Dominance-based Rough Set Approach to Bank Customer Satisfaction Analysis

Marcin Szeląg¹, Roman Słowiński^{1,2}

¹ Institute of Computing Science, Poznań University of Technology, Poland
² Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland {mszelag, rslowinski}@cs.put.poznan.pl

PP-RAI'2022, Gdynia, May 26

Introduction

Problem description

- We analyzed the churn data set publicly available at kaggle.com¹; 10 condition attributes, incl. 4 continuous ones.
- This is a **binary** problem; Exited = 1 denotes a customer who leaved the bank, Exited = 0 denotes a loyal one.
- Original class distribution: *Exited* = 1: 2037 objects, *Exited* = 0: 7963 objects.
- **Balanced** subproblem used in this study: Exited = 1: 2000 objects, Exited = 0: 2000 objects (random selection).
- Data used in the case study: http://www.cs.put.poznan.pl/mszelag/Research/bank-churn (can be used to reproduce experiments).
- Predictive performance estimated using classification accuracy.

¹https://www.kaggle.com/mathchi/churn-for-bank-customers

Sample of the original data

No.	CreditScore (condition,active	Geography (condition,active)	Gender (condition,active)	Age (condition,active)	Tenure (condition,active)	Balance (condition,active)	NumOfProducts (condition,active)	HasCrCard (condition,active)	IsActiveMember (condition,active)	Estimated Salary (condition,active)	Exited (decision,active)
1	619	France	Female	42	2	0.0	1	1	1	101348.88	1
2	608	Spain	Female	41	1	83907.86	1	0	1	112542.58	0
3	502	France	Female	42	8	159660.8	3	1	0	113931.57	1
4	699	France	Female	39	1	0.0	2	0	0	93826.63	0
5	850	Spain	Female	43	2	125510.82	1	1	1	79084.1	0
6	645	Spain	Male	44	8	113755.78	2	1	0	149756.71	1
7	822	France	Male	50	7	0.0	2	1	1	10062.8	0
8	376	Germany	Female	29	4	115046.74	4	1	0	119346.88	1
9	501	France	Male	44	4	142051.07	2	0	1	74940.5	0
10	684	France	Male	27	2	134603.88	1	1	1	71725.73	0
11	528	France	Male	31	6	102016.72	2	0	0	80181.12	0
12	497	Spain	Male	24	3	0.0	2	1	0	76390.01	0
13	476	France	Female	34	10	0.0	2	1	0	26260.98	0
14	549	France	Female	25	5	0.0	2	0	0	190857.79	0
15	635	Spain	Female	35	7	0.0	2	1	1	65951.65	0
16	616	Germany	Male	45	3	143129.41	2	0	1	64327.26	0
17	653	Germany	Male	58	1	132602.88	1	1	0	5097.67	1
18	549	Spain	Female	24	9	0.0	2	1	1	14405.41	0

At kaggle.com one can find some hints about preference orders.

Motivation for the case study

- From the view point of the bank, it is much more expensive to sign in a new client than keeping an existing one.
- It is advantageous for banks to know what leads a client towards the decision to leave the bank.
- Churn prevention allows companies to develop loyalty programs and retention campaigns to keep customers.
- As there are some preference orders and inconsistencies w.r.t. dominance involved, we decided to apply Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) to develop explainable decision rule model.
- We compared performance of VC-DRSA with three competing ML classifiers available in WEKA (with default parameters): SVM (SMO) with polynomial kernel, C4.5 (J48) tree classifier, and naive Bayes (NaiveBayes) classifier.

Methodological background

Ordinal classification with monotonicity constraints

	buying	maint	doors	persons	lug_boot	safety	class	
	vhigh	vhigh	2	2	small	med	unacc	
	med	vhigh	3	more	small	med	unacc	
	vhigh	high	2	4	med	low	unacc	V
	vhigh	high	2	4	big	low	unacc	X ₁
	med	low	2	4	big	low	unacc	
У	low	low	4	more	big	high	unacc	
	high	med	2	more	med	high	acc	
	med	vhigh	3	more	med	med	acc	
	med	vhigh	3	more	med	high	acc	X ₂
	med	vhigh	3	more	big	med	acc	^ 2
	med	vhigh	3	more	big	high	acc	
	low	low	4	more	small	med	acc	
х	low	low	2	more	big	med	good	
	low	low	4	more	small	high	good	X3
	low	low	4	more	big	med	good	
	med	med	4	more	med	high	vgood	
	med	low	2	4	big	high	vgood	X4
	low	low	4	more	big	high	vgood	
	q ₁	q_2	q_3	q_4	q_5	q_{6}	dec	

