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Abstract. In this paper, we consider a rough set analysis of non-ordinal
and ordinal classi�cation data with missing attribute values. We show
how this problem can be addressed by several variants of Indiscernibility-
based Rough Set Approach (IRSA) and Dominance-based Rough Set Ap-
proach (DRSA). We propose some desirable properties that a rough set
approach being able to handle missing attribute values should possess.
Then, we analyze which of these properties are satis�ed by the consid-
ered variants of IRSA and DRSA.
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1 Introduction

In data mining concerning classi�cation problems, it is quite common to have
missing values for attributes describing objects [12]. To cope with the problem
of missing values, several approaches have been proposed. The usual approach
is to assume that some value(s) can represent correctly the missing one. Then,
the missing values are replaced in some way by so-called representative values.
In this case, the question is how to avoid data distortion [12].

Rough set approach to handling missing values avoids making changes in the
data. The problem is addressed by a proper de�nition of the relation employed
to form granules of knowledge.

In this work, we consider both Indiscernibility-based Rough Set Approach
(IRSA), in which value sets of attributes describing objects are not supposed to
be ordered, and Dominance-based Rough Set Approach (DRSA), which takes
into account an order in the value sets of attributes, monotonically related with
the order of decision classes. We focus on the following types of IRSA:

� classical rough set approach (CRSA) proposed by Pawlak [16],
� Variable Consistency Indiscernibility-based Rough Set Approach (VC-IRSA)
proposed by Bªaszczy«ski, Greco, Sªowi«ski, and Szel¡g [2, 3],

and on the following types of DRSA:
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� classical Dominance-based Rough Set Approach (CDRSA) proposed by Greco,
Matarazzo, and Sªowi«ski [8, 9, 17],

� Variable Consistency Dominance-based Rough Set Approach (VC-DRSA)
proposed by Bªaszczy«ski, Greco, Sªowi«ski, and Szel¡g [2, 3].

Adaptations of the classical rough set model [16] to handling missing values,
were presented in [6, 7, 10, 11, 14, 19]. Proposals of handling missing values in
dominance-based rough set approaches were given in [1, 5, 6, 7, 13, 15, 20]. We
review all these approaches and analyze their properties, re�ning and extending
the research results presented in [1, 4].

The rest of this paper is structured as follows. Section 2 reminds basics of
IRSA and DRSA. In Section 3, we present ways of handling missing values in
IRSA and DRSA. We also propose a list of desirable properties that IRSA and
DRSA adapted to handle missing values should possess. After characterizing
variants of IRSA and DRSA coping with missing values, we discover non-domi-
nated variants with respect to these properties. Section 4 concludes the paper.

2 Basics of IRSA and DRSA

Classi�cation data analyzed by IRSA and DRSA concern a �nite universe U of
objects described by attributes from a �nite set A. Moreover, A is divided into
disjoint sets of condition attributes C and decision attributes Dec. The value set
of q ∈ C ∪Dec is denoted by Vq, q(x) ∈ Vq denotes evaluation of object x ∈ U

on attribute q, and VC =
|C|∏
q=1

Vq is called C-evaluation space. For simplicity, we

assume that Dec = {d}. Values of attribute d are class labels.
Decision attribute d makes a partition of set U into n disjoint sets of objects,

called decision classes. We denote this partition by X = {X1, . . . , Xn}.

2.1 Basics of IRSA

In IRSA, the value sets of attributes are not considered to be ordered, and thus
indiscernibility relation is employed. Object y is considered to be indiscernible
with object x (denoted by yIx) if and only if (i�) q(y) = q(x) for each q ∈ C.
Given an object x ∈ U ,

I(x) = {y ∈ U : yIx} (1)

denotes a set (granule) of objects indiscernible with referent x.
Given a non-ordinal classi�cation problem, two objects x, y ∈ U are said

to be inconsistent with respect to (w.r.t.) indiscernibility relation, if they are
indiscernible but they are assigned to di�erent decision classes. In order to handle
such inconsistency, one calculates lower approximations of considered classes.

