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Abstract

We present a methodology for non-statistical preference learning in multicriteria ranking based on Variable
Consistency Dominance-based Rough Set Approach (VC-DRSA). A finite set of objects to be ranked is
evaluated by a set of criteria, which are real-valued functions with ordinal or cardinal scales. Given the
statement of a multicriteria ranking problem, the only objective information one can get is the dominance
relation over the set of objects. The dominance relation is, however, too poor because it leaves many objects
incomparable. To enrich this relation, and make the objects more comparable, a decision maker (DM) must
supply some preference information revealing her/his value system with respect to multicriteria evaluations.
We are considering a frequent case, when the preference information has the form of pairwise comparisons of
some objects relatively well known to the DM, called reference objects. This information is thus composed of
some decision examples on the reference objects. It is the input data for a method that learns the preferences
of the DM. Since this information is prone to inconsistencies, we propose to structure it using VC-DRSA.
Then, the pairs of objects that are sufficiently consistent serve as a basis for induction of a preference model.
This model has the form of a set of “if . . . , then . . . ” decision rules. Application of these rules on the whole
set of objects to be ranked yields a fuzzy preference structure (directed weighted graph). This preference
structure is then exploited using a ranking method, so as to work out a final recommendation. We propose
a list of properties that helps to choose a proper ranking method. The methodology is illustrated by an
example.

Keywords: Multicriteria ranking, Decision rule, Dominance-based Rough Set Approach, Variable
consistency, Ranking method, Pairwise comparison table

1. Introduction

1.1. Ranking problem as a problem of Multicriteria Decision Aiding and Preference Learning
In this paper, we present a methodology for dealing with a multicriteria ranking problem using a prefe-

rence model in the form of a set of decision rules induced from decision examples. The ranking consists in
ordering a set of objects (also called alternatives, solutions, acts, actions, options, candidates, . . . ) from the
best to the worst, while these objects are evaluated from multiple points of view considered relevant for the
problem at hand and called criteria (also called attributes, features, variables, . . . ). Multicriteria ranking
problems constitute one of three main categories of decision problems considered in the field of Multiple
Criteria Decision Aiding (also called Multiple Criteria Decision Making), which are ranking, choice and
sorting (also called ordinal classification). As pointed out by Dembczyński et al. [28], Multicriteria Decision
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Aiding shares some goals, concepts and methodological issues with Preference Learning being an emerging
subfield of Machine Learning. The main difference between them consists in the way of building a preference
model of the Decision Maker (DM). While in Preference Learning (PL) the preference model results from
statistical analysis of data (training examples), in Multicriteria Decision Aiding (MCDA) it is built from
preference information elicited from the DM, very often interactively.

An important step in MCDA concerns selection and construction of criteria used for evaluation of objects.
They are real-valued functions with ordinal or cardinal scales, built on elementary features of the objects.
The aim is to set up a set of criteria which makes the pairwise comparison of all objects in the considered set
meaningful. The criteria are equipped with monotonic preference scales which specify the preference orders
in their value sets.

Remark that while in MCDA the construction of criteria with explicit monotonic preference scales is an
important step in the procedure of decision aiding, in PL, the relationships between value sets of attributes
and DM’s preferences are discovered from data for a direct use in decision making. This means that in
PL, the monotonic preference scales converting elementary features to criteria are neither used nor revealed
explicitly.

For a given finite set of objects A, and for a finite set of criteria G = {g1, . . . , gn} giving evaluations
gi(a) to all a ∈ A, i = 1, . . . , n, the only objective information that comes out from comparison of these
objects on multiple criteria is a dominance relation D over set A. Given a, b ∈ A, object a dominates object
b, which is denoted by aDb, if and only if a �i b for each i = 1, . . . , n, where a �i b means that gi(a) “is at
least as good as” gi(b). As �i is a complete preorder over A, dominance relation D is a partial preorder,
i.e., a reflexive and transitive binary relation defined over A.

Apart from trivial cases, dominance relation D is rather poor and leaves many objects incomparable
(objects a, b ∈ A are incomparable if neither aDb nor bDa). In order to enrich the dominance relation
and make the objects in A more comparable, one needs additional information about value system of the
DM, called preference information. This information permits to build a more or less explicit model of DM’s
preferences, called preference model. The preference model relates the decision to evaluations of the objects
on the considered criteria. In other words, the preference model aggregates multicriteria evaluations of
objects. It is inducing a preference structure on set A. A proper exploitation of this structure leads then to
a recommendation in terms of ranking of objects from set A.

In PL, the training data are the equivalent of preference information in MCDA. Moreover, the aim
of getting a preference model which permits to work out a final recommendation is the same for both
methodologies – roughly speaking, the difference resides in statistical or non-statistical way of processing
the preference information.

It follows from above that the preference information and the preference model are two crucial compo-
nents of both MCDA and PL. The many methods existing in both fields differ just by these two components.
Below, with respect to these two components, we review some recent trends in MCDA.

1.2. Preference information and preference model
As to the preference information, it depends on the adopted methodology: prices and interest rates for

cost-benefit analysis, cost coefficients in objectives and technological coefficients in constraints for mathe-
matical programming, a training set of decision examples for neural networks and machine learning, substi-
tution rates for a value function of Multi-Attribute Utility Theory, pairwise comparisons of objects in terms
of intensity of preference for the Analytic Hierarchy Process, attribute weights and several thresholds for
ELECTRE methods, and so on (see the state-of-the-art survey by Figueira et al. [31]). This information
has to be provided by the DM, possibly assisted by an analyst.

Very often the preference information is not easily definable. For example, this is the case of the price
of many immaterial goods and of the interest rates in cost-benefit analysis, or the case of the coefficients
of objectives and constraints in mathematical programming models. Even if the required information is
easily definable, like a training set of decision examples for neural networks, it is often processed in a
way which is not clear for the DM, such that (s)he cannot see what are the exact relations between the
provided information and the final recommendation. Consequently, very often the decision aiding method
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is perceived by the DM as a black box whose result has to be accepted because the analyst’s authority
guarantees that the result is “right”. In this context, the aspiration of the DM to find good reasons to make
decision is frustrated and raises the need for a more transparent methodology in which the relation between
the original information and the final recommendation is clearly shown. Such a transparent methodology
searched for has been called glass box [51]. Its typical representative is using a training set of decision
examples as the input preference information.

The decision examples may either by provided by the DM on a set of real or hypothetical objects, or
may come from observation of DM’s past decisions. Such an approach follows the paradigm of inductive
learning used in artificial intelligence [65], or robust ordinal regression becoming popular in operational
research [56]. It is also concordant with the principle of posterior rationality postulated by March [64]
since it emphasizes the discovery of DM’s intentions as an interpretation of actions rather than as a priori
position. This paradigm has been used to construct various preference models from decision examples, e.g.,
the general additive utility functions [32, 54], the outranking relations [41, 66], the monotonic decision trees
[40], and the set of “if . . . , then . . . ” decision rules [48].

Of particular interest is the last model based on decision rules – it has been introduced to decision
analysis by Greco, Matarazzo and Słowiński [44, 46, 85]. A popular saying attributed to Slovic [81] is that
“people make decisions and then search for rules that justify their choices”. The rules explain the preferential
attitude of the DM and enable understanding of the reasons of his/her past decisions. The recognition of
the rules by the DM [63] justifies their use for decision support. So, the preference model in the form of
rules derived from decision examples fulfills both explanation and recommendation goals of decision aiding.

For example, in case of ranking students at the end of their studies, the decision rule approach requires
as input information a set of examples of pairwise comparisons of some students, taking into account their
evaluations on the considered criteria (courses, projects). From these pairwise comparisons, some decision
rules are induced, such as “if student a is strongly preferred to student b on Mathematics, and student
a got at least 75/100 for the Decision Support Project while student b got at most 80/100 for the same
project, then a is weakly preferred to b”. Each one of such rules is directly related to examples of pairwise
comparisons in the input information.

The traditional preference models, which are the utility function and the outranking relation, can be
represented in terms of equivalent decision rules. The clarity of the rule representation of preferences enables
one to see the limits of these aggregation functions. Several studies [47, 49, 83] presented an axiomatic
characterization of all three kinds of preference models in terms of conjoint measurement theory and in
terms of a set of decision rules. The given axioms of “cancellation property” type are the weakest possible.
In comparison to other studies on the characterization of preference models, these axioms do not require
any preliminary assumptions about the scales of preferences of criteria. A side-result of these investigations
is that the decision rule preference model is the most general among all known models.

1.3. Dominance-based Rough Set as a tool for dealing with inconsistency of the preference information
Preference information given in terms of decision examples is often inconsistent. This explains the interest

in rough set theory proposed by Pawlak [67–69]. Rough set theory permits to structure the data set such
that sets of objects (or sets of pairs of objects) are represented by pairs of ordinary sets called lower and
upper approximations. The differences between upper and lower approximations are called boundary sets,
and their cardinalities indicate to what degree the data set is inconsistent. Induction of decision rules from
data structured in this way permits to obtain certain or possible decision rules [70, 82].

As the classical definition of rough sets is based on an indiscernibility relation in the set of objects
[67–69], it cannot handle inconsistency encountered in decision examples involving multicriteria evaluations.
To deal with this kind of inconsistency, Greco, Matarazzo and Słowiński generalized the classical rough
set approach, so as to take into account preference orders and monotonic relationships between evaluations
on criteria and assignment to decision classes. This generalization, called Dominance-based Rough Set
Approach (DRSA), has been adapted to a large variety of decision problems, including the multicriteria
ranking problem [35, 44, 46, 51, 52, 84, 85].

The usefulness of DRSA goes beyond the frame of MCDA. This is because the type of monotonic
relationships handled by DRSA is also meaningful for problems where preferences are not considered but
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a kind of monotonicity relating ordered attribute values is meaningful for the analysis of data at hand.
Indeed, monotonicity concerns, in general, mutual trends existing between different variables, like distance
and gravity in physics, or inflation rate and interest rate in economics [50]. Whenever a relationship between
different aspects of a phenomenon is discovered, this relationship can be represented by a monotonicity with
respect to some specific measures or perception of the considered aspects, e.g., “the colder the weather,
the higher the energy consumption” or “the more a tomato is red, the more it is ripe”. The qualifiers,
like “cold weather”, “high energy consumption”, “red” and “ripe”, may be expressed either in terms of some
measurement units, or in terms of degrees of membership to fuzzy sets representing these concepts. Note,
moreover, that DRSA can be adapted to discover rules from any kind of input data, exhibiting monotonic
relationships which are unknown a priori and hold in some parts of the evaluation space only. This requires
a proper non-invasive transformation of the data, permitting representation of both positive and negative
monotonic relationships that are to be discovered [8].

Recently, we have been able to observe an increasing interest in statistical methods of processing prefe-
rence information concerning multicriteria decision problems, particularly in situations where the number of
decision examples is very large. Statistical approach to learning preference models from decision examples is
the core of PL. This interest is motivated by new challenging applications related to Internet, in particular,
recommender systems and information retrieval. In the first, the task is to recommend to the user a new
item (like movie or book) that fits her/his preferences. The recommendation is computed on the basis of the
learning information describing the past behavior of the user. In the latter, the task is to sort (or rank) the
documents retrieved by the search engine according to the user’s preferences. There are several algorithms
that are tailored for these kinds of problems. The most popular are based on rank loss minimization. These
include variants of support vector machines [61] and boosting [38]. One should also note that there exist
several other learning approaches in which preferences are modeled [37, 39, 74, 86]. Moreover, an interesting
work has been done in the field of ordinal classification with monotonicity constraints [25–27, 62].

1.4. Content and plan of the paper
In this paper, we present a non-statistical methodology for preference learning from decision examples.

It employs an adaptation of DRSA to the multicriteria ranking problem [42–44, 46, 84, 85]. More precisely,
it employs an adaptation of a generalized version of DRSA called Variable Consistency Dominance-based
Rough Set Approach (VC-DRSA) [11]. VC-DRSA is a probabilistic version of DRSA, however, it is not a
statistical preference learning methodology in the sense of statistical machine learning, where the preference
model is learned so as to minimize a loss function admitted for parameter estimation over a training set.
In the current adaptation, decision examples have the form of pairwise comparisons of some reference
objects. These pairwise comparisons, presented in a so-called pairwise comparison table (PCT), specify
if a weak preference relation, called an outranking relation S, holds for the considered pairs of reference
objects or not. When weak preference relation does not hold, such a relation is called a non-outranking
relation Sc. Thus, decision rules induced from rough approximations of comprehensive preference relations
S and Sc also involve pairs of objects. They constitute the preference model of the DM who gave the
pairwise comparisons. Application of these rules on a set A of objects to be ranked yields a fuzzy preference
structure on A, represented by a directed weighted graph. In order to pass from the preference structure to
the recommended ranking of objects, one has to apply an exploitation procedure including a ranking method.
In this paper, we investigate properties of several ranking methods which are supposed to be useful. From
among these methods, we choose the one that enjoys the most desirable properties.

This paper extends our considerations from [87] where the preference structure induced by decision rules
was supposed to be crisp. Passing from crisp to fuzzy preference structure on the set of objects requires
a proper adaptation of the exploitation procedure. Moreover, the properties of ranking methods change in
case of fuzzy preference structures. Another important difference between this paper and [87] concerns the
set of evaluation criteria. In [87], we adopted a typical assumption of MCDA that the set of criteria is a
consistent family [78], i.e., we assumed that G satisfies the properties of completeness (all relevant criteria
are considered), monotonicity (the better the evaluation of an object on considered criteria, the more it is
preferable to another object), and non-redundancy (there is no criterion which could be removed without
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violating one of the previous two properties). In this paper, we drop this assumption, which is rather typical
for PL. This drop is reflected by a different way of constructing the preference structure.

The remainder of this paper is organized as follows. Section 2 concerns some basic notions and notation
used throughout the paper. In Section 3, we present our setting of the considered multicriteria ranking
problem. In Section 4, we introduce the concept of the PCT. Section 5 concerns rough approximation of two
comprehensive preference relations specified by a DM – outranking relation S and non-outranking relation
Sc. In Section 6, we discuss induction of decision rules from rough approximations of S and Sc. Section 7
concerns application of decision rules on a set of objects to be ranked. In Section 8, we describe exploitation
of the preference structure resulting from application of decision rules. In this section, we focus on some
desirable properties of several ranking methods and select the method that has the best properties. In
Section 9, we present an illustrative example that demonstrates usefulness of the proposed methodology.
Section 10 concludes the paper.

