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Abstract. In this report, we consider different ways of dealing with
missing attribute values in ordinal and non-ordinal classification data
when analyzed using Indiscernibility-based Rough Set Approach (IRSA)
or Dominance-based Rough Set Approach (DRSA). Moreover, we pro-
pose some desirable properties that a rough set approach capable of
dealing with missing attribute values should possess. Then, we analyze
which of these properties are satisfied by the considered approaches.
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1 Introduction

In data mining concerning classification problems, it is quite common to have
missing values for attributes describing objects [10]. Thus, different ways of han-
dling missing values, or more generally, incomplete data, have been proposed.
The usual approach is to assume that some value(s) can represent correctly the
missing one. Then, the missing values are replaced in some way by so-called rep-
resentative values. In this case, the question is how to avoid data distortion [10].

Rough set approach to handling missing values avoids making changes in the
data. The problem is addressed by a proper definition of the relation employed
to form granules of knowledge. Extensions of the rough set model [12], that
introduce relations forming granules of indiscernible or similar objects, include [4,
5, 8, 9, 11, 14].

In this work, we consider both Indiscernibility-based Rough Set Approach
(IRSA), in which attributes describing objects are not considered to be ordered,
and Dominance-based Rough Set Approach (DRSA), which takes into account
the order of attributes. We focus on extensions the following indiscernibility-
based rough set approaches:

– the classical rough set approach proposed by Pawlak (CRSA) [12],
– Variable Precision Rough Set (VPRS) model proposed by Ziarko [15],
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– Variable Consistency Indiscernibility-based Rough Set Approach (VC-IRSA)
proposed by Błaszczyński, Greco, Słowiński, and Szeląg [2],

and on extensions of the following dominance-based rough set approaches:

– classical Dominance-based Rough Set Approach (CDRSA) proposed by Greco,
Matarazzo, and Słowiński [6],

– Variable Consistency Dominance-based Rough Set Approach (VC-DRSA)
proposed by Błaszczyński, Greco, Słowiński, and Szeląg [2].

In VC-IRSA and VC-DRSA we employ object consistency measure ε proposed
in [1, 2].

Some propositions of handling missing values in dominance-based rough set
approaches were given in [3–5]. We review these approaches and consider some
new ones.

The rest of this paper is structured as follows. Section 2 covers basics of IRSA
and DRSA. In Section 3, we present ways of handling missing values in IRSA
and DRSA. Section 4 concludes the paper.

2 Basics of IRSA and DRSA

Data analyzed by IRSA and DRSA concern a finite universe U of objects de-
scribed by attributes from a finite set A. Moreover, A is divided into disjoint
sets of condition attributes C and decision attributes Dec. The value set of

q ∈ C ∪ Dec is denoted by Vq, and VP =
|P |∏
q=1

Vq is called P -evaluation space,

where P ⊆ C. For simplicity, we assume that Dec = {d}. Values of d are class
labels.

We consider a given set P ⊆ C of attributes. To simplify notation, where
possible, we will skip P in all expressions valid for any P ⊆ C. Moreover, for
any qi ∈ P , we denote by qi(x) the evaluation of object x ∈ U on attribute qi.

Decision attribute d makes a partition of set U into n disjoint sets of objects,
called decision classes. We denote this partition by X = {X1, . . . , Xn}.

2.1 Basics of IRSA

In IRSA, the attributes are not considered to be ordered, and thus indiscernibility
relation is employed. Indiscernibility relation makes a partition of universe U
into disjoint blocks of objects that have the same description and are considered
indiscernible. Such blocks are called granules. Given an object x ∈ U , I(x)
denotes a set of objects indiscernible with x.

Given a non-ordinal classification problem, two objects x, y ∈ U are said
to be inconsistent with respect to (w.r.t.) indiscernibility relation if they have
the same evaluation on each condition attribute (i.e., they belong to the same
block) but they are assigned to different decision classes. In order to handle
inconsistency observed in non-ordinal classification data, one calculates lower
approximations (or positive regions) of considered decision classes.
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CRSA In CRSA [12], lower approximation of class Xi, i ∈ {1, . . . , n} is defined
as

Xi = {x ∈ U : I(x) ⊆ Xi}. (1)

VPRS In VPRS [15], lower approximation (positive region) of class Xi, i ∈
{1, . . . , n} is defined as

Xi = {x ∈ U : µXi(x) ≥ l}, (2)

where consistency threshold l ∈ [0, 1] and µXi is a gain-type object consistency
measure [2] called rough membership, defined as

µXi(x) =
|I(x) ∩Xi|
|I(x)|

, (3)

where | · | denotes cardinality of a set of objects.