CRSA In CRSA [16], lower approximation of class Xi ∈ X is de�ned as

Xi = {x ∈ U : I(x) ⊆ Xi}, (2)
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and upper approximation of class Xi ∈ X is de�ned as

Xi = {x ∈ U : I(x) ∩Xi 6= ∅}. (3)

VC-IRSA In VC-IRSA [2, 3], probabilistic lower approximation of class Xi ∈ X
is de�ned using an object consistency measure. We employ cost-type measure εXi

:

εXi
(x) =

|I(x) ∩ ¬Xi|
|¬Xi|

, (4)

where ¬Xi = U \Xi. Then,

Xi = {x ∈ Xi : εXi(x) ≤ θXi}, (5)

where threshold θXi
∈ [0, 1]. In the following, we will denote this version of

VC-IRSA by ε-VC-IRSA.
In [3], we introduced some monotonicity properties required from an object

consistency measure. For IRSA, relevant properties are: (m1) � monotonicity
w.r.t. growing set of attributes, and (m2) � monotonicity w.r.t. growing set of
objects (class). As proved in [3], εXi

has both property (m1) and property (m2).

2.2 Basics of DRSA

In DRSA, it is supposed that value sets of condition attributes, as well as deci-
sion classes, are ordered. Then, it is often meaningful to consider monotonicity

constraints (monotonic relationships) between ordered class labels and values
of attributes expressed on ordinal or cardinal (numerical) scales [8, 9, 17]. In
order to make a meaningful representation of classi�cation decisions, one has to
consider the dominance relation D in the C-evaluation space. Let us denote by
�q the weak preference relation over U con�ned to single attribute q ∈ C:

y �q x⇔

 q(y) is not missing,
q(x) is not missing,
q(y) is at least as good as q(x).

(6)

Then, classically (i.e., when there are no missing attribute values), given x, y ∈ U ,
object y is said to dominate object x, denoted by yDx, i� y �q x for each q ∈ C.
Moreover, y is said to be dominated by x, denoted by y

D

x, i� x �q y for each
q ∈ C. Let us observe that, classically, yDx i� x

D

y.
Dominance relations D and

D

are partial preorders, i.e., they are re�exive,
transitive, and not necessarily complete. For any object x ∈ U , two types of
dominance cones can be de�ned in the C-evaluation space. Positive dominance
cone with the origin in x w.r.t. relation D:

D+(x) = {y ∈ U : yDx}, (7)

and negative dominance cone with the origin in x w.r.t. relation D:

D−(x) = {y ∈ U : xDy}. (8)
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In DRSA, if 1 ≤ i < j ≤ n, then class Xi is considered to be worse than
Xj . Moreover, rough approximations concern unions of classes: upward unions

X≥i =
⋃

t≥iXt, and downward unions X≤i =
⋃

t≤iXt, where i = 1, . . . , n.

CDRSA In CDRSA [8, 9, 17], lower approximations of unions of classes X≥i ,

X≤i , i = 1, . . . , n, are de�ned using strict inclusion relation:

X≥i = {x ∈ U : D+(x) ⊆ X≥i }, X≤i = {x ∈ U : D−(x) ⊆ X≤i }. (9)

Moreover, upper approximations of unions of classes X≥i , X
≤
i are de�ned as

X≥i = {x ∈ U : D−(x) ∩X≥i 6= ∅}, X≤i = {x ∈ U : D+(x) ∩X≤i 6= ∅}. (10)

VC-DRSA De�nition (9) appears to be too restrictive in practical applications.
This explains the interest in VC-DRSA [2, 3] which is a probabilistic extension of
CDRSA. We use object consistency measures ε

X
≥
i
: U → [0, 1], ε

X
≤
i
: U → [0, 1],

introduced in [2, 3]:

ε
X

≥
i
(x) =

|D+(x) ∩ ¬X≥i |
|¬X≥i |

, ε
X

≤
i
(x) =

|D−(x) ∩ ¬X≤i |
|¬X≤i |

. (11)

Then, probabilistic lower approximations of X≥i , X
≤
i , i = 1, . . . , n, are de�ned as

X≥i = {x ∈ X≥i : ε
X

≥
i
(x) ≤ θ

X
≥
i
}, X≤i = {x ∈ X≤i : ε

X
≤
i
(x) ≤ θ

X
≤
i
}, (12)

where θ
X

≥
i
, θ

X
≤
i
∈ [0, 1). In the following, we will denote this version of VC-

DRSA by ε-VC-DRSA.
As proved in [3], ε

X
≥
i
, ε

X
≤
i

have monotonicity properties (m1), (m2), and

(m4) (monotonicity w.r.t. dominance relation), su�cient in practical applications.