2. Preliminaries

In this paper, A will denote a finite set of objects to be ranked. A fuzzy (valued) relation R over A is
a function from A × A into [0, 1]. It is said to be reflexive if R(a, a) = 1, for all a ∈ A. It is said to be
irreflexive if R(a, a) = 0, for all a ∈ A. We denote by RA the set of all fuzzy relations over A. Moreover,
we denote by R/A′ the restriction of fuzzy relation R over A to set A′ ⊆ A, i.e., fuzzy relation over A′ such
that for all a, b ∈ A′, R/A′(a, b) = R(a, b). A fuzzy relation R over A such that R(a, b) ∈ {0, 1}, for all
a, b ∈ A, is said to be crisp. In such case:

• if R(a, b) = 1, we say that pair (a, b) belongs to relation R, and we write aRb or (a, b) ∈ R,

• if R(a, b) = 0, we say that pair (a, b) does not belong to relation R, and we write not aRb or (a, b) /∈ R.

Let R be a crisp relation over A. This relation is said to be:

• transitive if (aRb and bRc⇒ aRc),

• complete if (aRb or bRa),

for all a, b, c ∈ A.
A weak order (also called complete preorder or total preorder) over A is a crisp binary relation which is

reflexive, transitive, and complete. A partial preorder over A is a crisp binary relation which is reflexive, and
transitive, but non-complete, in general. The symmetric part of a weak order relation R yields equivalence
classes ordered by the asymmetric part of R.

Let R be a crisp relation over A. We denote by G(A,R) the set of greatest elements of A given R, i.e.,

G(A,R) = {a ∈ A : aRb for all b ∈ A \ {a}}. (1)

It should be noticed that G(A,R) may well be empty. When R is a weak order, it is easy to see that set
G(A,R) is non-empty and equal to the first equivalence class of R.

A ranking method (RM) � is a function assigning a partial preorder �(A,R) over A to any finite set A
and any fuzzy relation R over this set. Remark that this is an extended definition w.r.t. the one given by
Bouyssou and Vincke [22], Bouyssou and Pirlot [21], and Greco et al. [53], where �(A,R) was supposed to
be a weak order. Moreover, in [21, 22] � was called a ranking rule. However, in this paper, we call � a
ranking method to avoid confusion with decision rules.

We, respectively, denote by =(A,R) and �(A,R) the symmetric and asymmetric parts of �(A,R), i.e.,
the relations such that, for all a, b ∈ A,

a =(A,R) b⇔ a �(A,R) b and b �(A,R) a, (2)
a �(A,R) b⇔ a �(A,R) b and not b �(A,R) a. (3)
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3. Problem Setting

We consider a multicriteria ranking problem in which objects belonging to a finite set A have to be ranked,
either completely or partially. In the first case, one aims at obtaining a weak order over A. In the latter case,
one accepts a partial preorder over A. The objects from set A are evaluated by set G = {g1, . . . , gn} of n
criteria. Each criterion gi ∈ G, i = 1, . . . , n, is a real-valued function gi : A→ <, with cardinal (i.e., interval
or ratio) scale or ordinal scale (which is given a priori or results from an order-preserving number-coding of
non-numerical ordinal evaluations) [45, 80]. Thus, value gi(a), a ∈ A, represents the evaluation of object a
with respect to (w.r.t.) criterion gi. A criterion with the cardinal scale is called a cardinal criterion; the set
of all cardinal criteria is denoted by GN ⊆ G. A criterion with the ordinal scale is called an ordinal criterion;
the set of all ordinal criteria is denoted by GO ⊆ G. Moreover, GN ∪ GO = G and GN ∩ GO = ∅. The
meaning of the two scales is such that in the case of a criterion gi ∈ GN with a cardinal scale, one can define
a function ki : <2 → < which measures the intensity of preference (positive or negative) of object a over
object b, taking into account evaluations gi(a), gi(b), a, b ∈ A. For properties of function ki, and different
ways of defining it, see Greco et al. [46]. Basically, ki is non-decreasing w.r.t. the first argument, and
non-increasing w.r.t. the second argument. For the sake of simplicity, we assume in this paper that for each
cardinal criterion gi ∈ GN , intensity of preference is defined as: ki[gi(a), gi(b)] = ∆i(a, b) = gi(a)− gi(b). In
the case of a criterion gi ∈ GO with an ordinal scale, this is not possible (as differences of evaluations are
not meaningful) and one can only establish an order of evaluations gi(a), a ∈ A.

We assume, moreover, without loss of generality, that all the criteria are of gain-type, i.e., the greater
the criterion value the better.

Let us denote by Vgi = < the value set (domain) of criterion gi ∈ G. Then, set VG =
∏

i=1,...,n

Vgi = <n is

called G-evaluation space.
Given the statement of a multicriteria ranking problem, the only objective information one can get is

the dominance relation D over set of objects A, defined in the G-evaluation space. Let us consider objects
a, b ∈ A; object a is said to dominate object b, denoted by aDb, if and only if (iff) for all gi ∈ G : gi(a) ≥ gi(b).
The dominance relation D is, however, too poor because it leaves many objects incomparable. In order to
make the objects more comparable, a DM must supply some preference information revealing her/his value
system w.r.t. multicriteria evaluations. We consider a frequent case, when the preference information has
the form of pairwise comparisons of some objects relatively well known to the DM, called reference objects.
This information is thus composed of some decision examples on the reference objects.

Let us denote by AR the set of all reference objects. Set AR can be a subset of A, however, it is not
required by the presented methodology. If AR * A, then we just need to define each criterion gi ∈ G, i =
1, . . . , n, as function gi : A∪AR → <, and dominance relation D over set A∪AR. In any case, A \AR is a
set of objects unseen during preference model learning.

Following Greco et al. [44, 46] and Słowiński et al. [85], we consider that for each ordered pair (a, b) of
different reference objects, i.e., (a, b) ∈ AR×AR, a 6= b, the DM can state either “object a is at least as good
as object b” (in other words – “object a outranks object b”) or “object a is not at least as good as object b”
(in other words – “object a does not outrank object b”), or abstain from any judgment. The first situation
is denoted by aSb (or (a, b) ∈ S), while the second one is denoted by aScb (or (a, b) ∈ Sc). Moreover, we fix
aSa for all a ∈ AR. Thus, from a formal point of view, the DM can reveal her/his preferences by assigning
pairs of objects to any of the two considered comprehensive preference relations: outranking relation S or
non-outranking relation Sc. Obviously, relation S is a weak preference relation which, in general, is only
reflexive. It is not symmetric, not transitive, and not complete. Moreover, non-outranking relation Sc is
irreflexive, and, in general, it is not symmetric, not transitive, and not complete. This is to say that the
preference information coming from the DM is relatively weak and non-exhaustive.

By expressing her/his preferences in the way described above, for each pair of objects (a, b) ∈ AR ×AR,
a 6= b, the DM can easily specify any of the four situations typically considered in Multiple Criteria Decision
Aiding (MCDA), i.e.:

• strict preference P :
aPb⇔ aSb ∧ bSca, (4)
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• inverse strict preference P−1:
aP−1b⇔ aScb ∧ bSa, (5)

• indifference I:
aIb⇔ aSb ∧ bSa, (6)

• incomparability J :
aJb⇔ aScb ∧ bSca. (7)

Alternative elicitation of preference information in terms of pairwise comparisons employing graded
comprehensive preference relations can be found in [35].

It is worth stressing that expressing decision examples on the reference objects is cognitively relatively
easy for the DM. In our approach, instead of requiring that the DM provides values of some difficult
parameters like weights of criteria or different thresholds (see, e.g., methods from the ELECTRE family
[76]), and then using this information in a complex preference model, we treat the decision examples supplied
by the DM as the input data, and then follow with learning of a preference model of the DM in easy rule
terms.

To simplify the notation, in the following, we will use unique symbol T to refer to any of the compre-
hensive preference relations S and Sc when these relations are considered jointly, unless this may cause
misunderstanding. Moreover, we denote by IG, IGN , IGO ⊆ {1, . . . , n} the sets of indexes of criteria belong-
ing to G,GN , GO, respectively, where IGN ∩ IGO = ∅ and IGN ∪ IGO = IG.

4. Pairwise Comparison Table

The preference information of the DM in the form of pairwise comparisons of reference objects is used
to create a pairwise comparison table (PCT), first introduced in [42, 43]. Let us denote by B ⊆ AR × AR
the set of pairs of reference objects for which the comprehensive preference of the DM is known. This set
is composed of pairs (a, b) ∈ AR × AR, a 6= b, for which the DM expressed her/his preferences by declaring
aSb or aScb, as well as of pairs (a, a), a ∈ AR, which are assigned to S.

Intuitively, a PCT created on the basis of preference information supplied by the DM is an m× (n+ 1)
data table, denoted by SPCT , where m is the cardinality of set B of pairs. First n columns of this table
correspond to criteria from set G. The last, (n + 1)-th, column represents the comprehensive preference
relation S or Sc. Each row of SPCT corresponds to a pair of reference objects from B. As announced in
Section 3, when comparing two objects a, b ∈ AR on a cardinal criterion gi ∈ GN , i ∈ IGN , one puts in the
corresponding column of SPCT the difference gi(a) − gi(b). When comparing two objects a, b ∈ AR on an
ordinal criterion gi ∈ GO, i ∈ IGO , one puts in the corresponding column of SPCT an ordered pair of ordinal
evaluations (gi(a), gi(b)).

Describing the PCT more formally, one can say that each pair of objects (a, b) ∈ B is evaluated on set
G of criteria, such that:

• for criterion gi ∈ GN , the evaluation of (a, b) ∈ B is defined as
qi(a, b) = gi(a)− gi(b) ∈ Vqi = <,

• for criterion gi ∈ GO, the evaluation of (a, b) ∈ B is defined as
qi(a, b) = (gi(a), gi(b)) ∈ Vqi = <× <.

Then, set VQ =
∏
i∈IG

Vqi is called Q-evaluation space.
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5. Rough Approximation of Outranking and Non-outranking Relations

In Section 3, we considered dominance relation D over set of objects A, defined in the G-evaluation space.
Here, we introduce another type of dominance relation, denoted by D2. This binary relation is defined over
set B of pairs of objects, in the Q-evaluation space. D2 can also be defined using the evaluations of objects
from set AR on the criteria from set G. Obviously, the same definition holds for all non-empty subsets of G.

First, let us consider a case when set G is composed of cardinal criteria only, i.e. GN = G,GO = ∅.
Then, given pairs of objects (a, b), (c, d) ∈ B, pair (a, b) is said to dominate pair (c, d) w.r.t. criteria from
G (denoted by (a, b)D2(c, d)) iff ∆i(a, b) ≥ ∆i(c, d) for each gi ∈ G, where ∆i(a, b) denotes gi(a) − gi(b).
Let Di

2 be the dominance relation over B confined to single criterion gi ∈ G. This relation is reflexive,
transitive and complete. Therefore, Di

2 is a weak order over B. Since an intersection of weak orders is a
partial preorder, and relation D2 over B is the intersection of relations Di

2, i ∈ IG, then relation D2 is a
partial preorder over B.

Secondly, let us consider a case when set G is composed of ordinal criteria only, i.e., GO = G,GN = ∅.
Then, given pairs of objects (a, b), (c, d) ∈ B, pair (a, b) is said to dominate pair (c, d) w.r.t. criteria from G
iff gi(a) ≥ gi(c) and gi(b) ≤ gi(d) for each gi ∈ G. In other words, pair (a, b) is said to dominate pair (c, d)
w.r.t. criteria from G iff aDc and dDb. Let Di

2 be the dominance relation over B confined to single criterion
gi ∈ G. This relation is reflexive, transitive but non-complete (i.e., it is possible that not (a, b)Di

2(c, d) and
not (c, d)Di

2(a, b) for some (a, b), (c, d) ∈ B and gi ∈ G). Therefore, Di
2 is a partial preorder over B. Since

an intersection of partial preorders is also a partial preorder, and relation D2 over B is the intersection of
relations Di

2, i ∈ IG, then relation D2 is a partial preorder over B.
Finally, when set G is composed of both cardinal and ordinal criteria, i.e., when GN 6= ∅ and GO 6= ∅,

then given pairs of objects (a, b), (c, d) ∈ B, pair (a, b) is said to dominate pair (c, d) w.r.t. criteria from G
iff (a, b) dominates (c, d) w.r.t. both GN and GO. Since the dominance w.r.t. GN is a partial preorder over
B and the dominance w.r.t. GO is a partial preorder over B, then the dominance D2, being the intersection
of these two dominance relations, is also a partial preorder over B.

Let G′ ⊆ G and pairs (a, b), (c, d) ∈ B. Then, if (a, b) dominates (c, d) w.r.t. set G of criteria, then (a, b)
dominates (c, d) w.r.t. set G′.

Given a pair of objects (a, b) ∈ B we define the following:

• a set of pairs of objects dominating (a, b), called the dominating set or positive dominance cone in the
Q-evaluation space:

D+
2 (a, b) = {(c, d) ∈ B : (c, d)D2(a, b)}, (8)

• a set of pairs of objects dominated by (a, b), called the dominated set or negative dominance cone in
the Q-evaluation space:

D−2 (a, b) = {(c, d) ∈ B : (a, b)D2(c, d)}. (9)

In equations (8) and (9), pair of objects (a, b) is called an origin of the dominance cone. Dominating and
dominated sets of objects are “granules of knowledge” used to approximate outranking and non-outranking
relation, respectively.

We formulate the following dominance principle w.r.t. pairwise comparisons of the DM: “if a is preferred
to b at least as much as c is preferred to d w.r.t. each gi ∈ G, then the comprehensive preference of a over b
should not be weaker that the comprehensive preference of c over d”. This means that if (a, b)D2(c, d), one
expects that:

(i) if aScb, then cScd,

(ii) if cSd, then aSb.

Violation of this dominance principle is considered as an inconsistency w.r.t. dominance relation D2 over B.
Let us observe that, thanks to the presence in SPCT of pairs (a, a) ∈ S, a ∈ AR, an inconsistency w.r.t. D2

appears also when given two objects a, b ∈ AR, the DM states that aScb, while aDb. This is related to the
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reflexivity of S and the irreflexivity of Sc. In fact, aDb implies (a, b)D2(a, a), and together with aSa, this
implies that aSb. Thus, the opposite statement aScb is inconsistent with the expectation (ii) listed above.

In practice, decision examples given by a DM are often inconsistent due to hesitation of the DM, un-
stable character of her/his preferences, or incomplete determination of the set of criteria [e.g., 77]. These
inconsistencies cannot be considered as a simple error or as noise. They can convey important information
that should be taken into account when constructing a preference model of the DM. Rather than correct
or ignore these inconsistencies, we propose to handle them using the dominance-based rough set approach.
Before learning of a preference model of the DM, we structure pairs of objects contained in SPCT by calcu-
lation of lower approximations of comprehensive preference relations. In this way, we restrict a priori the
set of pairs of objects on which the preference model is built to a subset of sufficiently consistent pairs of
objects belonging to lower approximations. This restriction is motivated by a postulate for learning from
(sufficiently) consistent data, so that the knowledge gained from this learning is relatively certain (or, in
other words, the induced preference model is reliable). Analogous restriction proved to be effective in case of
ordinal classification problems with monotonicity constraints [12, 13]. It is worth underlining that, although
only sufficiently consistent pairs of objects from SPCT are used to construct a preference model of the DM,
the remaining pairs of objects are not removed from SPCT . In other words, the approach proposed in this
paper does not boil down to a simple pre-processing performed to remove inconsistent decision examples. In
fact, inconsistent pairs of objects play the role of “counterexamples”, helping this way to induce a preference
model.