VC-IRSA We employ VC-IRSA [2] in which probabilistic lower approximation
of class Xi, i ∈ {1, . . . , n} is defined as

Xi = {x ∈ Xi : εXi(x) ≤ θXi}, (4)

where consistency threshold θXi ∈ [0, 1] and εXi is a cost-type object consistency
measure, defined as

εXi(x) =
|I(x) ∩ ¬Xi|
|¬Xi|

, (5)

where ¬Xi denotes the complement of class Xi. Value εXi
(x) reflects the consis-

tency of object x w.r.t. class Xi (or, the evidence for the membership of x to Xi).
εXi is a cost-type measure, which means that value zero denotes full consistency
and the greater the value, the less consistent is a given object.

In the following, we use denotation ε-VC-IRSA to underline the fact that in
VC-IRSA we apply particular object consistency measure εXi

.

2.2 Basics of DRSA

In DRSA, condition attributes and decision classes are ordered. Then, it is often
meaningful to consider monotonicity constraints (monotonic relationships) be-
tween ordered class labels and values of attributes expressed on ordinal or cardi-
nal (numerical) scales [6, 13]. The constraints result from background knowledge,
e.g., “the higher the service quality and the lower the price, the higher the cus-
tomer satisfaction” [7]. Objects violating such constraints are called inconsistent.

When there exists a monotonic relationship between evaluation of objects on
condition attributes and their class labels, then, in order to make a meaningful
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representation of classification decisions, one has to consider the dominance re-
lation D in the P -evaluation space. Given x, y ∈ U , object y dominates object
x, denoted by yDx, if and only if (iff) y �qi x, for each qi ∈ P , where �qi

denotes weak preference relation over U confined to single attribute qi. For any
object x ∈ U , two dominance cones can be calculated in the P -evaluation space:
positive dominance cone D+(x) = {y ∈ U : yDx}, and negative dominance cone
D−(x) = {y ∈ U : xDy}.

The class labels are ordered, such that if i < j, then class Xi is considered to
be worse than Xj . Moreover, rough approximations concern unions of decision
classes: upward unions X≥i =

⋃
t≥iXt, and downward unions X≤i =

⋃
t≤iXt,

where i = 1, . . . , n (technically, X≥1 , X≤n are not considered as X≥1 = X≤n = U).
To simplify notation, where possible, we use a symbol X◦i to denote union

of classes X≥i or X≤i (when both unions of classes are considered jointly). We
denote by ¬X◦i the set U \ X◦i . Moreover, we denote by D◦(x) the dominance
cone “concordant” with X◦i . Precisely, if in a given equation X≥i is substituted
for X◦i , then D+(x) should be substituted for D◦(x); if in the same equation
X≤i is substituted for X◦i , then D−(x) should be substituted for D◦(x).

CDRSA In CDRSA [6], lower approximation of union of classes X◦i is defined
using strict inclusion relation between dominance cone D◦(x) and approximated
set X◦i :

X◦i = {x ∈ U : D◦(x) ⊆ X◦i }. (6)

VC-DRSA Definition (6) appears to be too restrictive in practical applica-
tions. It often leads to empty lower approximations of X≥i and X≤i , preventing
generalization of data in terms of decision rules. This explains the interest in
VC-DRSA [2] which is a probabilistic extension of CDRSA. We use object con-
sistency measure εX◦

i
: U → [0, 1], introduced in [2], defined as:

εX◦
i
(x) =

|D◦(x) ∩ ¬X◦i |
|¬X◦i |

. (7)

Value εX◦
i
(x) reflects the consistency of object x w.r.t. X◦i (or, the evidence for

the membership of x to X◦i ). εX◦
i
is a cost-type measure, which means that value

zero denotes full consistency and the greater the value, the less consistent is a
given object. Then, the probabilistic lower approximation of union of classes X◦i
is defined as:

X◦i = {x ∈ X◦i : εX◦
i
(x) ≤ θX◦

i
}, (8)

where threshold θX◦
i
∈ [0, 1).