3 Di�erent Ways of Handling Missing Values in IRSA

and DRSA

In the following, a missing attribute value is denoted by ∗. We assume that each
object x ∈ U has at least one known value, i.e., for each x ∈ U there exists q ∈ C
such that q(x) 6= ∗. Moreover, we use symbol X to denote an approximated set of
objects. In IRSA, X denotes a single decision class Xi ∈ X . In DRSA, X denotes
a union of decision classes X≥i or X≤i , i ∈ {1, . . . , n}.

3.1 Adaptations of IRSA to handle missing values

Handling of missing attribute values requires a proper adaptation of IRSA by
rede�nition of the indiscernibility relation I. Once we �x this de�nition, we
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can proceed by calculating rough approximations of decision classes, and then
inducing decision rules from data structured in the rough set way.

The approaches resulting from di�erent de�nitions of the indiscernibility re-
lation are denoted by CRSA-mvj and ε-VC-IRSA-mvj , and the respective indis-
cernibility relations are denoted by Ij , where j stands for the version id. When
these approaches are described jointly, we use denotation IRSA-mvj .

It is important to underline that due to missing values, considered indiscerni-
bility relation Ij may miss some properties, like symmetry or transitivity. For
this reason, in the following, we employ generalized de�nitions of rough approx-
imations proposed in [18], where indiscernibility relation is only assumed to be
re�exive (so it may be not symmetric and/or not transitive). According to [18],

I−1j (x) = {y ∈ U : xIjy} (13)

denotes the set (granule) of objects with which x is indiscernible (to which x is
similar). Then, in CRSA-mvj , generalized lower approximation of class Xi ∈ X
is de�ned as

Xi = {x ∈ U : I−1j (x) ⊆ Xi}. (14)

Generalized upper approximation of class Xi ∈ X is de�ned as

Xi =
⋃

x∈Xi

Ij(x). (15)

Let us remark that if Ij is symmetric, then I−1j (x) = Ij(x), and then, de�ni-
tions (14) and (2) are equivalent [18].

Analogously, ε-VC-IRSA is adjusted to the case of Ij , possibly being not
symmetric, by rede�ning object consistency measure εXi

, given by (4), in the
following way:

εXi
(x) =

|I−1j (x) ∩ ¬Xi|
|¬Xi|

. (16)

IRSA-mv1 employs the indiscernibility relation de�ned in [6, 7], which we de-
note by I1. This relation is considered as a directional statement where a subject
is compared to a referent which cannot have missing values. Subject y is consid-
ered to be indiscernible with referent x i� for each q ∈ C, q(x) 6= ∗, and either
q(y) = q(x) or q(y) = ∗. Thus, it is not true that xI1x when object x ∈ U has
some missing attribute values (i.e., I1 is, in general, not re�exive). Nevertheless,
it is still interesting to see consequences of adapting IRSA by using relation I1.

Note that in [6, 7], lower approximation of classXi was not de�ned using (14),
and moreover, some properties considered in these papers (like rough inclusion
or complementarity), were de�ned with respect to subset UC of the universe U ,
where UC is composed of all objects from U which have no missing value. Thus,
we have to verify if these properties hold also for U .

IRSA-mv1.5 [19] can be considered as an improvement over IRSA-mv1. It
de�nes a re�exive and transitive similarity relation without imposing that a ref-
erent cannot have missing values. In this approach, subject y is considered to be
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indiscernible with referent x i� q(y) = q(x) for each q ∈ C such that q(y) 6= ∗.
Let us remark that this approach is treating missing values as �lost� ones (see,
e.g., [10, 11]).

IRSA-mv2 [6, 7, 14, 19] employs a re�exive and symmetric tolerance relation.
In this approach, subject y is considered to be indiscernible with referent x i�
for each q ∈ C there is q(y) = q(x), or q(y) = ∗, or q(x) = ∗. Note that this
approach is treating missing values as �do not care� ones (see, e.g., [10, 11]).