In previous applications of DRSA to multicriteria ranking [44, 46, 85], outranking and non-outranking
relations were approximated using strict inclusion relation between dominance cones originating in pairs of
objects (a, b) ∈ B and the comprehensive preference relations. Precisely, lower approximations of relations
S and Sc were defined as:

S = {(a, b) ∈ B : D+
2 (a, b) ⊆ S}, (10)

Sc = {(a, b) ∈ B : D−2 (a, b) ⊆ Sc}. (11)

These definitions of lower approximations appear to be too restrictive in practical applications. In conse-
quence, lower approximations of S and Sc are often empty, preventing generalization of pairwise comparisons
in terms of sufficiently certain decision rules. Therefore, in this paper, we apply VC-DRSA [11, 58] which
is a probabilistic extension of the classical DRSA. Since originally VC-DRSA was introduced for ordinal
classification problems, here we adapt its definitions of variable-consistency (v-c) lower approximations to
the case of approximating outranking and non-outranking relations. In the adapted definitions of v-c lower
approximations of S and Sc, we use consistency measure εT : B → [0, 1], introduced in [10, 11], defined as:

εS(a, b) =
|D+

2 (a, b) ∩ Sc|
|Sc|

, (12)

εSc(a, b) =
|D−2 (a, b) ∩ S|

|S|
. (13)

Given pair of objects (a, b) ∈ B and relation T , value εT (a, b) reflects consistency of pair (a, b) w.r.t. T . εT
is a cost-type consistency measure, which means that value zero denotes full consistency and the greater the
value, the less consistent is a given pair of objects. The definitions of v-c lower approximations adapted to
the case of approximating outranking and non-outranking relations are the following:

S = {(a, b) ∈ S : εS(a, b) ≤ θS}, (14)
Sc = {(a, b) ∈ Sc : εSc(a, b) ≤ θSc}, (15)

where consistency thresholds θS , θSc ∈ [0, 1). The values of these thresholds are fixed using a simple
wrapper-like cross validation procedure. Note that in case θS = θSc = 0, the v-c lower approximations (14)
and (15) are equal to the lower approximations (10) and (11), respectively. In the following, unless this may
cause misunderstanding, we drop “v-c” and call sets of pairs of objects defined by (14) and (15) just lower
approximations of relations S and Sc, respectively.
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In [11], several consistency measures were defined. The choice of particular consistency measure εT
is dictated by several factors. The first one is that measure εT features an easy interpretation – it can be
interpreted as an estimate of conditional probability that a pair of objects (c, d) ∈ B belongs to the dominance
cone originating in pair (a, b) ∈ B given that pair (c, d) does not belong to the considered comprehensive
preference relation. The second factor is a good performance of this measure in computational experiments
[12, 13], comparing to other consistency measures. The third factor is the fact that measure εT has all
monotonicity properties [11] relevant to the case of a PCT with just two possible decisions for each pair
of objects, i.e., assignment to relation S or to Sc. Precisely, measure εT has the following monotonicity
properties: (m1) – monotonicity w.r.t. the set of criteria, (m2) – monotonicity w.r.t. relation T , and (m4) –
monotonicity w.r.t. dominance relation D2 over B. Definitions of these properties, for the case of a cost-type
consistency measure, can be found in the Appendix (Definitions: 13, 14, 15).

Using definitions (14) and (15), one can define v-c upper approximations and v-c boundaries of sets S
and Sc as in [11].

We define positive regions of relations S and Sc as follows:

POS(S) =
⋃

(a,b)∈S

D+
2 (a, b), (16)

POS(Sc) =
⋃

(a,b)∈Sc

D−2 (a, b). (17)

Positive regions defined above contain pairs of objects sufficiently consistent, i.e., belonging to lower ap-
proximations of relation S (14) or Sc (15), and can also contain some inconsistent pairs of objects which
fall into dominance cones D+

2 (·, ·) or D−2 (·, ·) originating in pairs of objects from lower approximations of
relation S or Sc, respectively. Moreover, one can define boundary and negative regions of relations S and
Sc analogously to [9, 13]. It is also possible to perform further DRSA analysis by calculating the quality of
approximation, reducts, and the core [45, 46, 48, 84, 85].

6. Induction of Decision Rules

After structuring decision examples supplied by the DM into lower approximations of comprehensive
preference relations, we induce a generalized description of sufficiently consistent pairs of objects from SPCT
in terms of a set of minimal decision rules. An induced set of rules is considered to be a preference model
of the DM who gave the pairwise comparisons of reference objects. Each rule is a statement of the type:

if Φ, then Ψ,

where Φ and Ψ denote condition and decision part of the rule, called also premise and conclusion, respec-
tively. The condition part of the rule is a conjunction of elementary conditions concerning individual criteria,
and the decision part of the rule suggests assignment of pairs of objects covered by the rule to outranking
relation S or to non-outranking relation Sc. The rule is said to cover a pair of objects (a, b) ∈ A×A if this
pair satisfies all the elementary conditions of the rule. A pair of objects (a, b) ∈ B is said to support the
rule if this pair satisfies all the elementary conditions and the conclusion of the rule. Rule rT , suggesting
assignment of covered pairs of objects to relation T , is called minimal if there is no other rule r′T having
premise at least as general as that of rT (i.e., employing subset of elementary conditions of rT and/or more
general elementary conditions than rT ) and consistency not worse than that of rT (where by consistency of
rule rT we understand the value of a rule consistency measure defined later in this section). In the following,
a minimal decision rule is denoted by m-rule. The interest in minimal decision rules comes, obviously, from
the fact that they generalize decision examples better than non-minimal rules. Thus, generation of minimal
decision rules may be seen as a way to avoid overfitting.

Decision rules are induced so as to cover pairs of objects from lower approximations (14) and (15).
However, in some cases it is impossible for a rule to cover only pairs of objects from a lower approximation.
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To handle these cases, the positive region of the considered comprehensive preference relation is computed
according to (16) or (17).

Set T of pairs of objects belonging to the lower approximation of comprehensive preference relation T
is the basis for induction of a set of minimal decision rules that suggest assignment to T . A rule from this
set is supported by at least one pair of objects from T , and it covers pair(s) of objects from POS(T ). The
elementary conditions (selectors) that form this rule are built using only evaluations of objects present in
the pairs of objects that belong to T .

Below, we define the syntax of decision rules that generalize description of sufficiently consistent pairs of
objects present in a PCT:

if
(
∆i1(a, b) ≥ δi1

)
∧ . . . ∧

(
∆ip(a, b) ≥ δip

)
∧(

gip+1(a) ≥ rip+1 ∧ gip+1(b) ≤ sip+1

)
∧ . . . ∧

(
giz (a) ≥ riz ∧ giz (b) ≤ siz

)
,

then aSb, (18)

if
(
∆i1(a, b) ≤ δi1

)
∧ . . . ∧

(
∆ip(a, b) ≤ δip

)
∧(

gip+1(a) ≤ rip+1 ∧ gip+1(b) ≥ sip+1

)
∧ . . . ∧

(
giz (a) ≤ riz ∧ giz (b) ≥ siz

)
,

then aScb, (19)

where: ∆ij (a, b) denotes gij (a) − gij (b), δij ∈ {gij (c) − gij (d) : (c, d) ∈ B}, for ij ∈ {i1, . . . , ip} ⊆ IGN ;
(rij , sij ) ∈ {(gij (c), gij (d)) : (c, d) ∈ B}, for ij ∈ {ip+1, . . . , iz} ⊆ IGO . For instance, considering ranking of
cars, a decision rule could be “if car a has maximum speed at least 25 km/h greater than car b (cardinal
criterion) and car a has comfort at least 3 while car b has comfort at most 2 (ordinal criterion), then car a
is at least as good as car b”, where values 2 and 3 code ordinal evaluations medium and good, respectively.

The rules with syntax (18) are called at least rules, while the rules with syntax (19) are called at most
rules. Let us observe that the above syntax of decision rules is concordant with the definition of dominance
relation D2 over B in the sense that the premise of each decision rule is a positive or negative dominance
cone in the Q-evaluation space. Moreover, as we work with variable-consistency lower approximations, in
order to cover by rules all pairs of objects from S and Sc, we have to agree that not all the rules will be
fully consistent. For example, it is inevitable that a rule suggesting assignment to relation S covers pairs of
objects that do not belong to S but dominate in the Q-evaluation space at least one pair of objects from S
that supports the considered rule. Therefore, in the following, we speak about probabilistic decision rules
to underline the fact that not all pairs of objects from SPCT that are covered by a rule have to support this
rule.

Decision rules can be characterized by many attractiveness measures (see Greco et al. [55, 59] for a study
of some properties of these measures).

Since we work with probabilistic decision rules, it is important to control consistency of these rules. To
this end, we define a cost-type rule consistency measure [12, 13] denoted by ε̂T . This measure is a function
ε̂T : RT → [0, 1], where RT is the set of rules suggesting assignment to relation T . Let us denote by Φ(rT ),
Ψ(rT ), and ‖Φ(rT )‖, condition part of rule rT , its decision part, and the set of pairs of objects covered by
the rule, respectively. Then, measure ε̂T is defined as:

ε̂T (rT ) =

∣∣‖Φ(rT )‖ ∩ ¬T
∣∣

|¬T |
, (20)

where ¬T = B \ T is the complement of relation T w.r.t. set B (obviously, ¬S = Sc and ¬Sc = S).
Induced rules have to satisfy the same constraints on consistency as pairs of objects from the lower

approximation which serves as a base for rule induction. In particular, each rule rT is required to satisfy
threshold θT , i.e., ε̂T (rT ) has to be not greater than θT . In the following, rule rT satisfying threshold θT is
called sufficiently consistent and denoted by sc-rule. Since rule consistency measure ε̂T is a counterpart of
consistency measure εT defined as (12) and (13), it can be shown that ε̂T derives monotonicity properties
from εT .

Let us now remind some useful definitions concerning probabilistic decision rules, introduced in [13].
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A probabilistic decision rule rT suggesting assignment to relation T is discriminant if it covers only pairs
of objects belonging to positive region POS(T ). In the following, a discriminant decision rule is denoted
by d-rule. Moreover, rule rT is robust if there exists a pair of objects (a, b) ∈ T which is a base of rT .
Considering for example definition (18), it means that qi1(a, b) = δi1 ∧ . . . ∧ qip(a, b) = δip ∧ qip+1

(a, b) =
(rip+1

, sip+1
) ∧ . . . ∧ qiz (a, b) = (riz , siz ). In the following, a robust decision rule is denoted by r-rule. Set

RT of rules suggesting assignment to relation T is minimal if each pair of objects (a, b) ∈ T is covered by at
least one rule rT ∈ RT and elimination of any rule from RT makes that not all pairs of objects (a, b) ∈ T
are covered by the remaining rules. In the following, a minimal set of decision rules is denoted by m-set of
rules.

Induction of decision rules is a complex problem and many algorithms have been introduced to deal
with it. Examples of rule induction algorithms that were defined for DRSA are: by Greco et al. [57], by
Dembczyński et al. [29], and by Błaszczyński et al. [12, 13]. In general, rule induction algorithms can be
divided into three categories that reflect different induction strategies:

(α) generation of a minimal set of decision rules,

(β) generation of an exhaustive set of decision rules,

(γ) generation of a satisfactory set of decision rules.

When applied to a PCT, algorithms from category (α) focus on describing all pairs of objects from lower
approximations of S and Sc by an m-set of m-rules. Algorithms from category (β) generate all m-rules.
Category (γ) includes algorithms that generate all m-rules that satisfy some a priori defined requirements
(concerning, e.g., maximum rule length or minimum support).

In this paper, we apply VC-DomLEM algorithm [12, 13] which belongs to category α). Each of the sets
RS and RSc of decision rules induced by VC-DomLEM for comprehensive preference relation S and Sc,
respectively, is an m-set of m-sc-rules (i.e., is a minimal set composed of minimal and sufficiently consistent
decision rules). Moreover, we parameterize the algorithm in such a way, that it induces d-rules (technically,
this is achieved by choosing covering option s = 1, which means that each induced rule rT is allowed to
cover only pairs of objects belonging to set POS(T )). It is important to note that the rules generated by
VC-DomLEM do not have to be robust, which means that each rule rT can employ elementary conditions
created using evaluations in Q-evaluation space of different pairs of objects from T.

7. Application of Decision Rules

After induction of decision rules, the next step of the proposed methodology to multicriteria ranking is
the application of induced rules on set A. This application yields a fuzzy preference structure on set A.
Each pair of objects (a, b) ∈ A×A can be covered by some decision rules suggesting assignment to relation S
and/or to relation Sc. It can be also not covered by any rule. In order to represent each of these situations,
first we treat each rule rT covering pair (a, b) as an argument (piece of evidence) for assignment of this pair
to relation T . Second, we take into account strength σ of each argument (rule rT ) defined in the following
way:

σ(rT ) =
(
1− ε̂T (rT )

)
cf(rT ), (21)

where cf(rT ) denotes coverage factor of rule rT , defined as the ratio of the number of pairs of objects
supporting rT and the cardinality of relation T . In this way, the higher the consistency of the rule (i.e.,
the lower the value of ε̂T ), and the greater the number of pairs of objects supporting the rule, the stronger
the argument for assignment of pair (a, b) to relation T . Third, analogously to [35, 36], we accumulate the
strength of the arguments supporting assignment of pair (a, b) to relation T by taking maximum strength
of these arguments. This way, performing all three steps for every pair of objects (a, b) ∈ A×A, we get two
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fuzzy preference relations over A, denoted by S and Sc, defined as:

S(a, b) =

{
max{σ(rS) : rS ∈ RS and rS covers (a, b)}, if a 6= b
1, if a = b

, (22)

Sc(a, b) =

{
max{σ(rSc) : rSc ∈ RSc and rSc covers (a, b)}, if a 6= b
0, if a = b

. (23)

Let us observe that relation S is reflexive and relation Sc is irreflexive.
The fuzzy preference structure on A, composed of S and Sc, can be represented by a preference graph. It

is a directed weighted multigraph G. Each vertex (node) va of the preference graph corresponds to exactly
one object a ∈ A. One can distinguish in G two types of arcs: S-arcs and Sc-arcs. Each S-arc between
vertices va and vb is weighted by value S(a, b). Analogously, each Sc-arc between vertices va and vb is
weighted by value Sc(a, b). G is a multigraph since there may be one S-arc and one Sc-arc for each pair of
objects (a, b) ∈ A×A. A final recommendation for the multicriteria ranking problem at hand, in terms of a
complete or partial preorder of all objects belonging to set A, can be obtained upon a suitable exploitation
of the preference graph.

