrake thethe

codecode ((e.ge.g., ., interfaceinterface changechange))

ForkingForking WorkflowWorkflow

((IntegrationIntegration--ManagerManager WorkflowWorkflow))

ForkingForking WorkflowWorkflow

 Instead of using a single serverInstead of using a single server--side repository side repository
to act as the “central” codebase, it gives to act as the “central” codebase, it gives everyevery

developer a serverdeveloper a server--side repository.side repository.

 EEach contributor has not one, but two ach contributor has not one, but two GitGit
repositories: a private local one and a public repositories: a private local one and a public
serverserver--side one.side one.

 CContributionsontributions can be integrated without the can be integrated without the
need for everybody to push to a single central need for everybody to push to a single central
repository.repository.

ForkingForking WorkflowWorkflow

 Developers push to Developers push to their owntheir own serverserver--side side
repositoriesrepositories

 OOnlynly the project maintainer can push to the the project maintainer can push to the  OOnlynly the project maintainer can push to the the project maintainer can push to the

official repositoryofficial repository

 MaMaintainerintainer cancan accept commits from any accept commits from any
developer without giving developer without giving herher//himhim write access write access
to the official codebaseto the official codebase

 FFlexiblelexible way for large, organic teams (including way for large, organic teams (including
untrusteduntrusted thirdthird--parties) to collaborate securelyparties) to collaborate securely

ForkingForking WorkflowWorkflow

 Forking Workflow begins with an official public Forking Workflow begins with an official public
repository stored on a server.repository stored on a server.

 New New developersdevelopers forkfork the official repository to the official repository to  New New developersdevelopers forkfork the official repository to the official repository to
create a copy of it create a copy of it on the serveron the server..

 This new copy serves as their This new copy serves as their personal public personal public

repositoryrepository -- no other developers are allowed to no other developers are allowed to
push to it, but they can push to it, but they can pull changespull changes from itfrom it..

 CloningCloning of of thethe personal public repositorypersonal public repository to to getget
a a locallocal reporepo

ForkingForking WorkflowWorkflow

 LocalLocal commitscommits areare pushedpushed to to own public own public
repositoryrepository –– not the official onenot the official one..

 Developer Developer cancan firefire a a pull requestpull request with the main with the main  Developer Developer cancan firefire a a pull requestpull request with the main with the main
repository, which lets the project maintainer repository, which lets the project maintainer
know that an update is ready to be integrated.know that an update is ready to be integrated.

 The pull request also serves as a convenient The pull request also serves as a convenient
discussion threaddiscussion thread if there are issues with the if there are issues with the
contributed code.contributed code.

ForkingForking WorkflowWorkflow

 To integrate the feature into the official codebase, To integrate the feature into the official codebase,
the maintainer the maintainer pullspulls the contributor’s changes into the contributor’s changes into
their local repository, checks to make sure it their local repository, checks to make sure it
doesn’t break the project, doesn’t break the project, merges it into his local merges it into his local

master branchmaster branch, then , then pushespushes the master branch to the master branch to
the official repository on the server.the official repository on the server.

 The contribution is now part of the project, and The contribution is now part of the project, and
other developers should other developers should pull from the official pull from the official

repositoryrepository to synchronize their local repositories.to synchronize their local repositories.

ForkingForking WorkflowWorkflow

 OfficialOfficial repositoryrepository = = public repository of the public repository of the
project maintainerproject maintainer

 PPersonalersonal public repositories are a convenient way public repositories are a convenient way  PPersonalersonal public repositories are a convenient way public repositories are a convenient way
to share branches with other developersto share branches with other developers

 Everybody should still be using branches to Everybody should still be using branches to
isolate individual featuresisolate individual features

 The only difference is how those branches get The only difference is how those branches get
sharedshared -- pulled into another developer’s local repopulled into another developer’s local repo

ForkingForking WorkflowWorkflow

 ConventionConvention::

 originorigin –– public public privateprivate repositoryrepository

 upstreamupstream –– public repository of the project public repository of the project upstreamupstream –– public repository of the project public repository of the project

maintainermaintainer