IRSA-mv3 is a new approach which is an indiscernibility-based counterpart
of DRSA-mv3 proposed in [1]. In this approach, subject y is considered to be
indiscernible with referent x i� q(y) = q(x) for each q ∈ C such that q(x) 6= ∗.

3.2 Desirable properties of IRSA adapted to handle missing values

We consider the following desirable properties of IRSA-mvj , j = 1, 1.5, 2, 3:

1. Property S (re�ecting symmetry of indiscernibility relation): IRSA-mvj has
property S i� yIjx⇔ xIjy, for any x, y ∈ U .

2. Property R (re�ecting re�exivity of indiscernibility relation): IRSA-mvj has
property R i� xIjx, for any x ∈ U .

3. Property T (re�ecting transitivity of indiscernibility relation): IRSA-mvj has
property T i� yIjx ∧ xIjz ⇒ yIjz, for any x, y, z ∈ U .

4. Property B (robustness): given x ∈ U , let Cx = {q ∈ C : q(x) 6= ∗}; IRSA-
mvj has property B i� for each x ∈ X, I−1′j (x) ∩ ¬X ⊆ I−1j (x) ∩ ¬X,

where I−1′j (x) is a set of objects such that in Cx-evaluation space, object x
is indiscernible with them.

5. Property P (re�ecting precisiation of data): IRSA-mvj has property P i�
the lower approximation of any X ⊆ U does not shrink when any missing
attribute value is replaced by some non-missing value.

6. Property RI (rough inclusion): IRSA-mvj has property RI i�
X ⊆ X ⊆ X, for any X ⊆ U .

7. Property C (complementarity): IRSA-mvj has property C i�
X = U \ ¬X, for any X ⊆ U .

8. Property M1 (monotonicity w.r.t. growing set of attributes): IRSA-mvj has
propertyM1 i� the lower approximation of any X ⊆ U does not shrink when
set P is extended by new attributes.

9. Property M2 (monotonicity w.r.t. growing set of objects): IRSA-mvj has
property M2 i� the lower approximation of any X ⊆ U does not shrink
when this set is augmented by new objects.

10. Property MT (transitivity of membership to lower approximation): IRSA-
mvj has property MT i� for any X ⊆ U and for any x, y ∈ U it is true that
x ∈ X ∧ y ∈ X ∧ xIjy ⇒ y ∈ X.

Comparing to the list of desirable properties introduced in [4], we propose
new property B which postulates that an object x, belonging to the lower ap-
proximation of class Xi when considering all condition attributes, should also
belong to this approximation when considering only these attributes, for which
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evaluation of x is not missing. Moreover, we modify de�nition of property MT
to re�ect de�nition of generalized lower approximation given by (14) (for CRSA-
mvj), and by (5), (16) (for ε-VC-IRSA-mvj).

The properties of IRSA-mvj , j = 1, 1.5, 2, 3, are summarized in Table 1,
where T and F denote presence and absence of a given property, respectively.
Moreover, in case of two symbols ·/·, the �rst (resp. the second) one concerns
only CRSA (resp. only ε-VC-IRSA).

Table 1. Properties of IRSA-mvj , j = 1, 1.5, 2, 3

Property / Approach IRSA-mv1 IRSA-mv1.5 IRSA-mv2 IRSA-mv3
S F F T F

R F T T T

T T T F T

B F T T F

P F F T F

RI F T T T

C F/T T T T

M1 T T T T

M2 T T T T

MT T T F T

According to Table 1, IRSA-mv1.5 and IRSA-mv3 dominate IRSA-mv1, which
has the least number of desirable properties; IRSA-mv3 is dominated by IRSA-
mv1.5. Thus, taking into account the considered properties, we can conclude that
there are two non-dominated approaches: IRSA-mv1.5 and IRSA-mv2.

3.3 Adaptations of DRSA to handle missing values

Handling of missing attribute values requires a proper adaptation of DRSA by
rede�nition of the dominance relations D and

D

. Once we �x these de�nitions,
we can proceed by calculating rough approximations of unions of decision classes,
and then inducing decision rules from data structured in the rough set way.