8. Exploitation of Preference Graph

8.1. Representation of fuzzy relations S and Sc by a preference graph
The exploitation of preference graph G resulting from application of induced decision rules on set A is

not an easy task, especially because this graph represents two fuzzy relations S and Sc. This task is more
complex than the exploitation of a preference graph representing just one fuzzy relation, well studied in the
literature [4, 14–17, 20–22, 30, 71, 73].

Preference graphs representing only one fuzzy relation are obtained, e.g., in several decision support
methods proposed in the field of MCDA, in which preferences of a DM are modeled in terms of binary
relations. Among these methods, one can mention ELECTRE III [33, 75] and PROMETHEE I and II
[23, 24]. When preferences are modeled in terms of binary relations, the key question is the existence of
evidence in favor of the considered relation. For example, in case of outranking relation S concerned in the
methods from ELECTRE family, the evidence concerns the sentence aSb and/or bSa, for any pair of objects
a, b ∈ A. In reality, the evidence is never complete, thus inducing a graded (fuzzy) relation aSb, i.e., “a is
at least as good as b, up to a certain degree of certainty”.

It is reasonable to claim that considering only evidence in favor of the considered binary relation does
not allow to catch the reality of some decision problems. In fact, such an approach leads to a situation where
the evidence in disfavor of a sentence is semantically considered – and thus modeled – as the evidence in
favor of the opposite sentence. This mental restriction may induce not only misunderstandings but, which
is even more important, it may also imply some loss of information (a good example clarifying this point,
concerning government composition, is presented by Fortemps and Słowiński [36]). Therefore, in this paper,
given a pair of objects (a, b) ∈ A×A, we consider not only the decision rules supporting conclusion aSb, but
also the rules supporting the opposite conclusion, i.e., conclusion aScb. In this way, we take into account
the arguments in favor of preference of a over b and in disfavor of it; in the following, they will be also
called positive and negative arguments, respectively. As described in Section 7, the accumulated strength
of the positive arguments is reflected by the value S(a, b), while the accumulated strength of the negative
arguments is reflected by the value Sc(a, b).

The information contained in a preference graph representing two fuzzy preference relations S and Sc over
set A can be also expressed in the form of four graded (fuzzy) outranking relations ST ,SF ,SU ,SK ∈ RA,
considered, e.g., by Tsoukias and Vincke [89], Perny and Tsoukias [72], Fortemps and Słowiński [36]. These
binary relations correspond to four truth values of Belnap [5, 6]: T (true), F (false), U (unknown), and K
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(contradictory). Relations ST , SF , SU , and SK, are defined in the following way:

ST (a, b) = min(S(a, b), 1− Sc(a, b)), (24)

SF (a, b) = min(1− S(a, b),Sc(a, b)), (25)

SK(a, b) = min(S(a, b),Sc(a, b)), (26)

SU (a, b) = min(1− S(a, b), 1− Sc(a, b)), (27)

where a, b ∈ A. Is is worth noting that the above definitions relate to preference, indifference, and incompa-
rability indexes introduced by Bisdorff [7].

8.2. Review of possible exploitation procedures
Given a preference graph G, one can propose several exploitation techniques that lead to final recom-

mendation for the multicriteria ranking problem at hand, in terms of a complete or partial preorder of all
objects from set A. We distinguish the following approaches:

(i) direct exploitation of fuzzy preference relations S and Sc by the Fuzzy Net Flow Score (FNFS) proce-
dure [35],

(ii) exploitation of the four graded outranking relations ST , SF , SU , and SK in the way proposed by
Fortemps and Słowiński [36],

(iii) independent exploitation of fuzzy preference relations S and Sc,

(iv) suitable transformation of preference graph G to another graph G′ representing only one fuzzy relation,
then exploitation of this relation leading to complete or partial preorder over A.

Approach (i) is based on scoring function SNF : A→ < defined as:

SNF (a) =
∑

b∈A\{a}

S(a, b)− S(b, a)− Sc(a, b) + Sc(b, a). (28)

Function SNF induces a weak order over A, which is a solution of the considered multicriteria ranking
problem. Note that this scoring function was also considered by Greco et al. [53], in case of crisp relations
S and Sc. In approach (ii), one associates with each object a ∈ A a vector ā, defined as:

ā = (tb, tc, . . . , fb, fc, . . .),

where tb (respectively, fb) denotes ST (a, b) (respectively, SF (b, a)). Then, all vectors corresponding to
objects from set A are sorted in the non-decreasing order and compared lexicographically (to resolve ties,
one can also take into account for each object a ∈ A additional vectors composed of values SK(a, ·) or
SU (a, ·)). Such leximin-scoring procedure yields a partial preorder over A. The idea of approach (iii) is
to exploit relations S and Sc independently, obtaining two separate preorders (complete or partial), and
then to conjunct these preorders in the same way as in the ELECTRE III method [33, 75]. This leads to
obtaining a partial preorder over A.

8.3. Fusion of fuzzy relations S and Sc in order to exploit a single relation
In the following, we will concentrate on approach (iv), mainly for three reasons. The first one is that the

exploitation of a fuzzy relation over a set of objects is well studied in the literature, as already mentioned
earlier in this section. Many ranking methods have been proposed in this subject. The diversity of ranking
methods calls for a systematic comparison of their formal properties, which is, however, missing. The second
reason for concentrating on approach (iv) is that, using a suitable transformation of preference graph G and
an appropriate ranking method to exploit the transformed graph G′, it is possible to obtain the same final
ranking as in approach (i). Thus, approach (iv) can be seen as a framework that encompasses approach (i).
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The third reason is that when applied to set A, most of the ranking methods considered in the literature
yield a weak order over A, which is generally acknowledged to be more operational for the DM than a partial
preorder that can be obtained in approaches (ii) and (iii).

The suitable transformation of preference graph G representing two fuzzy preference relations S and Sc
to graph G′ representing one fuzzy relation R ∈ RA consists in defining relation R in the following way:

R(a, b) =
S(a, b) + (1− Sc(a, b))

2
, (29)

where a, b ∈ A. Let us observe that scoring function SNF defined by (28) can be expressed in terms of R as:
SNF (a) = 2[

∑
b∈A\{a}R(a, b) − R(b, a)]. Moreover, relation R is reflexive, i.e., R(a, a) = 1 for all a ∈ A.

In the following, considering exploitation of relation R, we assume that this relation has no “structural
properties” [18], i.e., we assume (what seems to be the case) that R may be any fuzzy relation over A. The
rationale for this assumption is that relation R depends only on a considered set of decision rules, and, in
general, this set of rules does not depend on A.

8.4. Review of ranking methods
In the literature, one can find many ranking methods “dedicated” to exploitation of a fuzzy relation over

a set of objects [14, 16, 20–22, 73]. On the other hand, as argued by Arrow and Raynaud [3], one can be
also interested in another approach to rank objects which consists in (downward) iterative application of a
choice function. Let us denote by PA the set of all nonempty subsets of a finite set of objects A. Then,
choice function cf is a function

cf : PA ×RA → PA. (30)

A choice function associates with each nonempty set A′ ⊆ A and each fuzzy relation R over A, a nonempty
choice set cf(A′, R) ⊆ A′, which may be interpreted as the set of the “best” objects in A′ given relation
R. Iterative application of a choice function on a finite set A was considered, e.g., in [19, 21, 22]. It leads
to obtaining a weak order over A. Let us denote by Ai ⊆ A the set of objects considered in i-th iteration
and by |A| the cardinality of set A. Obviously, A1 = A. In i-th iteration, i ∈ {1, 2, . . . , |A|}, given choice
function cf is applied to set Ai. Then, the objects belonging to choice set cf(Ai, R) are put in i-th rank of
the constructed ranking and removed from set Ai. Thus, Ai+1 = Ai \ cf(Ai, R). The construction of a final
ranking is finished when this ranking contains all objects from set A.

Most of the proposed “dedicated” ranking methods as well as ranking methods based on iterative appli-
cation of a choice function employ a scoring function. Given a finite set of objects A and a fuzzy relation R
over A, scoring function is used to evaluate relative performance of each object a ∈ A w.r.t. the objects in
nonempty set A′ ⊆ A, taking into account relation R. Thus, scoring function sf is a function

sf : A× PA ×RA → <. (31)

Value sf(a,A′, R) denotes the score of object a ∈ A calculated w.r.t. the objects in A′ ⊆ A, given fuzzy
relation R.

Let define two generic score-based ranking methods: single-stage ranking method (�1) and multi-stage
ranking method (�i). These ranking methods are parameterized by a set of objects A, a fuzzy relation R
over A, and a scoring function sf . Moreover, they yield a weak order over A:

• �1 (A,R, sf):
assign score sf(a,A,R) to each object a ∈ A and rank all the objects from set A according to their
scores, in such a way that the higher the score of an object, the lower its rank (objects with the same
score belong to the same rank);

• �i (A,R, sf):

(1) define choice function cf as:
cf(A′, R) = {a ∈ A′ : sf(a,A′, R) ≥ sf(b, A′, R) for all b ∈ A′}, where A′ ⊆ A, i.e., in such a way
that it chooses subset of A′ composed of objects with the highest score;
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(2) perform (downward) iterative application of choice function cf on set A.

Clearly, the aforementioned “dedicated” ranking methods are instances of �1, differing only by the
definition of function sf . Analogously, ranking methods based on iterative choice considered by Bouyssou
and Pirlot [21], and Bouyssou and Vincke [22] are instances of �i, differing only by the definition of function
sf .

Let us consider a finite set of objects A and a fuzzy relation R over A. Then, according to Barrett et al.
[4], the score of any object a ∈ A w.r.t. the objects in any set A′ ⊆ A can be calculated using one of the
following scoring functions:

max in favor : MF (a,A′, R) = max
b∈A′\{a}

R(a, b), (32)

min in favor : mF (a,A′, R) = min
b∈A′\{a}

R(a, b), (33)

sum in favor : SF (a,A′, R) =
∑

b∈A′\{a}

R(a, b), (34)

–max against : −MA(a,A′, R) = − max
b∈A′\{a}

R(b, a), (35)

–min against : −mA(a,A′, R) = − min
b∈A′\{a}

R(b, a), (36)

–sum against : −SA(a,A′, R) = −
∑

b∈A′\{a}

R(b, a), (37)

max difference : MD(a,A′, R) = max
b∈A′\{a}

R(a, b)−R(b, a), (38)

min difference : mD(a,A′, R) = min
b∈A′\{a}

R(a, b)−R(b, a), (39)

sum of differences : SD(a,A′, R) =
∑

b∈A′\{a}

R(a, b)−R(b, a). (40)

It is worth noting that SD(a,A′, R) is a sum of SF (a,A′, R) and −SA(a,A′, R).
Given a finite set of objects A and a fuzzy relation R over A, we consider exploitation of relation R using

one of the following ranking methods, well studied in the literature:

(1) Net Flow Rule [16, 22], defined as:

NFR(A,R) = �1 (A,R, SD), (41)

(2) Iterative Net Flow Rule [22], defined as:

It.NFR(A,R) = �i (A,R, SD), (42)

(3) Min in Favor [14, 21, 22, 73], defined as:

MiF (A,R) = �1 (A,R,mF ), (43)

(4) Iterative Min in Favor [21], defined as:

It.MiF (A,R) = �i (A,R,mF ), (44)

(5) Leaving and Entering Flows [20], defined as:

L/E(A,R) = �1 (A,R, SF ) ∩ �1 (A,R,−SA). (45)
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As can be seen, considered ranking methods employ only some of the defined scoring functions, namely: mF
(33), SF (34), −SA (37), and SD (40).

NFR orders objects according to their net flow scores. It has a long history in social choice theory
[2, 34]. It coincides with the rule of Copeland [cf. 34, 60, 79] when R is crisp. When R(a, b) is interpreted
as a percentage of voters considering that a is preferred or indifferent to b (a, b ∈ A), it corresponds to
the well-known rule of Borda [cf. 34, 91]. Moreover, NFR is used in the PROMETHEE II outranking
method [23, 24]. It.NFR consists in iterative application of a choice function that chooses objects with
the highest value of scoring function SD (40). This ranking method was originally called the Repeated Net
Flow Rule and denoted by RNFR [22]. L/E is used in the PROMETHEE I method [23, 24]. This ranking
method allows any two objects a, b ∈ A to be declared incomparable. This happens when two conclusions
concerning ranking of these objects, one conclusion resulting only from the comparison of their leaving flows,
i.e., values SF (·, A,R), and the other one resulting only from the comparison of their entering flows, i.e.,
values −(−SA(·, A,R)), are contradictory. Such contradiction occurs, e.g., when SF (a,A,R) > SF (b, A,R),
while −SA(a,A,R) < −SA(b, A,R). It should be noticed that NFR and L/E make use of the “cardinal”
properties of values R(a, b), with a, b ∈ A. On the other hand, MiF represents a prudent approach as it is
purely “ordinal” – it uses values R(a, b) as if they were a numerical representation of a credibility of a crisp
relation between a and b. Thus, from the fact that R(a, b) ≥ R(c, d) it concludes only that the relation
between a and b is not less credible than the relation between c and d, with a, b, c, d ∈ A.

Now, let us come back and explain the sentence “approach (iv) can be seen as a framework that encom-
passes approach (i)”, which appeared in the context of the four approaches for exploitation of preference
graph G. By saying this we meant that the weak order over A obtained using formula (28) is the same as
the weak order over A obtained using NFR(A,R).

8.5. Analysis of desirable properties of the ranking methods
In the literature, one can find many properties considered in the context of ranking methods exploiting

fuzzy relations. These properties concern the result of application of a ranking method to any fuzzy relation
or to a fuzzy relation with particular features, e.g., a relation which is crisp and transitive. It should be
noticed, however, that these properties concern only the dependencies between the exploited fuzzy relation
and obtained final ranking. Thus, they do not concern the dependencies between comprehensive preference
relations S, Sc and the final ranking.

The properties of ranking methods can be basically divided into two non-disjoint groups [14, 22]: desirable
properties and “characterizing” properties. The former reflect some expectations of a DM w.r.t. the final
ranking produced by a ranking method. The latter reflect intrinsic characteristics of a ranking method;
given a ranking method, the research concerning “characterizing” properties aims at defining minimal sets
of properties that a given ranking method is the only one to satisfy [14, 16, 20, 22, 73]. Since our goal is to
obtain the “best” ranking, we compare different ranking methods w.r.t. desirable properties only. The same
way was adopted, e.g., by Vincke [90], in the context of exploitation of a crisp relation.