In the following, we use denotation ε-VC-DRSA to underline the fact that in
VC-DRSA we apply particular object consistency measure εX◦

i
.

In [2], we introduced four monotonicity properties required from an object
consistency measure: (m1) – monotonicity w.r.t. growing set of attributes, (m2) –
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monotonicity w.r.t. growing union of classes, (m3) – monotonicity w.r.t. super-
union of classes, and (m4) – monotonicity w.r.t. dominance relation. We also
proved that εX◦

i
has properties (m1), (m2), and (m4), sufficient in practical

applications.

3 Different Ways of Handling Missing Values in IRSA
and DRSA

In the following, a missing attribute value is denoted by ∗. Moreover, we use
symbol X to denote an approximated set of objects. In case of IRSA, X denotes
a single decision class Xi ∈ U , i ∈ {1, . . . , n}. In case of DRSA, X denotes a
single union of decision classes X◦i ∈ U , i ∈ {1, . . . , n}, ◦ ∈ {≥,≤}.

3.1 Extensions of IRSA to handle missing values

The presence of missing values requires a proper adaptation of IRSA by redefini-
tion of the indiscernibility relation I. Once we fix this definition, we can proceed
in a “usual” way by calculating rough approximations of decision classes. In the
literature concerning rough set approaches to handling missing attribute values
in classification data (see, e.g., [8, 9]), one can find a proposal of a semantic dis-
tinction of missing values into “lost” and “do not care” values. The corresponding
semantics is then used to define indiscernibility or similarity relation that is used
to compare objects.

We consider two ways of redefining the indiscernibility relation I – we define
indiscernibility relation Id (“do not care” case) as

yIdx iff for each qi ∈ P : qi(x) 6= ∗, we have qi(y) = ∗ or qi(y) = qi(x), (9)

and indiscernibility relation Il (“lost” case) as

yIlx iff for each qi ∈ P : qi(x) 6= ∗, we have qi(y) 6= ∗ and qi(y) = qi(x), (10)

where x, y ∈ U .
The approaches resulting from different definitions of the indiscernibility

relation are denoted by CRSA-mvi, VPRS-mvi, and ε-VC-IRSA-mvi (where
i ∈ {d, l}, and the value of i depends on which indiscernibility relation – Id or Il
– is employed). When these approaches are considered jointly, we use denotation
IRSA-mvi.

We consider the following desirable properties of IRSA-mvi, i ∈ {d, l}:

1. Property S (reflecting symmetry of indiscernibility relation): IRSA-mvi has
property S iff yIix⇔ xIiy, for any x, y ∈ U .

2. Property R (reflecting reflexivity of indiscernibility relation): IRSA-mvi has
property R iff xIix, for any x ∈ U .

3. Property T (reflecting transitivity of indiscernibility relation): IRSA-mvi has
property T iff yIix ∧ xIiz ⇒ yIiz, for any x, y, z ∈ U .
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4. Property P (reflecting precisiation of data): IRSA-mvi has property P iff
the lower approximation of any X ⊆ U does not shrink when any missing
attribute value is replaced by some non-missing value.

5. Property RI (rough inclusion): IRSA-mvi has property RI iff
X ⊆ X ⊆ X, for any X ⊆ U .

6. Property C (complementarity): IRSA-mvi has property C iff
X = U \ ¬X, for any X ⊆ U .

7. Property M1 (monotonicity w.r.t. growing set of attributes): IRSA-mvi has
propertyM1 iff the lower approximation of any X ⊆ U does not shrink when
set P is extended by new attributes.

8. Property M2 (monotonicity w.r.t. growing set of objects): IRSA-mvi has
property M2 iff the lower approximation of any X ⊆ U does not shrink
when this set is augmented by new objects.

9. Property MT (transitivity of membership to lower approximation): IRSA-
mvi has property MT iff for any X ⊆ U and for any x, y ∈ U it is true that
x ∈ X ∧ y ∈ X ∧ yIix⇒ y ∈ X.