In this sub-section, we review several ways of adapting DRSA to missing
values known from the literature, and we propose some new adaptations. All of
them are based on speci�c de�nitions of dominance relations.

The approaches, resulting from di�erent de�nitions of the dominance rela-
tions, are denoted by CDRSA-mvj and ε-VC-DRSA-mvj , and the respective
dominance relations are denoted by Dj and

D

j , where j stands for the version
id. When these approaches are described jointly, we use denotation DRSA-mvj .

It is important to underline that due to missing values, an approach employ-
ing dominance relation Dj may miss some properties, like transitivity. Moreover,
it may be the case that yDjx while not x

D

j y (lack of a speci�c kind of symme-
try). For this reason, in the following, we employ generalized de�nitions of rough
approximations formulated in [20], related to generalized de�nitions of rough ap-
proximations proposed for IRSA in [18]. These generalized de�nitions are valid
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for the case when considered relations Dj and

D

j are re�exive (regardless of
their being transitive or satisfying yDjx⇔ x

D

j y).

According to [20], for any object x ∈ U , apart from dominance cones D+
j (x)

and D−j (x), two more types of dominance cones in the C-evaluation space should
be considered. Positive dominance cone with the origin in x w.r.t. relation

D

j :

D+
j (x) = {y ∈ U : x

D

j y}, (17)

and negative dominance cone with the origin in x w.r.t. relation

D

j :

D−
j (x) = {y ∈ U : y

D

j x}. (18)

Let us observe that, when the description of objects has no missing values,

D+
j (x) = D+

j (x) and

D−
j (x) = D−j (x). Then, according to [20], in CDRSA-mvj :

� generalized lower approximation of X≥i , i ∈ {1, . . . , n}, is de�ned as

X≥i = {x ∈ U :

D+
j (x) ⊆ X

≥
i }, (19)

where

D+
j (x) is read as �the set of objects that x is dominated by�;

� generalized upper approximation of X≥i , i ∈ {1, . . . , n}, is de�ned as

X≥i = {x ∈ U : D−j (x) ∩X
≥
i 6= ∅}, (20)

where D−j (x) is read as �the set of objects that x dominates�;

� generalized lower approximation of X≤i , i ∈ {1, . . . , n}, is de�ned as

X≤i = {x ∈ U : D−j (x) ⊆ X
≤
i }, (21)

where D−j (x) is read as �the set of objects that x dominates�;

� generalized upper approximation of X≤i , i ∈ {1, . . . , n}, is de�ned as

X≤i = {x ∈ U :

D+
j (x) ∩X

≤
i 6= ∅}, (22)

where

D+
j (x) is read as �the set of objects that x is dominated by�.

Note that when yDjx implies x

D

j y, and vice versa (presence of a speci�c
kind of symmetry), then:

� the lower approximation of a union of classes X≥i de�ned by (19) is identical
to the lower approximation of the same union de�ned by (9);

� the upper approximation of a union of classes X≤i de�ned by (22) is identical
to the upper approximation of the same union de�ned by (10).
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Analogously, ε-VC-DRSA is generalized by rede�ning object consistency mea-
sures ε

X
≥
i
, ε

X
≤
i
, given by (11), in the following way:

ε
X

≥
i
(x) =

|

D+
j (x) ∩ ¬X≥i |
|¬X≥i |

, ε
X

≤
i
(x) =

|D−j (x) ∩ ¬X
≤
i |

|¬X≤i |
. (23)

DRSA-mv1 employs two dominance relations de�ned in [6, 7], which we de-
note by D1 and

D

1. These relations are considered as directional statements
where subject y is compared to referent x which cannot have missing values:

� subject y dominates referent x (denoted by yD1x) i� for each q ∈ C,
q(x) 6= ∗, and either y �q x or q(y) = ∗;

� subject y is dominated by referent x (denoted by y

D

1 x) i� for each q ∈ C,
q(x) 6= ∗, and either x �q y or q(y) = ∗.