 $\forall q \in C, y \succeq_q x \Leftrightarrow \begin{cases} yDx \\ x dy \end{cases} \Leftrightarrow \begin{cases} y \in D^+(x) \\ x \in D^-(y) \end{cases} \quad \frac{dec(y)}{dec(x)} \prec \frac{dec(x)}{dec(x)}$

Dominance-based Rough Set Approach (DRSA)

In Classical DRSA (CDRSA)², lower approximations of unions of ordered classes X_i^{\geq} , X_i^{\leq} are defined using strict inclusion relation:

$$\underline{X_i^{\geq}} = \{ x \in U : D^+(x) \subseteq X_i^{\geq} \}, \tag{1}$$

$$\underline{X_i^{\leq}} = \{ x \in U : D^-(x) \subseteq X_i^{\leq} \}.$$
⁽²⁾

Upper approximations of X_i^{\geq} , X_i^{\leq} are defined as

$$\overline{X_i^{\geq}} = \{ x \in U : D^-(x) \cap X_i^{\geq} \neq \emptyset \},$$
(3)

$$\overline{X_i^{\leq}} = \{ x \in U : D^+(x) \cap X_i^{\leq} \neq \emptyset \}.$$
 (4)

²S. Greco, B. Matarazzo, R. Słowiński, Rough Sets Theory for Multicriteria Decision Analysis. European Journal of Operational Research, 129(1), 2001, pp. 1-47

In Variable Consistency DRSA (VC-DRSA), lower approximations are defined using object consistency measures.

E.g., often used cost-type consistency measures $\epsilon_{X_i^\geq}:U\to[0,1]$, $\epsilon_{X^\leq}:U\to[0,1]$ are defined as:

$$\epsilon_{X_i^{\geq}}(x) = \frac{|D^+(x) \cap \neg X_i^{\geq}|}{|\neg X_i^{\geq}|}, \quad \epsilon_{X_i^{\leq}}(x) = \frac{|D^-(x) \cap \neg X_i^{\leq}|}{|\neg X_i^{\leq}|}.$$
 (5)

Dominance-based Rough Set Approach (DRSA)

Applying measure ϵ , probabilistic lower approximations of X_i^{\geq} , X_i^{\leq} are defined as

$$\underline{X_i^{\geq}} = \{ x \in X_i^{\geq} : \epsilon_{X_i^{\geq}}(x) \le \theta_{X_i^{\geq}} \},$$
(6)

$$\underline{X_i^{\leq}} = \{ x \in X_i^{\leq} : \epsilon_{X_i^{\leq}}(x) \le \theta_{X_i^{\leq}} \}, \tag{7}$$

where thresholds $\theta_{X_i^{\geq}}, \theta_{X_i^{\leq}} \in [0, 1).$

The above definitions constitute approach called ϵ -VC-DRSA.

 ϵ -VC-DRSA offers good properties³, as measure ϵ is both monotonic w.r.t. set of attributes (m1) and monotonic w.r.t. dominance (m4), which is not the case, e.g., for rough membership object consistency measure μ .

Advantage of (VC-)DRSA - **no need for discretization** in case of numerical attributes!

³J. Błaszczyński, S. Greco, R. Słowiński, M. Szeląg, Monotonic Variable Consistency Rough Set Approaches. International Journal of Approximate Reasoning, 50(7), 2009, pp. 979-999

Possible actions for a regular attribute $q \in C$:

- "leave attribute as-is": if q(y)=q(x), then $y\succeq_q x,$ otherwise relation does not hold,
- "process attribute"⁴:
 - "duplicate+impose" (only for numerical attributes) \Rightarrow original attribute replaced with 2 criteria (one gain criterion and one cost criterion),
 - "**binarize**" (only for nominal attributes with 3+ domain values) \Rightarrow original attribute with v different values replaced with v binary (0/1) regular attributes.

⁴J. Błaszczyński, S. Greco, R. Słowiński. Inductive discovery of laws using monotonic rules. Engineering Applications of Artificial Intelligence, 25:284–294, 2012.

Decision rule induction

- Rules are induced using VC-DomLEM sequential covering algorithm⁵.
- When using consistency measure *ϵ*, rule induction is fast due to exploitation of two properties:
 - (m1) (when inducing a rule, each attribute is tested once),
 - (m4) (when inducing a rule, not all conditions on the current attribute need to be checked shrinking window technique).

Rules with confidence ≤ 0.5 are removed (avoids overfitting).

