
1

GIT Workflows

References (and sources of the following graphics):

• Workflows comparison by Atlassian

(https://www.atlassian.com/git/tutorials/comparing-workflows)

• A successful Git branching model by Vincent Driessen

(http://nvie.com/posts/a-successful-git-branching-model)

• GitFlow: safely merge develop changes to a feature branch

(http://stackoverflow.com/questions/21661263/gitflow-safely-

merge-develop-changes-to-a-feature-branch/21674420#21674420)

• Discussion on pros and cons of GitFlow

(https://barro.github.io/2016/02/a-succesful-git-branching-model-

considered-harmful)

Git

Centralized Workflow

MaryBill John

Centralized Workflow

• One central repository (origin), cloned by

developers

• Only master branches are required

• Project development in the same way as with

SVN

• Advantages comparing to SVN:

– each developer has a local copy of the project

– each developer can work in an isolated environment

(local commits) – deferred synchronization

Centralized Workflow

• Publishing changes – push master to central

repository (equiv. to svn commit, but adds all

local commits to central master branch)

Centralized Workflow

• If push fails – fetch from central repo and

rebase local commits on top of them

• If local changes conflict with upstream

commit, GIT pauses rebasing – manual

conflict resolution

2

Centralized Workflow - example

• First, initialization of empty central repo or

import of an existing repo

• Central repo must be bare

ssh user@host git init --bare /path/to/repo.git

• Developers clone central repo (origin)

• Publishing of local commits:

– git push origin master

– git pull --rebase origin master (if push fails; avoids

merge commit)

Centralized Workflow - example

Centralized Workflow - example

• Rebasing – transferring each local commit to

the updated master branch one at a time

• This allows to catch merge conflicts on a

commit-by-commit basis rather than resolving

all of them in one massive merge commit

Centralized Workflow - example

• Once merge conflicts are resolved:

git add <some-file> (staging)

git rebase --continue

• Once something goes bad:

git rebase --abort

• Once git pull --rebase origin master done:

git push origin master

Feature Branch Workflow Feature Branch Workflow

• All feature development should take place in a

dedicated branch instead of the master branch

(encapsulation)

• Feature branches should have descriptive names,

like animated-menu-items or issue-#1061

• Pull requests – enable discussion around a branch

(feature) before it gets integrated into the official

project (master branch); see, e.g., Gerrit

• Thus, master should not contain broken code

3

Feature Branch Workflow

• Feature branches can (and should) be pushed to

the central repository.

• This makes it possible to share a feature with

other developers without touching official code.

• This is also a convenient way to back up

everybody’s local commits.

• Publishing changes: synchronizing local master

with origin’s master, merging feature branch into

master, pushing master back to central repo

Feature Branch Workflow - example

• Mary begins a new feature:

git checkout -b marys-feature master

• Mary edits, stages, and commits changes in the
usual fashion, building up her feature with as
many commits as necessary:

git status

git add <some-file>

git commit

Feature Branch Workflow - example

• Before lunch, Mary pushes her feature branch

to central repo (backup, access for other

collaborators)

git push -u origin marys-feature

(-u flag adds it as a remote tracking branch)

• After lunch, Mary completes her feature (all

commits) and publishes it:

git push

Feature Branch Workflow - example

• Then, she fires the pull request (merge

request) in her Git GUI asking to merge marys-

feature into master, and team members will

be notified automatically

Bill

Feature Branch Workflow - example

• Bill gets the pull request and takes a look at marys-
feature. He decides he wants to make a few changes
before integrating it into the official project, and he
and Mary have some back-and-forth via the pull
request.

• To make the changes, Mary uses the exact same
process as she did to create the first iteration of her
feature. Her activity shows up in the pull request,
and Bill can still make comments along the way.

Feature Branch Workflow - example

• Bill could pull marys-feature into his local repo and
work on it on his own. Any commits he added would
also show up in the pull request.

• Once Bill is ready to accept the pull request,
someone needs to merge the feature:

git checkout master

git pull

git pull origin marys-feature

git push

4

Feature Branch Workflow - example

• This process often results in a merge commit

(except for fast forward merge, if master did

not changed since branching marys-feature)

• Instead, it’s also possible to rebase the feature

onto the tip of master before executing the

merge, resulting in a fast-forward merge (and

linear history)

Gitflow Workflow

Gitflow Workflow Gitflow Workflow

• Proposed by Vincent Driessen at 2010

• Strict branching model designed around the

project release

• Robust framework for managing larger projects

• Assigns very specific roles to different branches

and defines how and when they should interact

• As before, one central bare repository as the

communication hub for all developers

Gitflow Workflow

• Two „infinite” branches:

– master - stores the official release history

– develop - integration branch for features

Gitflow Workflow

• Each new feature should reside in its own
branch, which can be pushed to the central
repository for backup/collaboration.

• Feature branches branch from develop

• When a feature is complete, it gets merged
back into develop

• Feature branches combined with the develop
branch is, for all intents and purposes, the
Feature Branch Workflow

5

Gitflow Workflow Gitflow Workflow

• Once develop has acquired enough features for a

release (or a predetermined release date is

approaching), a release branch is forked off of

develop.

• Naming convention: release-* or release/*

• This starts the next release cycle, so no new

features can be added after this point - only bug

fixes, documentation generation, and other

release-oriented tasks should go in this branch.