In view of the above de�nitions of D1 and

D

1, neither xD1x nor x

D

1 x (i.e.,
D1,

D

1 are not re�exive), in general. Nevertheless, it is still interesting to see
consequences of adapting DRSA to handle missing values by using relations D1

and

D

1. Note that in [6, 7], lower approximations of unions of classesX≥i andX≤i
were not de�ned using (19) and (21), and moreover, some properties considered
in these papers (like rough inclusion or complementarity), were de�ned with
respect to UC ⊆ U , where UC is composed of all objects from U which have no
missing value. Thus, we have to verify if these properties hold also for U .

DRSA-mv1.5 [20] can be considered as an improvement over DRSA-mv1.
In this approach, the authors propose two relations (called in [20] similarity

dominance relations), which we denote by D1.5 and
D

1.5:

� subject y dominates referent x (denoted by yD1.5x) i� y �q x for each q ∈ C
such that q(y) 6= ∗;

� subject y is dominated by referent x (denoted by y

D

1.5 x) i� x �q y for each
q ∈ C such that q(y) 6= ∗.

Taking into account the semantics of missing values considered in [10, 11], it can
be said that DRSA-mv1.5 treats missing values as �lost� values.

DRSA-mv2 was �rst proposed in [6, 7], and extended in [5] to handle im-
precise evaluations on attributes and imprecise assignments to decision classes,
both modeled by intervals. When considering missing values only, each object is
assigned to a single class, and each missing attribute value corresponds to an in-
terval spanning over entire value set of this attribute. This implies the following
de�nitions of so-called possible dominance relations, denoted by D2 and

D

2:

� subject y dominates referent x (denoted by yD2x) i� for each q ∈ C,
y �q x, or q(y) = ∗, or q(x) = ∗;

� subject y is dominated by referent x (denoted by y

D

2 x) i� for each q ∈ C,
x �q y, or q(y) = ∗, or q(x) = ∗.

Taking into account the semantics of missing values considered in [10, 11], it can
be said that DRSA-mv2 treats missing values as �do not care� values.
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In DRSA-mv2.5 [13], two dominance relations (called in [13] generalized ex-

tended dominance relations) are de�ned as in DRSA-mv2, only with additional
condition that the ratio of the number of �common� attributes (i.e., attributes
for which both x and y have simultaneously a non-missing value) and the number
of all attributes in set C is not less than a given user-de�ned threshold λ ∈ [0, 1].
We denote these relations by D2.5 and

D

2.5. The additional condition was intro-
duced to restrict the dominance relations used in DRSA-mv2 to pairs of objects
that have at least one, or more, �common� attribute(s).

In DRSA-mv3 [1], we employ dominance relations D3 and

D

3, de�ned as:

� subject y dominates referent x (denoted by yD3x) i� y �q x for each q ∈ C
such that q(x) 6= ∗;

� subject y is dominated by referent x (denoted by y

D

3 x) i� x �q y for each
q ∈ C such that q(x) 6= ∗.

DRSA-mv4 uses the concept of a lower-end dominance relation introduced
in [5]. Resulting dominance relations D4 and

D

4 are de�ned as:

� subject y dominates referent x (denoted by yD4x) i� for each q ∈ C,
y �q x, or q(x) = ∗, or q(x) = inf(Vq);

� subject y is dominated by referent x (denoted by y

D

4 x) i� for each q ∈ C,
x �q y, or q(y) = ∗, or q(y) = inf(Vq),

where inf(Vq) denotes the worst value in Vq (if no such value exists, inf(Vq) = −∞).
DRSA-mv5 uses the concept of an upper-end dominance relation introduced

in [5]. Resulting dominance relations D5 and

D

5 are de�ned as:

� subject y dominates referent x (denoted by yD5x) i� for each q ∈ C,
y �q x, or q(y) = ∗, or q(y) = sup(Vq);

� subject y is dominated by referent x (denoted by y

D

5 x) i� for each q ∈ C,
x �q y, or q(x) = ∗, or q(x) = sup(Vq),

where sup(Vq) denotes the best value in Vq (if there is no such value, sup(Vq) =∞).
In DRSA-mv6 [15], the authors de�ne so-called new extended dominance

relation, which we denote by D6. It is an α-cut of fuzzy dominance relation D̃,
such that D̃(y, x) re�ects a possibility of yDx, for y, x ∈ U . Threshold α ∈ [0, 1]
is a parameter estimated using decision-theoretic rough set model. This approach
assumes that the value set of each attribute is discrete. Relation D̃ is de�ned as