⁵J. Błaszczyński, R. Słowiński, M. Szeląg, Sequential Covering Rule Induction Algorithm for Variable Consistency Rough Set Approaches. Information Sciences, 181, 2011, pp. 987-1002

New rule classification strategy - mode classifier

Object z to be classified is **covered** by rules: r_1 (decision "at least X_5 "), r_2 (decision "at least X_4 "), r_3 (decision "at most X_1 "), and r_4 (decision "at most X_2 ").

Then: (i) upward intersection is "at least X_5 ", (ii) the most prudent upward class is X_5 , (iii) downward intersection is "at most X_1 ", (iv) the most prudent downward class is X_1 , (v) mode of the two classes is computed.

New rule classification strategy - mode classifier

Observe that r_1 covers 2 objects from X_5 , and r_2 covers 1 additional object from X_5 . Then, X_5 is supported by 3 objects. Moreover, r_3 covers 2 objects from X_1 , and r_4 covers no additional object from X_1 . Then, class X_1 is supported by 2 objects.

Consequently, X_5 is returned by the classifier (more frequent class).

If no rule matches z, one can suggest a **majority** class (optimizing classification accuracy) or **median** class (optimizing MAE).

Case study of bank customer satisfaction

Software involed in the case study

- In ϵ -VC-DRSA, we took Exited = 0 as default decision (when no rule covers test object).
- We used two new applications supporting (VC-)DRSA: RuLeStudio⁶ and RuleVisualization⁷.
- RuLeStudio (replacement for jMAF) data consistency checking, rule induction and application (also using mode classifier), basic inspection of rules, cross-validation; handles analysis of data with missing attribute values.
- **RuleVisualization** exploration and visualization of induced decision rules.
- Both programs are based on open-source **ruleLearn** library⁸.
- Competitive methods were run in WEKA (version 3.8.6).

 ⁶www.cs.put.poznan.pl/mszelag/Software/RuLeStudio/RuLeStudio.html
 ⁷www.cs.put.poznan.pl/mszelag/Software/RuleVisualization/RuleVisualization.html
 ⁸github.com/ruleLearn/rulelearn

Assessment of attribute preference orders

- We considered the remarks at kaggle.com, WEKA's histograms, and trial-and-error assessment in RuLeStudio to assign attribute preference orders as follows:
 - CreditScore gain (after kaggle.com),
 - Geography none (nominal attribute),
 - Gender none (nominal attribute),
 - Age cost (distribution for Exited = 1 shifted to the right),

Assessment of attribute preference orders

- We considered the remarks at kaggle.com, WEKA's histograms, and trial-and-error assessment in RuLeStudio to assign attribute preference orders as follows:
 - Balance gain (after kaggle.com),
 - NumOfProducts we duplicated this attribute, and assigned type gain to the first clone, and type cost to the second one (the histogram shows prevalence of loyal customers when NumOfProducts=2, and the opposite otherwise),

- We considered the remarks at kaggle.com, WEKA's histograms, and trial-and-error assessment in RuLeStudio to assign attribute preference orders as follows:
 - HasCrCard none (nominal attribute),
 - IsActiveMember gain (after kaggle.com),
 - EstimatedSalary gain (after kaggle.com).
- For the decision attribute **Exited**, label 0 was more preferred than 1 (bank's viewpoint).

Sample of the case study data

No.	CreditScore (condition,active)	Geography (condition,active)	Gender (condition,active)	Age (condition,active)	Tenure (condition,active)	Balance (condition,active)	NumOfProducts_g (condition,active)	NumOfProducts_c (condition,active)	HasCrCard (condition,active)	IsActiveMember (condition,active)	Estimated Salary (condition,active)	Exited (decision,active)
1	584	Germany	Male	42	3	137479.13	1	1	1	0	25669.1	0
2	660	Germany	Male	39	9	134599.33	2	2	1	0	183095.87	0
3	676	Spain	Female	30	5	0.0	2	2	0	1	157888.5	0
4	561	Spain	Male	28	6	123692.0	1	1	1	1	70548.96	0
5	696	France	Female	30	8	0.0	2	2	1	1	196134.44	0
6	757	Germany	Male	33	1	122088.67	1	1	1	0	42581.09	0
7	545	France	Male	30	3	0.0	2	2	1	0	170307.43	0
8	723	France	Male	42	2	99095.73	1	1	1	1	17512.53	0
9	650	France	Female	43	6	0.0	2	2	1	1	16301.91	0
10	717	France	Male	28	4	128206.79	1	1	1	1	54272.12	0
11	521	France	Female	32	2	136555.01	2	2	1	1	129353.21	0
12	651	France	Male	28	7	0.0	2	2	1	0	823.96	0
13	700	France	Female	30	9	0.0	1	1	1	1	174971.64	0
14	675	Spain	Male	33	3	0.0	2	2	1	0	45348.08	0
15	628	France	Male	34	4	158741.43	2	2	1	1	126192.54	0
16	643	Spain	Female	35	6	0.0	2	2	1	1	41549.64	0
17	779	Spain	Male	33	3	0.0	2	2	1	0	30804.68	0
18	710	Spain	Female	38	4	0.0	2	2	1	1	136390.88	0

Comparing to kaggle.com, we changed preference orders for four attributes.