In general, different properties can be considered desirable in different decision problems (see Bouyssou
and Vincke [22]). We propose a list of properties that seem to be of interest for most decision problems.
Moreover, in order to avoid a situation where all considered ranking methods become incomparable (non-
dominated), we suppose a priority order of considered desirable properties (which, from our point of view,
reflects relative importance of these properties). This order is to be used only to resolve situations where
two or more ranking methods satisfy the same maximum number of properties.

We find it reasonable to consider the following ordered list of desirable properties of a ranking method
to be applied to exploitation of fuzzy relation R (29):

(1) Neutrality (property N)
This property was considered, e.g., by Bouyssou [14, 16], Bouyssou and Perny [20], Bouyssou and Vincke
[22], and by Pirlot [73].

Definition 1 (Neutrality). A ranking method � is neutral if, for any finite set of objects A and any
fuzzy relation R over A:
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(
σ is a permutation on A

)
⇒
(
a �(A,R) b⇔ σ(a) �(A,Rσ) σ(b), for all a, b ∈ A

)
,

where Rσ is defined by Rσ(σ(a), σ(b)) = R(a, b), for all a, b ∈ A.

Thus, neutrality expresses the fact that a ranking method does not discriminate between objects just
because of their labels (or, in other words, their order in the considered set A). It is a classical property
in this context [see, e.g., 60, 79].

(2) Monotonicity (property M)
Property of this name was considered, e.g. by Bouyssou and Perny [20], Pirlot [73], and by Bouyssou
and Vincke [22], although the proposed definitions were semantically slightly different. In this paper, we
adopt the definition of monotonicity property given by Bouyssou and Perny [20]. Intuitively, monotonic-
ity says that improving an object cannot decrease its position in the ranking and, moreover, deteriorating
an object cannot improve its position in the ranking. In our opinion, the other two definitions previ-
ously considered miss at least one aspect of this intuitive formulation. Thus, we propose the following
formulation of the monotonicity property.

Definition 2 (Monotonicity). A ranking method � is monotonic if, for any finite set of objects A,
any fuzzy relation R over A, and any a, b ∈ A:(
a �(A,R) b⇒ a �(A,R′) b

)
,

where R′ is identical to R except that(
R′(a, c) > R(a, c) or R′(c, a) < R(c, a), for some c ∈ A \ {a}

)
or(

R′(b, d) < R(b, d) or R′(d, b) > R(d, b), for some d ∈ A \ {b}
)
.

Precisely, the definition given by Pirlot [73] w.r.t. the difference between R′ and R concerns only that(
R′(a, c) > R(a, c), for some c ∈ A \ {a}

)
or(

R′(b, d) < R(b, d), for some d ∈ A \ {b}
)
.

Moreover, the definition given by Bouyssou and Vincke [22] lacks the second part of the above disjunction,
i.e. the part concerning object b:

(
R′(b, d) < R(b, d) or R′(d, b) > R(d, b), for some d ∈ A \ {b}

)
.

(3) Covering Compatibility (property CC)
This property was considered, e.g., by Bouyssou and Vincke [22] and by Vincke [90] (who called it respect
for the covering relation).

Definition 3 (Covering Compatibility). A ranking method � is covering compatible if, for any
finite set of objects A, any fuzzy relation R over A, and any a, b ∈ A:(
R(a, b) ≥ R(b, a), and for all c ∈ A \ {a, b}, R(a, c) ≥ R(b, c) and R(c, a) ≤ R(c, b)

)
⇒ a �(A,R) b.

Thus, property CC expresses the intuition that when a “covers” b, b should not be ranked before a. Our
interest in this property results also from a very important fact – in case of exploitation of fuzzy relation
R defined by (29), property CC of applied ranking method guaranties that the final ranking produced
by this method respects dominance relation D over set A. Formally, this can be expressed by:

Corollary 1. Given any two objects a, b ∈ A, such that aDb, property CC of ranking method � applied
to exploitation of relation R (29) guaranties that a �(A,R) b.

Proof. See the Appendix.

(4) Independence of Non-Discriminating Objects (property INDO)
This property was considered, e.g., by Bouyssou and Vincke [22] (where it was called independence of
non-discriminating alternatives) and by Vincke [90] (who called it independence of non-discriminating
elements: weak version).
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Definition 4 (Independence of Non-Discriminating Objects). A ranking method � is indepen-
dent of non-discriminating objects if, for any finite set of objects A and any fuzzy relation R over A:(
R(a, b) = k and R(b, a) = k′, for all a ∈ A′ and all b ∈ A \ A′, with A′ ⊂ A

)
⇒
(
�(A′, R/A′) = �

(A,R)/A′
)
.

In the above definition, set A \ A′ is composed of non-discriminating objects. Thus, independence of
non-discriminating objects says that when there is a subset of objects that compare in the same way to
all other objects, the ranking of the other objects is not affected by the presence of this subset.

(5) Independence of Circuits (property IC)
This property was considered, e.g., by Bouyssou [16] and by Bouyssou and Vincke [22]. It reflects the
way in which a ranking method deals with circuits (cycles) in the considered fuzzy relation. It uses the
concept of circuit equivalency of two fuzzy relations.

Definition 5 (Circuit Equivalency). Let us consider a finite set of objects A. Two fuzzy relations
R and R′ over A are circuit-equivalent if R′ is identical to R except that, for some distinct a, b, c ∈ A
and some ε ∈ [−1, 1]:(
R′(a, b) = R(a, b) + ε and R′(b, a) = R(b, a) + ε

)
or(

R′(a, b) = R(a, b) + ε, R′(b, c) = R(b, c) + ε and R′(c, a) = R(c, a) + ε
)
.

Thus, R′ and R are circuit-equivalent if they are identical except for a circuit of length 2 or 3 on which
a positive or negative value has been added.

Definition 6 (Independence of Circuits). A ranking method � is independent of circuits if, for
any finite set of objects A and any two fuzzy relations R and R′ over A:(
R′ and R are circuit-equivalent

)
⇒

(
�(A,R′) = �(A,R)

)
.

According to Bouyssou and Vincke [22], property IC has a straightforward interpretation. When R′

and R are circuit-equivalent via a circuit of length 2, independence of circuits implies that the ranking
is only influenced by the differences R(a, b)−R(b, a). When R′ and R are circuit-equivalent via a circuit
of length 3, independence of circuits implies that intransitivities of the kind R(a, b) > 0, R(b, c) > 0 and
R(c, a) > 0 can be “wiped out”. It is important to notice that property IC makes an explicit use of the
“cardinal” properties of values R(a, b), with a, b ∈ A (except for the particular case in which both R and
R′ are crisp).

(6) Ordinality (property O)
This property was considered, e.g., by Bouyssou [14], Pirlot [73], Bouyssou and Pirlot [21], and by
Bouyssou and Vincke [22].

Definition 7 (Ordinality). A ranking method � is ordinal if, for any finite set of objects A, any fuzzy
relation R over A, and any strictly increasing and one-to-one transformation φ : [0, 1]→ [0, 1]:
�(A, φ[R]) = �(A,R),
where φ[R] is the fuzzy relation on A such that φ[R](a, b) = φ(R(a, b)), for all a, b ∈ A.

Thus, ordinality implies that a ranking method should not make use of the “cardinal” properties of
values R(a, b), with a, b ∈ A.

(7) Continuity (property C)
This property was considered, e.g., by Bouyssou [14], Bouyssou and Pirlot [21], and by Bouyssou and
Vincke [22]. It uses the concept of convergence of a sequence of fuzzy relations to a given fuzzy relation.

19



Definition 8 (Convergence). Let us consider a finite set of objects A and a sequence of fuzzy relations
(Ri, i = 1, . . .) that are defined over A. We say that this sequence converges to fuzzy relation R if for
any (arbitrarily small) ε > 0 there is an integer k, such that for all j > k and all a, b ∈ A, we have
|Rj(a, b)−R(a, b)| < ε.

Definition 9 (Continuity). A ranking method � is continuous if, for any finite set of objects A,
any fuzzy relation R over A, any sequence of fuzzy relations (Ri, i = 1, . . .) converging to R, and any
a, b ∈ A:(
a �(A,Ri) b for all Ri in the sequence

)
⇒
(
a �(A,R) b

)
.

Thus, continuity says that “small” changes in an exploited fuzzy relation should not lead to radical
changes in the final ranking produced by a ranking method.

(8) Faithfulness (property F )
This property was considered, e.g., by Bouyssou and Vincke [22] and by Vincke [90] (who called it respect
for the data 1.1 ).

Definition 10 (Faithfulness). A ranking method � is faithful if, for any finite set of objects A and
any relation R over A:(
R is a weak order over A

)
⇒
(
�(A,R) = R

)
.

As can be seen, faithfulness concerns behavior of a ranking method in a special case when considered
relation R is crisp and, moreover, it is a weak order over A. This property says that a ranking method
applied to a weak order should preserve it.

(9) Data-Preservation (property DP )
This property was considered, e.g., by Bouyssou and Vincke [22] (where it was called data-preservation
1 ) and by Vincke [90] (who called it respect for the data 1.3 ).

Definition 11 (Data-Preservation). A ranking method � is data-preserving if, for any finite set of
objects A and any relation R over A:(
R is a transitive crisp relation over A

)
⇒
(
R ⊆ �(A,R)

)
.

Thus, data-preservation says that when it is possible to obtain a partial preorder on the basis of R
without deleting information contained in this relation, a ranking method should do so. It is important
to note that property DP is not implied by property F and vice versa.

(10) Greatest-Faithfulness (property GF )
This property was considered, e.g., by Bouyssou and Pirlot [21], and by Bouyssou and Vincke [22].

Definition 12 (Greatest-Faithfulness). A ranking method � is greatest-faithful if, for any finite set
of objects A and any relation R over A:(
R is a crisp relation and G(A,R) 6= ∅

)
⇒
(
G(A,�(A,R)) ⊆ G(A,R)

)
.

Greatest-faithfulness says that if there are some greatest elements of a given set A, then the top-ranked
objects should be chosen among them (observe that in case of a ranking method that yields a partial
preorder over A, there may be no top-ranked objects, i.e., set G(A,�(A,R)) may be empty). Let us
note, however, that some authors [e.g., 21] do not find greatest-faithfulness as a particularly intuitive
requirement for a ranking method, as this property concerns only the first equivalence class of the
obtained ranking (they rather consider this property in the context of choice methods). Moreover, in
spite of names, it should be noticed that a faithful ranking method is not necessarily greatest-faithful
and vice versa.
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8.6. The choice of the best ranking method to work out a recommendation
Before verifying properties of the five considered ranking methods, let us make a note concerning reflexiv-

ity of an exploited fuzzy relation R ∈ RA. Vincke [90] and Pirlot [73] assumed R to be irreflexive. Bouyssou
[14], Bouyssou and Perny [20] assumed that R(a, b) is defined only for pairs of objects (a, b) ∈ A × A such
that a 6= b. Finally, Bouyssou and Vincke [22], Bouyssou and Pirlot [21] assumed that R is reflexive. In this
paper, exploited relation R (29) is reflexive. However, since each of the five ranking methods analyzed here
makes use of a scoring function that for any finite set of objects A and any fuzzy relation R over A does
not take into account values R(a, a), with a ∈ A, previous results concerning properties of the five ranking
methods hold.

Table 1 presents properties of the five considered ranking methods. In this table, symbols T and F
denote presence and absence of a given property, respectively. Moreover, bold font is used in case when a
given pair (Property, RM) was already considered in the literature (where a proof or a counterexample was
given), while italics is used otherwise, in which case a proof or a counterexample is given in the Appendix.
Note that in the row corresponding to property M , some symbols T and F are in italics due to adoption of
particular definition of this property (see Definition 2).

Table 1: Properties of considered ranking methods for exploitation of a fuzzy relation
Property / RM NFR It.NFR MiF It.MiF L/E

N T T T T T
M T F T F T
CC T T T T T

INDO T T F F T
IC T F F F F
O F F T T F
C T F T F T
F T T F T T
DP T T T T T
GF F F T T T

Looking at Table 1, one can observe that the two ranking methods based on iterative application of a
choice function, namely It.NFR and It.MiF , lack monotonicity property. This observation is concordant
with the work of Bouyssou [19]. Moreover, all ranking methods have property CC, which guaranties that
when they are applied to exploitation of fuzzy relation R (29), they produce final rankings respecting
dominance relation D over set A.

Further analysis of the properties presented in Table 1 leads to the conclusion that, in view of the
considered list of desirable properties, the best ranking method for exploitation of a fuzzy relation is the
NFR method. This is because it satisfies most of the properties (which is, however, true also for the L/E
ranking method) and, moreover, satisfies the first five properties (i.e., N , M , CC, INDO, and IC). The
lack of property O is alleviated by the fact that values R(a, b), a, b ∈ A, may be interpreted in “cardinal”
terms. This is due to the definition of relation R (29), the way of constructing relations S and Sc, and the
semantics of values ε̂T (rT ) (i.e., relative number of “negative pairs of objects” covered by rule rT ).

It is worth pointing out that the NFR ranking method is attractive not only because of the desirable
properties it possesses. It represents an intuitive way of reasoning about relative worth of objects in set
A, as it takes into account both positive and negative arguments concerning each object (i.e., strength and
weakness of each object), as advocated by Fortemps and Słowiński [36].

9. Illustrative Example

Let us consider the data set analyzed by Andenmatten [1], concerning performance of chosen international
airlines, in terms of the following financial ratios:

21



(1) Benefit Margin (BM),

(2) Interest Coverage (IC),

(3) Debt Payback (DP),

(4) Shareholder Funds/Fixed Assets (SHF/FA),

(5) Equity Ratio (ER).

The precise meaning of the above ratios can be found in [1]. Values of the considered financial ratios were
gathered for minimum five and maximum ten consecutive years. Then, for each airline and each ratio, an
average for each five successive years was calculated. In result, one got a set of 49 airline-year objects,
denoted by a1, . . . , a49. Each object was described by the following 10 criteria:

(g1) Average Benefit Margin (Avg.BM),

(g2) Average Interest Coverage (Avg.IC),

(g3) Average Debt Payback (Avg.DP),

(g4) Average Shareholder Funds/Fixed Assets (Avg.SHF/FA),

(g5) Average Equity ratio (Avg.ER),

(g6) Benefit Margin (BM),

(g7) Interest Coverage (IC),

(g8) Debt Payback (DP),

(g9) Shareholder Funds/Fixed Assets (SHF/FA),

(g10) Equity Ratio (ER).

All criteria, apart from Avg.DP and DP, are of gain-type, i.e., the higher the criterion value the better.
Criteria Avg.DP and DP are cost-type criteria, i.e., the smaller the criterion value the better. Given an
airline-year object, e.g., delta-89, values of the first five criteria are averages for the period 1985-1989, while
values of the last five criteria are values of the respective financial ratios from the year 1989.