The properties of CRSA-mvi, VPRS-mvi, and ε-VC-IRSA-mvi, i ∈ {d, l},
are summarized in Table 1, where T and F denote presence and absence of a
given property, respectively.

Table 1. Properties of CRSA-mvi, VPRS-mvi, and ε-VC-IRSA-mvi, i ∈ {d, l}

Property / Approach CRSA-mvd CRSA-mvl VPRS-mvd VPRS-mvl ε-VC-IRSA-mvd ε-VC-IRSA-mvl
S T F T F T F
R T T T T T T
T F T F T F T
P T F F F T F
RI T T F F T T
C T F T F T T
M1 T T F F T T
M2 T T T T T T
MT F T F T F T

According to Table 1, CRSA-mvl is dominated by ε-VC-IRSA-mvl and dom-
inates VPRS-mvl. Moreover, CRSA-mvd and ε-VC-IRSA-mvd satisfy the same
properties, and they both dominate VPRS-mvd. Thus, taking into account con-
sidered desirable properties, we can conclude that there are three non-dominated
approaches – CRSA-mvd, ε-VC-IRSA-mvd, and ε-VC-IRSA-mvl.

3.2 Extensions of DRSA to handle missing values

The presence of missing values requires a proper adaptation of DRSA by redefi-
nition of the dominance relation D. Once we fix this definition, we can proceed in
a “usual” way by calculating rough approximations of unions of decision classes.
We review some ways of redefining the dominance relation which are known from
literature and we discuss a few other possibilities. In the following, we denote
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considered dominance relations byDi, where i ∈ {1, . . . , 5} stands for the version
id.

Although it would be possible to adapt the distinction between “lost” and “do
not care” values to the case of ordinal classification problems with monotonicity
constraints, this would require additional knowledge about the nature of missing
values in each particular problem. In this paper, instead of distinguishing a priori
the semantics of the missing values, we propose to consider some desirable prop-
erties that dominance-based rough set approaches should have when handling
missing values of any origins.

The approaches, resulting from different definitions of the dominance rela-
tion, are denoted by CDRSA-mvi and ε-VC-DRSA-mvi, where i ∈ {1, . . . , 5}.
When these approaches are considered jointly, we use denotation DRSA-mvi.

We consider the following desirable properties of DRSA-mvi, i ∈ {1, . . . , 5}:

1. Property S (reflecting a specific kind of symmetry): DRSA-mvi has prop-
erty S iff y ∈ D+

i (x)⇔ x ∈ D−i (y), for any x, y ∈ U .
2. Property R (reflecting reflexivity of dominance relation): DRSA-mvi has

property R iff xDix, for any x ∈ U .
3. Property T (reflecting transitivity of dominance relation): DRSA-mvi has

property T iff yDix ∧ xDiz ⇒ yDiz, for any x, y, z ∈ U .
4. Property P (reflecting precisiation of data): DRSA-mvi has property P iff

the lower approximation of any X ⊆ U does not shrink when any missing
attribute value is replaced by some non-missing value.

5. Property RI (rough inclusion): DRSA-mvi has property RI iff
X ⊆ X ⊆ X, for any X ⊆ U .

6. Property C (complementarity): DRSA-mvi has property C iff
X = U \ ¬X, for any X ⊆ U .

7. PropertyM1 (monotonicity w.r.t. growing set of attributes): DRSA-mvi has
property M1 iff the lower approximation any X ⊆ U does not shrink when
set P is extended by new attributes.

8. Property M2 (monotonicity w.r.t. growing union of classes): DRSA-mvi has
property M2 iff for any X ⊆ U , the lower approximation of X does not
shrink when this set is augmented by new objects.

9. Property M3 (monotonicity w.r.t. super-union of classes): DRSA-mvi has
property M3 iff given any two upward union of classes X≥i , X

≥
j , with 1 ≤

i < j ≤ n, there is X≥i ⊇ X≥j , and, moreover, given any two downward

union of classes X≤i , X
≤
j , with 1 ≤ i < j ≤ n, there is X≤i ⊆ X

≤
j .