- For binary classification, unions of classes boil down to single classes characterized by decisions Exited = 0 and Exited = 1.
- We assumed a **common threshold** θ_X for both classes.
- Using cross-validation in RuLeStudio, we tested thresholds 0, 0.01, 0.02, and 0.05, choosing value 0.01 (gives the best avg. accuracy).
- Note that for $\theta_X = 0$ (classical DRSA), the quality of classification was **0.68775**, while for $\theta_X = 0.01$ it increased to **0.996**.

Tablica: Comparison of average classification accuracy in 3 \times 10-fold cross-validation [%]

Method	<i>ϵ</i> -VC-DRSA+mode	SVM	C4.5	Naive Bayes
Avg. accuracy	73.25	69.91	75.18	71.87

- It is possible improve naive Bayes by enabling discretization for numeric attributes (-D switch). Then, avg. classification accuracy increases to 75.96%.
- Other two competing classifiers have **too many parameters** to be tuned manually.

Tablica: Comparison of classification accuracy in reclassification [%]

Method	ϵ -VC-DRSA+mode	SVM	C4.5	Naive Bayes
Accuracy	83.825	70.225	85.525	72.25

- It is possible improve naive Bayes by enabling discretization for numeric attributes (-D switch). Then, classification accuracy increases to 76.525%.
- Other two competing classifiers have **too many parameters** to be tuned manually.

Comparison of $\epsilon\text{-VC-DRSA}$ rules and C4.5 tree

C4.5 tree:

- size was equal to 320 with 164 leaves,
- many long paths which were hard to understand,
- did not respect the above preference orders,
- when transformed to **164 rules**, average rule length was **7.81** and average rule support was **24.39**.

$\epsilon\text{-VC-DRSA}$ rules:

- 770 rules (after removing rules with conf. \leq 0.5),
- avg. rule length was 5.91 much better than C4.5,
- avg. rule support was 34.1 again much better than C4.5,
- top attributes in rules: Geography (in 76.2% of rules), Age (74.9%), EstimatedSalary (59.9%), CreditScore (58.7%),
- most often co-occurence of attributes: Geography and Age,
- support of 2 strongest rules (Exited ≥ 1): 279 & 221 obj.

Top rules for customers who left the bank

ID Co	nditions	Decision	<u>Epsilon</u>	Support
516 Ag	$e \ge 49$, IsActiveMember ≤ 0 , NumOfProducts_g ≤ 1 , CreditScore ≤ 788	Exited \geq 1	0.006	279
420 Nu	mOfProducts_c ≥ 3, Age ≥ 38	Exited \geq 1	0.002	221
506 Ag	$e \ge$ 50, IsActiveMember \le 0, CreditScore \le 646, HasCrCard = 1	Exited \geq 1	0.004	141
422 Nu	$mOfProducts_c \ge 3$, Geography = France, Age ≥ 31	Exited ≥ 1	0.001	106
517 Ag	$e \ge 49$, IsActiveMember ≤ 0 , Geography = Germany, CreditScore ≤ 664	Exited \geq 1	0.003	104
427 Nu	$mOfProducts_c \ge 3$, Gender = Male, Age ≥ 35	Exited \geq 1	0.001	101
421 Nu	$mOfProducts_c \ge 3$, CreditScore ≤ 657 , Gender = Female	Exited ≥ 1	0.001	100

Rysunek: Top rules describing customers who ended cooperation with the bank (support \geq 100, confidence \geq 0.95)

NumOfProducts ≥ 3 is often related to churn.

Conclusions

Conclusions

- We analysed customer satisfaction data from a bank using VC-DRSA, and three reference ML methods.
- We employed two new programs suitable for this task: **RuLeStudio** and **RuleVisualization**.
- We proposed a **new rule classification strategy mode classifier**, implemented in RuLeStudio.
- The results obtained using our approach are **competitive** with respect to average classification accuracy.
- The induced **rule model** gives a **clear insight into the problem**, helping the bank to improve long-term customer relationships.

Questions and discussion

Acknowledgements

This research was supported by **TAILOR**, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215.