Gitflow Workflow

• Once it's ready to ship, the release gets

merged into master and tagged with a version

number.

• It should be merged back into develop.

• Using a dedicated branch to prepare releases

makes it possible for one team to polish the

current release while another team continues

working on features for the next release.

Gitflow Workflow

Gitflow Workflow

• Maintenance or “hotfix” branches are used to
quickly patch production releases.

• They fork from master

• As soon as the fix is complete, it should be
merged into both master and develop (or the
current release branch), and master should be
tagged with an updated version number.

• Maintenance branches - ad hoc release
branches that work directly with master.

Gitflow Workflow

6

Gitflow Workflow - example

• Examples concerns a single release cycle, and
assumes presence of a central repo

• 1) one developer create develop branch:

git branch develop

git push -u origin develop

• 2) others clone and track develop:

git clone ssh://user@host/path/to/repo.git

git checkout -b develop origin/develop

Gitflow Workflow - example

• 3) John and Mary create separate branches for
their respective features (branching from
develop):

git checkout -b some-feature develop

• 4) Both of them add commits to the feature
branch in the usual fashion: edit, stage, commit:

git status

git add <some-file>

git commit

Gitflow Workflow - example

• 5) Mary finishes her feature. She can fire a pull
request or merge it into her local develop and
push it to the central repository:

git checkout develop

git pull

git merge some-feature

git push

git branch -d some-feature

(git push -d origin some-feature)

Gitflow Workflow - example

• 6) Mary starts to prepare the first official release of

the project:

git checkout -b release-0.1 develop

• This branch is a place to clean up the release, test

everything, update the documentation, and do any

other kind of preparation for the upcoming release.

• As soon as Mary creates this branch and pushes it to

the central repo, the release is feature-frozen.

Gitflow Workflow - example

• 7) Once the release is ready to ship, Mary
merges it into master and develop, then
deletes the release branch.

• It’s important to merge back into develop
because critical updates may have been added
to the release branch and they need to be
accessible to new features.

• If Mary’s organization stresses code review,
this would be an ideal place for a pull request.

Gitflow Workflow - example
git checkout master

git pull

git merge release-0.1

git push

git checkout develop

git pull

git merge release-0.1

git push

git branch -d release-0.1

git tag -a 0.1 -m "Initial public release" master

git push --tags

7

Gitflow Workflow - example

• 8) If a bug is found in the current release, John
creates a maintenance branch off of master, fixes
the issue with as many commits as necessary, then
merges it directly back into master:

git checkout -b issue-#001 master

Fix the bug

git checkout master

git pull

git merge issue-#001

git push

Gitflow Workflow - example

• Maintenance branches contain important
updates that need to be included in develop, so
John needs to perform that merge as well. Then,
he’s free to delete the branch:

git checkout develop

git pull

git merge issue-#001

git push

git branch -d issue-#001

Gitflow Workflow - remarks

• CI on develop

• Simple feature merge: first develop into feature branch,
then (after tests) result back into develop

• Simple release merge: first master into release branch, then
(after tests) result back into master

• Default branch checked out from GIT repo: develop (HEAD
points to the head of develop)

• Merging with --no-ff (create a merge commit even when the
merge resolves as a fast-forward)

• Tag (1st &) last commit on feature/release/hotfix branch?

Gitflow Workflow –

merging

• Advanced feature/release

merge (with staging branch,

useful, e.g., for testing)

• Tests are essential when integ-

rating a branch, as even non-

conflict merge may brake the

code (e.g., interface change)

Forking Workflow

(Integration-Manager Workflow) Forking Workflow

• Instead of using a single server-side repository
to act as the “central” codebase, it gives every

developer a server-side repository.

• Each contributor has not one, but two Git
repositories: a private local one and a public
server-side one.

• Contributions can be integrated without the
need for everybody to push to a single central
repository.

8

Forking Workflow

• Developers push to their own server-side

repositories

• Only the project maintainer can push to the

official repository

• Maintainer can accept commits from any

developer without giving her/him write access to

the official codebase

• Flexible way for large, organic teams (including

untrusted third-parties) to collaborate securely

Forking Workflow

• Forking Workflow begins with an official public

repository stored on a server.

• New developers fork the official repository to

create a copy of it on the server.

• This new copy serves as their personal public

repository - no other developers are allowed to

push to it, but they can pull changes from it.

• Cloning of the personal public repository to get a

local repo

Forking Workflow

• Local commits are pushed to own public
repository – not the official one.

• Developer can fire a pull request with the
main repository, which lets the project
maintainer know that an update is ready to be
integrated.

• The pull request also serves as a convenient
discussion thread if there are issues with the
contributed code.

Forking Workflow

• To integrate the feature into the official codebase,
the maintainer pulls the contributor’s changes into
their local repository, checks to make sure it doesn’t
break the project, merges it into his local master
branch, then pushes the master branch to the
official repository on the server.

• The contribution is now part of the project, and
other developers should pull from the official
repository to synchronize their local repositories.

Forking Workflow

• Official repository = public repository of the project

maintainer

• Personal public repositories are a convenient way

to share branches with other developers

• Everybody should still be using branches to isolate

individual features

• The only difference is how those branches get

shared - pulled into another developer’s local repo

Forking Workflow

• Convention:

– origin – public private repository

– upstream – public repository of the project

maintainer