D̃(y, x) =
∏
q∈C
�̃q(y, x), (24)

where fuzzy weak preference relation over U con�ned to single attribute q ∈ C

�̃q(y, x) =



0, if q(y) 6= ∗, q(x) 6= ∗, not y �q x
1, if q(y) 6= ∗, q(x) 6= ∗, y �q x
|{v:v∈Vq,v is not worse than q(x)|

|Vq| , if q(y) = ∗, q(x) 6= ∗
|{v:v∈Vq,q(y) is not worse than v|

|Vq| , if q(y) 6= ∗, q(x) = ∗
1
2 + 1

2|Vq| , if q(y) = ∗, q(x) = ∗

.

(25)
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Then,

D6 = {(y, x) ∈ U × U : D̃(y, x) ≥ α} ∪ {(x, x) : x ∈ U}, (26)

where threshold α ∈ [0, 1]. Moreover, once can de�ne dominance relation

D

6 as

D

6 = {(y, x) ∈ U × U : ˜D(y, x) ≥ α} ∪ {(x, x) : x ∈ U}, (27)

where fuzzy dominance relation ˜D, re�ecting for a pair (y, x) ∈ U × U the
possibility of y

D

x, is de�ned as

˜D(y, x) = ∏
q∈C
�̃q(x, y). (28)

3.4 Desirable properties of DRSA adapted to handle missing values

We consider the following desirable properties of DRSA-mvj , where j = 1, 1.5, 2,
2.5, 3, . . . , 6:

1. Property S (re�ecting a speci�c kind of symmetry): DRSA-mvj has prop-
erty S i� yDjx⇔ x

D

j y, for any x, y ∈ U .
2. Property R (re�ecting re�exivity of dominance relations): DRSA-mvj has

property R i� xDjx and x

D

j x, for any x ∈ U .
3. Property T (re�ecting transitivity of dominance relations): DRSA-mvj has

property T i� yDjx ∧ xDjz ⇒ yDjz, and y

D

j x ∧ x

D

j z ⇒ y

D

j z, for any
x, y, z ∈ U .

4. Property B (robustness): let Cx = {q ∈ C : q(x) 6= ∗}; DRSA-mvj has
property B i� the following two conditions hold simultaneously:

� for each x ∈ X≥i ,

D+′
j (x) ∩ ¬X≥i ⊆

D+
j (x) ∩ ¬X

≥
i , where

D+′
j (x) is a

positive dominance cone with the origin in x w.r.t. relation

D

j , de�ned
in the Cx-evaluation space,

� for each x ∈ X≤i , D
−′
j (x) ∩ ¬X≤i ⊆ D−j (x) ∩ ¬X

≤
i , where D

−′
j (x) is a

negative dominance cone with the origin in x w.r.t. relation Dj , de�ned
in the Cx-evaluation space.

5. Property P (re�ecting precisiation of data): DRSA-mvj has property P i�
the lower approximation of any X ⊆ U does not shrink when any missing
attribute value is replaced by some non-missing value.

6. Property RI (rough inclusion): DRSA-mvj has property RI i�
X ⊆ X ⊆ X, for any X ⊆ U .

7. Property C (complementarity): DRSA-mvj has property C i�
X = U \ ¬X, for any X ⊆ U .

8. PropertyM1 (monotonicity w.r.t. growing set of attributes): DRSA-mvj has
property M1 i� the lower approximation any X ⊆ U does not shrink when
set P is extended by new attributes.

9. Property M2 (monotonicity w.r.t. growing union of classes): DRSA-mvj has
property M2 i� for any X ⊆ U , the lower approximation of X does not
shrink when this set is augmented by new objects.
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10. Property M3 (monotonicity w.r.t. super-union of classes): DRSA-mvj has

property M3 i� given any two upward unions of classes X≥i , X
≥
k , with 1 ≤

i < k ≤ n, there is X≥i ⊇ X≥k , and, moreover, given any two downward

unions of classes X≤i , X
≤
k , with 1 ≤ i < k ≤ n, there is X≤i ⊆ X

≤
k .