In [1], each airline was assigned to one of five ordered categories (reflecting investment risk), depending
on its rating scores according to Moody’s and Standard&Poor’s. The categories were defined as shown in
Table 2. The order of the categories was: UIG � LIG � UNIG � LNIG � SpG. Thus, category UIG

Table 2: Definition of the considered categories of airlines
Category Moody’s score Standard&Poor’s score
UIG Aaa, Aa AAA, AA
LIG A, Baa A, BBB
UNIG Ba, B BB, B
LNIG Caa, Ca CCC, CC
SpG C C, D

is the best one (it reflects the lowest investment risk), and category SpG is the worst one (it reflects the
highest investment risk).

The evaluations of all 49 airline-year objects on the 10 considered criteria, as well as assignments of these
objects to the 5 considered categories, are given in the Appendix (Table 10). Just like in [1], the objects are
ordered by categories. This should not be a concern since the order of objects does not influence the results
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obtained using the proposed approach to multicriteria raking. Let us observe that for the set of criteria
G = {g1, . . . , g10} it is not true that the better the evaluation of an object on considered criteria, the more
this object is preferable to another object. For instance, object a17 assigned to category LIG dominates
object a4 which is assigned to better category UIG. This may be caused by the lack of some important
criteria. In total, there are 16 out of 49 objects for which given assignment to a category is inconsistent with
the dominance relation D over the set of all 49 objects. Let us denote by Ainc the set composed of these 16
objects. Then, we have Ainc = {a4, a9, a10, a17, a25, a26, a30, a31, a32, a34, a35, a37, a38, a40, a42, a45}.

We consider that all the 49 airline-year objects constitute set A of objects to be ranked. Moreover, for
the purpose of the example, we choose 11 airline-year objects from the set A \Ainc to be reference objects,
constituting set AR ⊆ A. We select these 11 objects in such a way, that all categories but LIG have two
“representatives”, i.e., for each category Cl ∈ {UIG,UNIG,LNIG, SpG}, there exist exactly two airline-
year objects a, b ∈ AR, such that the airlines of objects a and a belong to category Cl. From the most
numerous category LIG, we choose three “representatives”. The reference objects are shown in Table 3. Let

Table 3: Chosen airline-year reference objects
Id Airline-year Category
a1 japan-89 UIG
a2 japan-90 UIG
a16 japan-93 LIG
a21 stw-91 LIG
a27 usair-88 LIG
a33 alaska-91 UNIG
a36 usair-92 UNIG
a41 panam-88 LNIG
a43 united-88 LNIG
a44 metro-89 SpG
a48 metro-91 SpG

us observe that the assignment of airlines to considered categories can be used as a source of preference
information. Therefore, given any two airline-year objects a, b ∈ AR, we fix aSb whenever the category
of the airline of object a is not worse than the category of the airline of object b. Moreover, we fix aScb
whenever the category of the airline of object a is strictly worse than the category of the airline of object b.
In this way, B = AR ×AR.

Given the preference information, the following calculations are performed using jRank1 software [88].
For the sake of simplicity, we make an assumption that all the considered criteria are cardinal ones.

The preference information in the form of pairwise comparisons of 11 reference objects yields a PCT
composed of 121 pairs of objects. A part of this PCT is shown in Table 4. Let us note that the cardinality
of relation S is 73, and the cardinality of relation Sc is 48.

One can observe in the PCT several inconsistencies w.r.t. dominance relation D2 over set B. Such
inconsistency occurs when a pair of objects (a, b) ∈ S is dominated by a pair of objects (c, d) ∈ Sc.
Inconsistent pairs of objects appearing in Table 4 are marked in this table by symbol ∗. All inconsistencies
w.r.t. dominance relation D2 over B are also presented in Table 5, where symbol ∗ indicates where pair
(a, b) ∈ S from the corresponding row is inconsistent with pair (c, d) ∈ Sc from the corresponding column.

In order to show potential advantage of VC-DRSA over DRSA, when applied to preference learning in
multicriteria raking, we consider two independent calculation paths, taking the PCT shown in Table 4 as a
“point of departure”. Both paths are composed of the following steps:

(s1) calculation of lower approximations of relations S and Sc, according to definitions (14) and (15),
respectively,

1See http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html.
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Table 4: A part of the PCT yielded by pairwise comparisons of 11 airline-year reference objects
(a,b) ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10 Relation

(a1, a1) 0 0 0 0 0 0 0 0 0 0 S
(a1, a2) 0.08 -0.03 -1.6 -7.23 -1.6 34.53 9.18 -14.0 -22.2 -3.0 S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a1, a48) 17.1 4.78 -15.3 50.15 21.0 56.41 17.0 1.1 235.0 104.8 S
(a2, a1)∗ -0.08 0.03 1.6 7.23 1.6 -34.53 -9.18 14.0 22.2 3.0 S
(a2, a2) 0 0 0 0 0 0 0 0 0 0 S
(a2, a16) 3.1 0.78 -13.7 -12.21 -2.9 6.33 2.18 -4.7 32.5 9.2 S
(a2, a21)∗ -0.55 0.8 3.5 -12.37 -23.5 -5.78 -0.62 10.5 25.8 -9.1 S
(a2, a27)∗ 1.6 0.33 3.6 -25.47 -25.2 -5.2 -0.93 12.6 9.9 -13.6 S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a16, a1) -3.18 -0.75 15.3 19.44 4.5 -40.86 -11.36 18.7 -10.3 -6.2 Sc

(a16, a2) -3.1 -0.78 13.7 12.21 2.9 -6.33 -2.18 4.7 -32.5 -9.2 Sc

(a16, a16) 0 0 0 0 0 0 0 0 0 0 S
(a16, a21)∗ -3.65 0.02 17.2 -0.16 -20.6 -12.11 -2.8 15.2 -6.7 -18.3 S
(a16, a27)∗ -1.5 -0.45 17.3 -13.26 -22.3 -11.53 -3.11 17.3 -22.6 -22.8 S
(a16, a33)∗ 2.58 0.44 15.9 -3.78 -13.1 -8.86 -2.12 12.8 0.7 -7.6 S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a21, a2)∗ 0.55 -0.8 -3.5 12.37 23.5 5.78 0.62 -10.5 -25.8 9.1 Sc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a27, a2)∗ -1.6 -0.33 -3.6 25.47 25.2 5.2 0.93 -12.6 -9.9 13.6 Sc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a33, a16)∗ -2.58 -0.44 -15.9 3.78 13.1 8.86 2.12 -12.8 -0.7 7.6 Sc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a36, a33)∗ -3.17 -1.57 15.9 -23.18 -13.2 2.66 0.74 -3.0 -38.7 -26.1 S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a36, a43)∗ -2.68 -1.49 13.5 -16.14 -5.1 1.26 -1.1 0.6 -35.1 -20.9 S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a41, a43)∗ -6.12 -2.37 -6.0 -44.95 -25.9 -1.46 -1.45 0.7 -58.3 -32.5 S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a43, a16)∗ -3.07 -0.52 -13.5 -3.26 5.0 10.26 3.96 -16.4 -4.3 2.4 Sc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a43, a33)∗ -0.49 -0.08 2.4 -7.04 -8.1 1.4 1.84 -3.6 -3.6 -5.2 Sc

(a43, a36)∗ 2.68 1.49 -13.5 16.14 5.1 -1.26 1.1 -0.6 35.1 20.9 Sc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a48, a1) -17.1 -4.78 15.3 -50.15 -21.0 -56.41 -17.0 -1.1 -235.0 -104.8 Sc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a48, a43) -10.85 -3.51 13.5 -66.33 -30.5 -25.81 -9.6 -3.4 -220.4 -101.0 Sc

(a48, a44) -8.79 -3.81 17.9 -61.28 -32.1 -8.72 -3.63 -19.8 -214.2 -96.4 S
(a48, a48) 0 0 0 0 0 0 0 0 0 0 S

(s2) calculation of a minimal set of decision rules by VC-DomLEM algorithm,

(s3) application of the induced rules on set A,

(s4) exploitation of the resulting preference structure using the NFR ranking method,

(s5) evaluation of the obtained final ranking over set A.
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Table 5: Inconsistencies in the PCT yielded by pairwise comparisons of reference objects
()∗ ∈ S ↓ || ()∗ ∈ Sc → (a21, a2) (a27, a2) (a33, a16) (a43, a16) (a43, a33) (a43, a36)

(a2, a1) ∗
(a2, a21) ∗
(a2, a27) ∗
(a16, a21) ∗
(a16, a27) ∗ ∗
(a16, a33) ∗
(a36, a33) ∗ ∗ ∗
(a36, a43) ∗ ∗ ∗
(a41, a43) ∗ ∗ ∗

Each of the above steps “produces” some results. These are: lower approximations of outranking and
non-outranking relations obtained in step (s1), sets RS and RSc of minimal decision rules obtained in step
(s2), preference structure on A obtained in step (s3), final ranking (weak order) on A obtained in step (s4),
and value of a chosen error measure obtained in step (s5). However, these results differ in both calculation
paths only due to decisions made in step (s1), concerning consistency thresholds θS and θSc used to define
lower approximations (14) and (15). In the first path, denoted by cpθ=0, we assume that both consistency
thresholds are equal to zero. Thus, calculated lower approximations are the same as in the case of DRSA
[44, 46, 85]. In the second path, denoted by cpθ>0, we choose θS = θSc = 0.042. In this way, we relax a
little bit the conditions for inclusion of pairs of objects to lower approximations (14) and (15). In particular,
a pair of objects (a, b) ∈ S is considered to be sufficiently consistent (and thus included in S) if it is
dominated by at most two pairs of objects belonging to relation Sc (this can be verified using Equation (12):
2/48 = 0.0417 < θS = 0.042 < 3/48 = 0.0625). Moreover, a pair of objects (a, b) ∈ Sc is considered to be
sufficiently consistent (and thus included in Sc) if it dominates at most three pairs of objects belonging to
relation S (this can be verified using Equation (13): 3/73 = 0.0411 < θSc = 0.042 < 4/73 = 0.0548).

In step (s5), we employ dependencies (4), (5), and (6), to represent pairwise comparisons of objects in
terms of relations P , P−1, and I. Moreover, we use the following representation of a final ranking �(A,R)
in terms of relations P�, P−1

� , and I�:

aP�b⇔ a �(A,R) b and not b �(A,R) a, (46)

aP−1
� b⇔ not a �(A,R) b and b �(A,R) a, (47)

aI�b⇔ a �(A,R) b and b �(A,R) a, (48)

where a, b ∈ A. Thus, aP�b iff object a is ranked higher than object b, aP−1
� b iff object a is ranked lower

than object b, and aI�b iff the ranks of objects a and b are equal. Then, we apply a modified Kendall rank
correlation coefficient τ ′ to measure:

• the concordance between a final ranking and the pairwise comparisons of reference objects, derived
from Table 3,

• the concordance between a final ranking and the pairwise comparisons of all objects from set A, derived
from Table 10.

The modifications of the Kendall rank correlation coefficient are twofold. First, we do not count an error
when a pair of objects is not reassigned to indifference relation. More precisely, if aIb, we do not expect
that aI�b, for any a, b ∈ A. Thus, there is no error if objects from a given category do not belong to the
same rank, but instead are ranked one after another, without “interference” of objects from other categories.
Second, when calculating an error, we do not take into account pairs of objects which cannot be reassigned
to preference relation or inverse preference relation because their original assignment was inconsistent with
dominance relation D over set A. More precisely:
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• if aPb but bDa, then we do not expect that aP�b; in fact, since the NFR ranking method has property
CC, due to Corollary 1, we will obtain aP−1

� b or aI�b,

• if aP−1b but aDb, then we do not expect that aP−1
� b; in fact, we will obtain aP�b or aI�b,

where a, b ∈ A. Thus, by the second modification, we admit that the discrepancies between relations P and
P�, as well as between relations P−1 and P−1

� , resulting from the respect of dominance relation D over set
A, indicate the “weakness” of the preference information or the “weakness” of the considered set of criteria
(e.g., lack of some important criteria) rather than the “weakness” of the final ranking.

Let use denote by PE the set of pairs of objects that are expected to be preserved in the preference
relation. This set is defined as:

PE = P \ {(a, b) ∈ A×A : bDa)}. (49)

Then, the modified Kendall rank correlation coefficient τ ′, applied to evaluate ranking �(A,R) (represented
in terms of relations P�, P−1

� , and I�) w.r.t. given pairwise comparisons (represented in terms of relations
P , P−1, and I), is described by the following equation:

τ ′(P�, P
−1
� , I�, PE) = 1− 2

∑
(a,b)∈PE

err(a, b)

|PE |
, (50)

where err(a, b) denotes an error accounted for a pair of objects (a, b) ∈ PE , defined as:

err(a, b) =


0, if aPEb and aP�b
1
2 , if aPEb and aI�b
1, if aPEb and aP−1

� b
. (51)

It is easy to see that coefficient τ ′ belongs to the interval [−1, 1]. The best possible value of τ ′ is 1, and the
worst possible value is −1.

We distinguish two values of τ ′:

• τ ′ref , quantifying concordance between a final ranking and the pairwise comparisons of reference ob-
jects,

• τ ′all, quantifying concordance between a final ranking and the pairwise comparisons of all objects from
set A.

Value τ ′ref is obtained from Equation (50) for relations P and P−1 representing pairwise comparisons of
reference objects. Value τ ′all is obtained from Equation (50) for relations P and P−1 representing pairwise
comparisons of all objects from set A.

Table 6 summarizes the results obtained in subsequent steps (s1)− (s5), along both calculations paths.