10. PropertyM4 (monotonicity w.r.t. dominance relation): DRSA-mvi has prop-
erty M4 iff for any upward and downward unions of classes X≥i , X

≤
j ⊆ U ,

with i, j ∈ {1, . . . , n}, and for any x, y ∈ U such that yDix, it is true that(
(x ∈ X≥i ∧ y ∈ X

≥
i ⇒ y ∈ X≥i ) and (y ∈ X≤j ∧ x ∈ X

≤
j ⇒ x ∈ X≤j )

)
.

Note that there is a relationship between the above properties M1, M2, M3,
andM4, concerning lower approximations of unions of classes, and monotonicity
properties (m1), (m2), (m3), and (m4), introduced in [2], concerning object
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consistency measures used in VC-DRSA. However, when the dominance relation
used in VC-DRSA is redefined, this relationship is no longer one to one – for
some j ∈ {1, . . . , 4}, (mj) may be satisfied while Mj is not satisfied.

DRSA-mv1 [4, 5] considers dominance relation to be a directional statement
where a subject is compared to a referent which cannot have missing values.
Object y dominates referent x iff for each qi ∈ P , y �qi x or qi(y) = ∗; y is
dominated by referent x iff for each qi ∈ P , x �qi y or qi(y) = ∗. Note that
DRSA-mv1 fails when all (or most of the) objects have a missing value. More-
over, dominance cones are defined only for objects without missing values. Thus,
approximations of unions of classes do not contain objects with missing values.

DRSA-mv2 was first proposed in [4, 5], and then extended in [3] to handle
imprecise evaluations on attributes and imprecise assignments to decision classes,
both modeled by intervals. When considering missing values only, each object is
assigned to a single decision class, and each missing attribute value corresponds
to the interval spanning entire value set of this attribute. This results in the
following definition of so-called possible dominance relation: object y dominates
object x iff for each qi ∈ P , y �qi x, or qi(y) = ∗, or qi(x) = ∗.

In DRSA-mv3, object y dominates object x iff for each qi ∈ P such that
qi(x) 6= ∗, we have qi(y) 6= ∗ and y �qi x. Object y is dominated by object x iff
for each qi ∈ P such that qi(x) 6= ∗, we have qi(y) 6= ∗ and x �qi y.

DRSA-mv4 (DRSA-mv5) uses the lower(upper)-end dominance relation in-
troduced in [3]. It boils down to treating each missing attribute value as the worst
(best) value in the value set of this attribute. Then, the definition of dominance
relation is the same as in the case without missing values.

The properties of DRSA-mvi, i = 1, . . . , 5, are summarized in Table 2, where
T and F denote presence and absence of a given property, respectively. Moreover,
in case of two symbols ·/·, the first one reflects only CDRSA-mvi while the second
one reflects only ε-VC-DRSA-mvi.

Table 2. Properties of DRSA-mvi, i = 1, . . . , 5

Property / Approach DRSA-mv1 DRSA-mv2 DRSA-mv3 DRSA-mv4 DRSA-mv5
S F T F T T
R F T T T T
T T F T T T
P T T F F F
RI F T T T T
C F T F/T T T
M1 F T T T T
M2 T T T T T
M3 T/F T/F T/F T/F T/F
M4 T F T T T

According to Table 2, DRSA-mv1 is the least attractive due to lack of many
important properties (like, e.g., RI andM1). DRSA-mv3 is dominated by DRSA-
mv4, and by DRSA-mv5. However, the choice from among DRSA-mv2, DRSA-
mv4, and DRSA-mv5, depends on a particular application.
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Taking into account the semantics of missing values considered in [8, 9], it
can be said that DRSA-mv2 treats missing values as “do not care” values while
DRSA-mv3 treats missing values as “lost” values.

4 Conclusions

We considered different ways of dealing with missing attribute values in ordinal
and non-ordinal classification data when analyzed using Indiscernibility-based
Rough Set Approach (IRSA) or Dominance-based Rough Set Approach (DRSA).
Moreover, we proposed some desirable properties for IRSA and DRSA that a
rough set approach capable of dealing with missing attribute values should pos-
sess. We analyzed which of these properties are satisfied by the considered rough
set approaches resulting from different definition of indiscernibility or dominance
relation. Based on this analysis, we indicated non-dominated indiscernibility-
based and dominance-based rough set approaches.
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