11. PropertyM4 (monotonicity w.r.t. dominance relation): DRSA-mvj has prop-
erty M4 i� the following two conditions hold simultaneously:

� for any X≥i ⊆ U , with i ∈ {1, . . . , n}, and for any x, y ∈ U such that

x

D

j y, it is true that (x ∈ X≥i ∧ y ∈ X
≥
i ⇒ y ∈ X≥i );

� for any X≤i ⊆ U , with i ∈ {1, . . . , n}, and for any x, y ∈ U such that

xDjy, it is true that (x ∈ X≤i ∧ y ∈ X
≤
i ⇒ y ∈ X≤i ).

Comparing to the list of desirable properties introduced in [1], we propose
new property B which postulates that an object x, belonging to the lower ap-
proximation of any union of classes when considering all condition attributes,
should also belong to this approximation when considering only these attributes,
for which evaluation of x is not missing. Moreover, we modify de�nition of prop-
erty M4 to re�ect de�nitions of generalized lower approximations.

Note that there is a correspondence between the above properties M1, M2,
M3, and M4, and monotonicity properties (m1), (m2), (m3), and (m4), intro-
duced in [3]. However, in VC-DRSA-mvj , it may happen that for some k ∈
{1, . . . , 4}, (mk) is satis�ed while Mk is not satis�ed.

The properties of DRSA-mvj , j = 1, 1.5, 2, 2.5, 3, . . . , 6, are summarized in
Table 2, where T and F denote presence and absence of a given property, respec-
tively. Moreover, in case of two symbols ·/·, the �rst one re�ects only CDRSA-
mvj while the second one re�ects only ε-VC-DRSA-mvj .

Table 2. Properties of DRSA-mvj , j = 1, 1.5, 2, 2.5, 3, . . . , 6

Prop. / Approach DRSA-mv1 DRSA-mv1.5 DRSA-mv2 DRSA-mv2.5 DRSA-mv3 DRSA-mv4 DRSA-mv5 DRSA-mv6
S F F T T F T T T

R F T T F T T T T

T T T F F T T T F

B F T T T F F F F

P F F T F F F F F

RI F T T F T T T T

C T T T T T T T T

M1 T T T F T T T T

M2 T T T T T T T T

M3 T/F T/F T/F T/F T/F T/F T/F T/F
M4 T T F F T T T F

According to Table 2, DRSA-mv2.5 is the least attractive due to lack of
many important properties (R, T , P , RI, M1, and M4). DRSA-mv1 is domi-
nated by: DRSA-mv1.5, DRSA-mv3, DRSA-mv4, and DRSA-mv5. DRSA-mv3 is
dominated by: DRSA-mv1.5, DRSA-mv4, and DRSA-mv5. DRSA-mv6 is dom-
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inated by: DRSA-mv2, DRSA-mv4, and DRSA-mv5. The only non-dominated
approaches are DRSA-mv1.5, DRSA-mv2, DRSA-mv4, and DRSA-mv5.

4 Conclusions

We considered di�erent ways of dealing with missing attribute values in or-
dinal and non-ordinal classi�cation data when analyzed using Indiscernibility-
based Rough Set Approach (IRSA) or Dominance-based Rough Set Approach
(DRSA). Moreover, we proposed some desirable properties for IRSA and DRSA
that a rough set approach capable of dealing with missing attribute values should
possess. We analyzed which of these properties are satis�ed by the considered
rough set approaches resulting from di�erent de�nitions of indiscernibility or
dominance relations, suitable for the case of missing values. Based on this anal-
ysis, we uncovered some non-dominated, with respect to desirable properties,
indiscernibility-based and dominance-based rough set approaches. These are:

� in IRSA: IRSA-mv1.5 and IRSA-mv2,
� in DRSA: DRSA-mv1.5, DRSA-mv2, DRSA-mv4, and DRSA-mv5.

Our future work will focus on experimental comparison of non-dominated vari-
ants uncovered in this paper. One of them, called DRSA-mv2, was already com-
pared with respect to classi�cation performance against some other ordinal and
non-ordinal classi�ers. The results reported in [1] show that DRSA-mv2-based
rule classi�er performs better than other well known methods like: Naive Bayes,
SVM, Ripper, or C4.5 when the share of missing values in a data set is below 20%.
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