Table 6: Summary of results obtained in steps (s1)− (s5), for calculations paths cpθ=0, cpθ>0

Calculation path |S| |Sc| |RS | |RSc | τ ′ref τ ′all
cpθ=0 64 42 7 10 0.792 0.650
cpθ>0 70 47 5 7 0.875 0.812

Looking at Table 6, it is clear that the results obtained along calculation path cpθ>0 are better (greater
lower approximations, smaller amounts of rules, and higher values of τ ′). Thus, for the considered illustrative
example, proposed VC-DRSA proved to be more useful than DRSA, when applied to preference learning in
multicriteria ranking. In view of this conclusion, in the following, we present only results obtained along
calculation path cpθ>0.
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Table 7: Minimal decision rules induced by VC-DomLEM algorithm

Decision rule rT ε̂T (rT ) cf(rT ) σ(rT )

if
(
∆6(a, b) ≥ 11.53

)
, then aSb 0 27/73 = 0.370 0.370

if
(
∆1(a, b) ≥ −8.79

)
∧
(
∆8(a, b) ≤ −19.8

)
, then aSb 0 1/73 = 0.014 0.014

if
(
∆8(a, b) ≤ 14.0

)
∧
(
∆9(a, b) ≥ 22.2

)
, then aSb 0.021 29/73 = 0.397 0.389

if
(
∆2(a, b) ≥ 0.02

)
∧
(
∆6(a, b) ≥ −12.11

)
, then aSb 0.021 49/73 = 0.671 0.657

if
(
∆1(a, b) ≥ −1.5

)
∧
(
∆6(a, b) ≥ −11.53

)
∧
(
∆9(a, b) ≥ −22.6

)
, then aSb 0.042 64/73 = 0.877 0.840

if
(
∆7(a, b) ≤ −4.13

)
∧
(
∆9(a, b) ≤ 12.3

)
, then aScb 0 22/48 = 0.458 0.458

if
(
∆3(a, b) ≥ 1.6

)
∧
(
∆6(a, b) ≤ −15.63

)
, then aScb 0 11/48 = 0.229 0.229

if
(
∆7(a, b) ≤ −4.87

)
∧
(
∆8(a, b) ≥ 15.8

)
, then aScb 0 5/48 = 0.104 0.104

if
(
∆2(a, b) ≤ −0.52

)
∧
(
∆7(a, b) ≤ 3.96

)
∧
(
∆8(a, b) ≥ −16.4

)
, then aScb 0.041 34/48 = 0.708 0.679

if
(
∆1(a, b) ≤ −2.58

)
∧
(
∆2(a, b) ≤ −0.44

)
∧
(
∆8(a, b) ≥ −12.8

)
, then aScb 0.041 30/48 = 0.625 0.599

if
(
∆1(a, b) ≤ −1.6

)
∧
(
∆2(a, b) ≤ −0.33

)
∧
(
∆8(a, b) ≥ −12.6

)
, then aScb 0.041 31/48 = 0.646 0.619

if
(
∆1(a, b) ≤ −0.49

)
∧
(
∆2(a, b) ≤ −0.08

)
∧
(
∆6(a, b) ≤ 1.4

)
∧(

∆8(a, b) ≥ −3.6
)
, then aScb 0.041 26/48 = 0.542 0.519

The set of minimal decision rules induced by VC-DomLEM algorithm is presented in Table 7, where
each rule rT is characterized in terms of three statistics: rule consistency measure ε̂T (rT ), coverage factor
cf(rT ) (i.e., the ratio of the number of pairs of objects supporting rT and the cardinality of relation T ),
and strength σ(rT ) calculated according to (21). It is worth noting that the rules are relatively short and
the amount of rules is small w.r.t. the size of the PCT. Moreover, the rules are easy to understand. For
example, the first rule from Table 7 is read as follows: if the difference of Benefit Margin for airline-year a
and airline-year b is at least 11.53, then a is weakly preferred to b.

Final ranking of all objects from set A, obtained using the NFR ranking method, is presented in Table 8,
where each object is located in a cell corresponding to its ranking position (rank) and category, and reference
objects are marked in bold; moreover, for each rank we give respective net flow score which is the value of
scoring function SNF (28). Now, let us analyze how we obtained τ ′ref = 0.875. First, due to the fact that
AR ⊆ A \Ainc, from (49) we get PE = P . Second, according to (51), we account three times error value 1,
since a36Pa43 but a36P

−1
� a43, a36Pa44 but a36P

−1
� a44, and a41Pa44 but a41P

−1
� a44. Third, |P | = 48. Thus,

from (50) we get τ ′ref = 1 − 2 3
48 = 0.875. Since this value is close to 1, we can say that the induced set of

decision rules is a good preference model.

10. Summary and Conclusions

We presented a methodology for non-statistical preference learning in multicriteria ranking. In this
methodology, the preference information, given by a decision maker (DM) in the form of pairwise comparisons
of some reference objects, is used to learn a preference model in the form of a set of “if . . . , then . . . ” decision
rules.

We considered that for any two different reference objects a, b, the DM can declare either “object a is at
least as good as object b” or “object a is not at least as good as object b”, or abstain from any judgment.
In this way, the DM specifies two comprehensive preference relations. Such preference information is used
to create a pairwise comparison table (PCT). As the pairwise comparisons given by the DM are prone
to inconsistencies, we proposed to structure them using Variable Consistency Dominance-based Rough Set
Approach (VC-DRSA), by calculation of lower approximations of the two comprehensive preference relations.
In this way, we can restrict a priori the set of pairs of objects used during induction of decision rules to
a subset of sufficiently consistent pairs of objects. This restriction is motivated by the goal of learning a
“reliable” preference model.

Application of induced decision rules on the whole set of objects to be ranked yields a fuzzy preference
structure (directed weighted graph) on this set. This structure is then exploited using a ranking method, in
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Table 8: Final ranking of all objects from set A, obtained using the NFR ranking method
Rank Net flow score UIG LIG UNIG LNIG SpG
1 66.404 a1
2 63.981 a17

3 54.352 a11

4 48.267 a2
5 44.741 a3

6 44.088 a12

7 42.983 a5

8 40.847 a4

9 40.091 a20

10 39.808 a19

11 39.497 a22

12 39.353 a18

13 36.643 a13

14 35.281 a6

15 34.604 a27
16 29.84 a21
17 25.285 a40

18 22.029 a14

19 17.208 a15

20 13.564 a7

21 10.781 a30

22 6.08 a32

23 2.977 a8

24 2.106 a31

25 1.152 a24

26 0.168 a28

27 0.109 a16
28 -5.856 a10

29 -8.791 a25

30 -9.47 a37

31 -12.009 a9

32 -14.919 a23

33 -15.523 a33
34 -18.336 a38

35 -21.323 a43
36 -28.948 a26

37 -29.483 a29

38 -32.125 a39

39 -32.376 a34

40 -42.326 a44
41 -46.797 a35

42 -49.338 a36
43 -52.647 a45

44 -55.619 a41
45 -62.441 a47

46 -62.468 a46

47 -64.237 a49

48 -67.453 a42

49 -69.753 a48
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order to work out a final recommendation, i.e., a ranking of objects. We proposed a list of some desirable
properties that a ranking method is expected to have, and compared several ranking methods studied in the
literature w.r.t. these properties. Based on this comparison, we chose one ranking method, the Net Flow
Rule (NFR), enjoying the most desirable properties.

We illustrated the proposed methodology by an example concerning performance of chosen international
airlines. This example shows usefulness of the proposed methodology for dealing with multicriteria ranking
problems.
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Appendix

Definition 13 (Monotonicity property (m1)). A cost-type consistency measure ΘT , T ∈ {S, Sc}, has
monotonicity property (m1) iff it is monotonically non-increasing w.r.t. the considered set of criteria, i.e.,
iff for all P ⊆ R ⊆ G, and for all (a, b) ∈ B

ΘP
T (a, b) ≥ ΘR

T (a, b),

where ΘP
T (a, b) denotes the value of measure ΘT calculated for pair of objects (a, b) taking into account only

criteria from set P ⊆ G.

Definition 14 (Monotonicity property (m2)). A cost-type consistency measure ΘT , T ∈ {S, Sc}, has
monotonicity property (m2) iff it is monotonically non-increasing w.r.t. the considered comprehensive pre-
ference relation T , i.e., iff for all T ′ = T ∪ T∆, T∆ ∩B = ∅, and for all (a, b) ∈ B

ΘT (a, b) ≥ ΘT ′(a, b).

Definition 15 (Monotonicity property (m4)). A cost-type consistency measure ΘT , T ∈ {S, Sc}, has
monotonicity property (m4) iff it is monotonically non-increasing w.r.t. dominance relation D2 over B, i.e.,
iff

∀(a, b), (c, d) ∈ B : (a, b)D2(c, d)⇒ ΘT (a, b) ≤ ΘT (c, d).

Proof (Corollary 1). Let us consider any two objects a, b ∈ A, such that aDb, and let us denote by D
′

2

the dominance relation over set A×A, defined in the same way as the dominance relation D2 over set B, with
the only difference that B (appearing in the definition of D2) is replaced by A×A. First, let us observe that
aDb implies that (a, b)D

′

2(b, a), and, moreover, given any object c ∈ A \ {a, b}, it is true that (a, c)D
′

2(b, c)
and (c, b)D

′

2(c, a). Secondly, note that every decision rule rS ∈ RS that covers the dominated (w.r.t. D
′

2)
pair of objects (b, a) (respectively, (b, c), (c, a)), covers also the dominating (w.r.t. D

′

2) pair of objects (a, b)
(respectively, (a, c), (c, b)). Analogously, every decision rule rSc ∈ RSc that covers the dominating pair of
objects (a, b) (respectively, (a, c), (c, b)), covers also the dominated pair of objects (b, a) (respectively, (b, c),
(c, a)). Therefore, after application of decision rules on set A, according to definitions (22) and (23) we get:

• S(a, b) ≥ S(b, a) and Sc(b, a) ≥ Sc(a, b),
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• S(a, c) ≥ S(b, c) and Sc(c, a) ≥ Sc(c, b),

• S(c, a) ≤ S(c, b) and Sc(a, c) ≤ Sc(b, c).

Thirdly, from (29), we get R(a, b) ≥ R(b, a), and, moreover, R(a, c) ≥ R(b, c), and R(c, a) ≤ R(c, b). This
set of inequalities is the antecedent of the implication given in Definition 3 of property CC. Thus, from this
definition, we have a �(A,R) b. �

Proof (Properties of NFR).

(N) Satisfied according to Bouyssou [16], Bouyssou and Vincke [22].

(M) Satisfied due to the definition of NFR, given by (41). �

(CC) According to Bouyssou and Vincke [22], this property is satisfied in case of exploitation of a crisp
relation. However, it is evident that this property is also satisfied in general, i.e., when an exploited
relation is fuzzy. �

(INDO) According to Bouyssou and Vincke [22], this property is satisfied in case of exploitation of a crisp
relation. However, it is evident that this property is also satisfied in general, i.e., when an exploited
relation is fuzzy. �

(IC) Satisfied according to Bouyssou [16], Bouyssou and Vincke [22].

(O) Not satisfied since for a given finite set of objects A and for a fuzzy relation R over A, NFR makes
use of the “cardinal” properties of values R(a, b), with a, b ∈ A [22]. �

(C) Satisfied according to Bouyssou and Vincke [22].

(F ) Satisfied according to Bouyssou and Vincke [22].

(DP ) Satisfied according to Bouyssou and Vincke [22].

(GF ) Not satisfied according to Bouyssou and Vincke [22].

Proof (Properties of It.NFR).

(N) According to Bouyssou and Vincke [22], this property is satisfied in case of exploitation of a crisp
relation. However, it is evident that this property is also satisfied in general, i.e., when an exploited
relation is fuzzy. �

(M) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d, e, f}, and fuzzy relation
R over A defined as: R(a, d) = 0.5, R(b, c) = 0.5, R(c, a) = 1, R(c, e) = 1, R(d, b) = 1, R(d, f) = 0.5,
R(x, x) = 1 for all x ∈ A, and R(x, y) = 0 for the remaining pairs (x, y) ∈ A×A. The ranking (weak
order) obtained for relation R is: c � d � a, b, e, f (i.e., object c is the best, object d is second best,
and the remaining objects are in the third equivalence class). Observe that we have a �(A,R) b.
Now, consider relation R′ which is identical to R except that R′(a, c) = 1. Thus, object a is improved.
However, the ranking (weak order) obtained for relation R′ is: d � b, c � a, e, f , i.e., it is not true that
a �(A,R′) b. �

(CC) According to Bouyssou and Vincke [22], this property is satisfied in case of exploitation of a crisp
relation. However, it is evident that this property is also satisfied in general, i.e., when an exploited
relation is fuzzy. �

(INDO) According to Bouyssou and Vincke [22], this property is satisfied in case of exploitation of a crisp
relation. However, it is evident that this property is also satisfied in general, i.e., when an exploited
relation is fuzzy. �
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(IC) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d, e}, and two fuzzy
relations R, R′ over A defined as:

• R(a, b) = 1, R(b, c) = 1, R(c, a) = 1, R(b, e) = 0.5, R(c, d) = 1, R(x, x) = 1 for all x ∈ A, and
R(x, y) = 0 for the remaining pairs (x, y) ∈ A×A,

• R′(b, e) = 0.5, R′(c, d) = 1, R′(x, x) = 1 for all x ∈ A, and R′(x, y) = 0 for the remaining pairs
(x, y) ∈ A×A.

Thus, R and R′ are circuit-equivalent (R′ is identical to R except for the circuit a-b-c of length
3, on which value ε = 1 has been subtracted). If property IC would be satisfied, we would have
�(A,R′) = �(A,R). However, the ranking (weak order) obtained for relation R is: c � a � b � e, d
(i.e., object c is the best, object a is second best, object b is third best, and the remaining objects are in
the fourth equivalence class), while the ranking (weak order) obtained for relation R′ is: c � b � a, e, d.
Thus, we obtain that �(A,R′) 6= �(A,R). �

(O) Not satisfied since for a given finite set of objects A and for a fuzzy relation R over A, It.NFR makes
use of the “cardinal” properties of values R(a, b), with a, b ∈ A. �

(C) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d}, and the family of fuzzy
relations Rε over A, with ε ∈ (0, 1], defined by Table 9. For any ε ∈ (0, 1], we have c �(A,Rε) d (as

Table 9: Considered family of fuzzy relations
Rε a b c d
a – 1 1 0
b 1 – 0 0
c 0 1 – 1
d 0 1− ε 1 –

object a is always chosen in the first iteration, and object c in the second iteration), while for relation
R (obtained when ε = 0), we have d �(A,R) c (as objects a and d are chosen in the first iteration),
which violates continuity. �

(F ) Satisfied according to Bouyssou and Vincke [22].

(DP ) Satisfied according to Bouyssou and Vincke [22].

(GF ) Not satisfied since NFR does not satisfy GF , and the first equivalence classes of the weak orders
produced by NFR and It.NFR are the same. �

Proof (Properties of MiF ).

(N) Satisfied according to Bouyssou [14], Pirlot [73], Bouyssou and Vincke [22].

(M) Satisfied. Note that given a finite set of objects A and a fuzzy relation R over this set, objects from
A are ranked according to their scores calculated by function mF (33). Thus, we have a �(A,R) b⇔
mF (a,A,R) ≥ mF (b, A,R). Then, if the value R(a, c), for some c ∈ A \ {a}, is improved, the score
of object a cannot decrease; the change of value R(c, a), for some c ∈ A \ {a} does not affect the
score of object a. Moreover, if the value R(b, d), for some d ∈ A \ {b}, is decreased, the score of
object b cannot increase; the change of value R(d, b), for some d ∈ A \ {a}, does not affect the score of
object b. Thus, for any of the four considered changes of relation R, reflected by relation R′, we have(
a �(A,R) b⇒ a �(A,R′) b

)
. �
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(CC) Satisfied. Note that given a finite set of objects A and a fuzzy relation R over this set, objects from
A are ranked according to their scores calculated by function mF (33). If R(a, b) ≥ R(b, a) and for
all c ∈ A \ {a, b} there is R(a, c) ≥ R(b, c), then according to definition (33), we have mF (a,A,R) ≥
mF (b, A,R). It implies that a �(A,R) b. �

(INDO) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d}, and fuzzy relation R
over A defined as: R(a, b) = 1, R(a, c) = 1, R(a, d) = 0.5, R(b, a) = 1, R(b, c) = 0.5, R(b, d) = 0.5,
R(c, d) = 0.5, R(x, x) = 1 for all x ∈ A, and R(x, y) = 0 for the remaining pairs (x, y) ∈ A × A.
Observe that object d is a non-discriminating object since R(x, d) = 0.5 and R(d, x) = 0, for x ∈ A′,
with A′ = {a, b, c}. We obtain �(A′, R/A′) = a � b � c (i.e., object a is the best, and object b is
better than object c). This ranking is different than �(A,R)/A′ = a, b, c (i.e., all three objects are in
the first equivalence class). �

(IC) Not satisfied according to Bouyssou and Vincke [22].

(O) Satisfied according to Bouyssou [14], Pirlot [73], Bouyssou and Vincke [22], Bouyssou and Pirlot [21].

(C) Satisfied according to Bouyssou [14], Bouyssou and Vincke [22], Bouyssou and Pirlot [21].

(F ) Not satisfied according to Bouyssou and Vincke [22], Bouyssou and Pirlot [21].

(DP ) Satisfied. Due to transitivity of a crisp relation R over a given finite set of objects A, for any pair
of objects (a, b) ∈ R we have mF (a,A,R) ≥ mF (b, A,R). This implies that a �(A,R) b. Thus,
R ⊆ �(A,R). �

(GF ) Satisfied according to Bouyssou and Vincke [22], Bouyssou and Pirlot [21].

Proof (Properties of It.MiF ).

(N) Obviously satisfied. �

(M) Not satisfied, as shown by the following example. Consider set A = {a, b, c}, and fuzzy relation R over
A defined as: R(a, b) = 0.5, R(b, a) = 0.5, R(c, a) = 1, R(c, b) = 1, R(b, c) = 0.5, R(x, x) = 1 for all
x ∈ A, and R(x, y) = 0 for the remaining pairs (x, y) ∈ A × A. The ranking (weak order) obtained
for relation R is: c � a, b (i.e., object c is the best, and objects a and b are in the second equivalence
class). Observe that we have a �(A,R) b. Now, consider relation R′ which is identical to R except for
the pair of objects (c, a), for which we have lower value R′(c, a) = 0. This difference between R and
R′ should not “negatively affect” object a. However, the ranking (weak order) obtained for relation R′
is: b � a, c. Thus, it is not true that a �(A,R′) b. �

(CC) Satisfied. Observe that, given a finite set of objects A and a fuzzy relation R over A, if object a
“covers” object b w.r.t. set A, it is also true that object a “covers” object b w.r.t. any subset A′ ⊆ A.
Using the reasoning from the proof of property CC of the MiF ranking method, this implies that for
any A′ ⊆ A, mF (a,A′, R) ≥ mF (b,A′, R). Thus, in any iteration where both objects a and b are
considered (i.e., a, b ∈ Ai, with Ai ⊆ A), it is impossible (since the choice among objects belonging to
set Ai is made based on maximum score, and the score of each object c ∈ Ai is given by mF (c, Ai, R))
that object b will we chosen while object a will not be chosen. Thus, a �(A,R) b. �

(INDO) Not satisfied. Consider the set A and fuzzy relation R given in the proof of property INDO of the
MiF ranking method. We obtain �(A′, R/A′) = a � b � c (i.e., object a is the best, and object b is
better than object c). This ranking is different than �(A,R)/A′ = a, b, c (i.e., all three objects are in
the first equivalence class). �

(IC) Not satisfied since MiF does not satisfy IC, and the first equivalence classes of the weak orders
produced by MiF and It.MiF are the same. �
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(O) Satisfied according to Bouyssou and Pirlot [21].

(C) Not satisfied according to Bouyssou and Pirlot [21].

(F ) Satisfied according to Bouyssou and Pirlot [21].

(DP ) Satisfied. Let us consider a finite set of objects A, a transitive and crisp relation R over A, and any
pair of objects (a, b) ∈ R. Observe that due to transitivity of R, relation R/A′ is also transitive, for
any A′ ⊆ A. This implies that in each i-th iteration, where a choice is made among objects belonging
to set Ai ⊆ A, if the pair of objects (a, b) belongs to R/Ai, it is true that mF (a,Ai, R) ≥ mF (b, Ai, R).
Thus, it is impossible (since the choice among objects belonging to set Ai is made based on maximum
score, and the score of each object c ∈ Ai is given by mF (c, Ai, R)) that object b will we chosen while
object a will not be chosen. Therefore, after all iterations, we have to obtain that a �(A,R) b. This
implies that R ⊆ �(A,R). �

(GF ) Satisfied according to Bouyssou and Pirlot [21].

Proof (Properties of L/E).

(N) Obviously satisfied. �

(M) Satisfied according to Bouyssou and Perny [20].

(CC) Satisfied. Let us consider a finite set of objects A and a fuzzy relation R over A. If R(a, b) ≥ R(b, a)
and for all c ∈ A \ {a, b} there is R(a, c) ≥ R(b, c) and R(c, a) ≤ R(c, b), then according to definitions
(34) and (37), we have SF (a,A,R) ≥ SF (b, A,R) (in other words, object a has not smaller leaving flow
than object b) and −SA(a,A,R) ≥ −SA(b, A,R) (in other words, object a has not greater entering
flow than object b). Due to the definition of L/E (45), it implies that a �(A,R) b. �

(INDO) Satisfied. Let us consider a finite set of objects A and a fuzzy relation R over A. Then, each non-
discriminating object b ∈ A\A′, with A′ ⊂ A, influences leaving and entering flow of each object a ∈ A′
in the same way. Precisely, leaving flow SF (a,A′, R) of each object a ∈ A′ increases (or decreases) by
k while entering flow −(−SA(a,A′, R)) of each object a ∈ A′ increases (or decreases) by k′. �

(IC) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d, e, f}, and two fuzzy
relations R, R′ over A, defined as:

• R(a, b) = 0.5, R(b, c) = 0.5, R(c, a) = 0.5, R(e, d) = 0.5, R(d, f) = 0.5, R(x, x) = 1 for all x ∈ A,
and R(x, y) = 0 for the remaining pairs (x, y) ∈ A×A,

• R′(a, b) = 1, R′(b, c) = 1, R′(c, a) = 1, R′(e, d) = 0.5, R′(d, f) = 0.5, R′(x, x) = 1 for all x ∈ A,
and R′(x, y) = 0 for the remaining pairs (x, y) ∈ A×A.

Thus, R and R′ are circuit-equivalent (R′ is identical to R except for the circuit a-b-c of length 3, on
which value ε = 0.5 has been added). If property IC would be satisfied, we would have �(A,R′) = �
(A,R). However, we have d �(A,R) b and b �(A,R) d (i.e., objects b and d are in the same equivalence
class in case of exploitation of relation R), while not d �(A,R′) b nor b �(A,R′) d (i.e., objects b and
d are incomparable in case of exploitation of relation R′). Thus, we obtain that �(A,R′) 6= �(A,R).

�

(O) Not satisfied since for a given finite set of objects A and for a fuzzy relation R over A, L/E makes use
of the “cardinal” properties of values R(a, b), with a, b ∈ A. �

(C) Obviously satisfied.
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(F ) Satisfied. Let us consider a finite set of objects A and a weak order relation R over A. First, due to
transitivity of R, given any pair of objects (a, b) ∈ R, object a has not smaller leaving flow and not
greater entering flow than object b, i.e., SF (a,A,R) ≥ SF (b, A,R) and −SA(a,A,R) ≥ −SA(b, A,R),
respectively. Thus, a �(A,R) b. This means that R ⊆ �(A,R). Second, due to transitivity and
completeness of R, given any pair of objects (a, b) /∈ R, object a has smaller leaving flow and greater
entering flow than object b. Therefore, it is not true that a �(A,R) b. This means that ¬R ⊆ ¬ �
(A,R), where ¬ denotes complement of a set. Thus, �(A,R) = R. �

(DP ) Satisfied as shown in the first part of the proof of property F above. �

(GF ) Satisfied. Let us consider a finite set of objects A and a crisp relation R over A. First, assume that the
antecedent of the implication in the definition of property GF is true. Thus, G(A,R) 6= ∅. Second,
due to the definition of L/E, given by (45), every object a ∈ G(A,�(A,R)) has maximum leaving
flow and minimum entering flow among all objects from set A. To have maximum leaving flow, each
object a ∈ G(A,�(A,R)) has to belong to set G(A,R). �
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Table 10: Evaluations on criteria and category assignments of all airline-year objects considered in the Illustrative Example
(Section 9)

Id Airline-year g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 Cat.
a1 japan-89 14.01 5.06 4.7 31.23 16.8 38.55 11.73 1.3 45.7 22.1 UIG
a2 japan-90 13.93 5.09 6.3 38.46 18.4 4.02 2.55 15.3 67.9 25.1 UIG
a3 japan-91 13.59 5.03 7.3 44.4 19.7 7.22 3.68 9.2 58.5 23 UIG
a4 japan-92 12.93 4.92 8.6 48.78 21 6.64 3.2 11 45.9 20.2 UIG
a5 amr-88 12.42 4.93 3.1 59.36 32 17.47 6.47 1.9 50.2 32.4 LIG
a6 amr-89 11.95 4.85 3.2 54.97 33.2 8.98 4.1 2.9 48.2 34.6 LIG
a7 amr-90 10.92 4.33 3.7 48.23 32 7.95 3.05 4.9 40.7 27.9 LIG
a8 amr-91 10.48 4.04 4.1 44.28 30 7.86 2.52 6.8 34.3 23.4 LIG
a9 amr-92 9.65 3.66 5.3 39.76 27.2 5.97 2.14 9.9 25.4 17.9 LIG
a10 ba-93 8.98 4.09 4.4 32.72 22.2 9.29 3.56 6.4 28.7 19.1 LIG
a11 delta-89 12.2 7.51 1.3 52.41 37 13.94 12.01 0.6 58.5 40.4 LIG
a12 delta-90 10.89 7.14 1.6 54.5 37.1 6.15 4.74 2.7 53.6 35.9 LIG
a13 delta-91 9.96 6.71 2.3 54.91 36 3.94 2.59 5.9 43.6 29.2 LIG
a14 delta-92 7.69 5.73 5.3 49.7 35.2 2.05 1.76 16.5 26.7 18.6 LIG
a15 delta-93 6.91 5.1 5.9 41.83 28.2 8.47 4.38 3.7 26.8 16.8 LIG
a16 japan-93 10.83 4.31 20 50.67 21.3 -2.31 0.37 20 35.4 15.9 LIG
a17 nwa-88 13.93 14.09 2.3 53.37 38.2 12.75 8.96 1.3 49.4 37.4 LIG
a18 stw-89 16.34 4.37 2.7 54.82 45.4 15.81 4.67 2.3 48.8 41.5 LIG
a19 stw-88 15.77 4.29 2.7 57.5 48.3 19.49 5.36 2.3 54.8 43.4 LIG
a20 stw-90 15.77 4.42 2.4 53.48 44.6 12.96 4.36 2.2 46.2 41.1 LIG
a21 stw-91 14.48 4.29 2.8 50.83 41.9 9.8 3.17 4.8 42.1 34.2 LIG
a22 stw-92 14.76 4.43 2.9 47.93 39.5 15.75 4.57 2.7 47.9 37.3 LIG
a23 united-89 8.02 3.78 0.1 46.18 24.3 9.87 4.54 1.9 40.1 21.7 LIG
a24 united-90 9.54 4.27 3.6 45.65 24.5 2.62 2.1 6.2 35.2 20.9 LIG
a25 united-91 8.57 4.08 4.6 41.2 22.5 2.61 2.01 9.8 26.6 16.2 LIG
a26 united-92 6.63 3.42 5 28.59 16.6 10.09 4.1 3.3 9.9 5.8 LIG
a27 usair-88 12.33 4.76 2.7 63.93 43.6 9.22 3.48 2.7 58 38.7 LIG
a28 usair-89 10.42 3.9 3.2 59.8 40.8 6.06 2.58 4.1 44.8 31.2 LIG
a29 usair-90 8.24 3.19 20 52.39 35.4 -1.28 0.71 20 32.3 21.8 LIG
a30 alaska-88 11.15 4 3.7 59.65 34.1 10.42 5.31 2.1 63.4 42 UNIG
a31 alaska-89 10.06 3.87 4 56.68 35.2 7.24 3.86 3.5 63.7 39.1 UNIG
a32 alaska-90 10.03 4.19 3.5 55.34 35 10.42 4.73 3.1 42.4 29.1 UNIG
a33 alaska-91 8.25 3.87 4.1 54.45 34.4 6.55 2.49 7.2 34.7 23.5 UNIG
a34 alaska-92 6.98 3.49 20 45.82 30 0.29 1.07 20 24.9 16.3 UNIG
a35 usair-91 6.18 2.51 20 43.86 29 2.21 1.49 15.4 25.3 17.1 UNIG
a36 usair-92 5.08 2.3 20 31.27 21.2 9.21 3.23 4.2 -4 -2.6 UNIG
a37 airwiss-88 12.23 2.79 5.6 48.94 36.5 8.77 3.54 4.5 65.1 43.3 LNIG
a38 airwiss-89 9.72 2.78 5.9 51.96 37.5 7.17 2.87 5.3 63.9 42.5 LNIG
a39 airwiss-90 8.52 2.68 7.8 53.5 38.3 2.48 1.6 18.6 48.6 35.6 LNIG
a40 metro-88 9.65 5.18 3.6 46.91 32.2 4.67 2.72 6.8 28.6 17.6 LNIG
a41 panam-88 1.64 1.42 0.5 2.46 0.4 6.49 2.88 4.3 -27.2 -14.2 LNIG
a42 panam-89 -2.65 0.28 20 -10.53 -6.5 -16.4 -0.66 20 -49.7 -25.8 LNIG
a43 united-88 7.76 3.79 6.5 47.41 26.3 7.95 4.33 3.6 31.1 18.3 LNIG
a44 metro-89 5.7 4.09 2.1 42.36 27.9 -9.14 -1.64 20 24.9 13.7 SpG
a45 metro-90 2.28 2.6 0.2 30.87 20.3 -3.64 -0.07 20 24.9 13.7 SpG
a46 panam-90 -1.38 0.58 2.4 -41.67 -22.52 2.37 1.57 12.4 -111.3 -61.6 SpG
a47 ctn-91 -7.31 0.09 11.5 -73.91 -47.1 3.18 2.09 1.5 -170.3 -107.1 SpG
a48 metro-91 -3.09 0.28 20 -18.92 -4.2 -17.86 -5.27 0.2 -189.3 -82.7 SpG
a49 metro-92 -4.27 0.32 0.4 -56.51 -23.2 4.61 0.01 7.5 -138.9 -60.3 SpG
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