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Abstract

The thesis concerns decision aiding methods for multicriteria ranking problem and sim-
ilarity-based classification problem (case-based reasoning, CBR). For both problems, we
present methods that adapt the Dominance-based Rough Set Approach (DRSA).

In the multicriteria ranking problem, there is given a finite set of objects (also called
alternatives, actions, solutions, etc.), described by a set of criteria (cardinal and/or ordinal
ones). The aim of decision aiding is to recommend to a decision maker (DM) a ranking
of the given objects that reflects her/his preferences. This ranking is supposed to be
a complete preorder or a partial preorder.

The only conclusion that stems from the formulation of a multicriteria decision prob-
lem is the dominance relation over the set of objects, however, leaving many objects
incomparable, it is too poor to make a useful recommendation. Therefore, in Multicriteria
Decision Aiding (MCDA), it is necessary to acquire from the DM an additional informa-
tion, called preference information. In our approach, this information consists of decision
examples in the form of pairwise comparisons of some reference objects. It is used to build
a preference model of the DM. This model induces a preference structure on the set of
objects to be ranked. A proper exploitation of this structure yields a ranking of objects
that is presented to the DM. Acceptance of this ranking by the DM depends, on one hand,
on the accuracy of prediction of pairwise comparisons of new objects, and on the other
hand, on the DM’s conviction that the preference model represents her/his preferences in
a comprehensible and accurate way.

Existing decision aiding methods for multicriteria ranking differ by the type of acquired
preference information, and by the type of preference model built from this information.
A preference model can take the form of a function (e.g., additive value function), binary
relation (e.g., outranking relation), or a set of if-then decision rules of the type “if a con-
junction of elementary conditions on chosen criteria holds, then it is suggested to take
a given decision”. Traditional preference models applied in MCDA, i.e., value functions
and outranking relations, are hard to understand by the DM, require complex preference
information, and are based on rather strong assumptions, that are often not met in prac-
tice. Therefore, it is currently strongly postulated that the preference model should be
induced (learned) from decision examples supplied by the DM. Expression of preferences
by making some exemplary decisions does not require from the DM the specification of
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parameter values (like thresholds, weights, substitution rates, etc.) of the applied prefer-
ence model. Another important postulate of MCDA is the readability of the constructed
preference model which relates to the concept of a glass box (as the opposite of a black
box).

To fulfill both above postulates, we employ a logical preference model in the form
of a set of if-then decision rules induced from decision examples. The rules are induced
based on DM’s pairwise comparisons of reference objects of the type “object a is at least
as good as object b” and “object a is not at least as good as object b”. Such holistic
preference information, in terms of outranking relation S and non-outranking relation Sc,
is relatively easy to obtain from the DM. Moreover, rule preference model is the most
general preference model as it gives account of most complex interactions among criteria,
accepts ordinal evaluation scales, and does not convert ordinal evaluations into cardinal
ones. An additional advantage of this model is its readability, as well as its ability to
explain past decisions in terms of multicriteria evaluations of objects, and to predict
future decisions.

In practice, decision examples given by a DM are often inconsistent with the domi-
nance principle, which is the basic principle of rational decision making in the presence
of multiple criteria. Such an inconsistency is observed, e.g., if object a is preferred to
object b at least as much as object c is preferred to object d with respect to each consid-
ered criterion, but the DM assigned pair (a, b) to relation S and pair (c, d) to relation Sc.
The inconsistency of decision examples may come, e.g., from the lack of some important
criteria, hesitation of the DM, or from unstable character of her/his preferences.

In this thesis, we propose a multicriteria ranking method called VC-DRSArank, which
controls consistency of the pairwise comparisons of reference objects given by the DM. This
method adapts a variant of DRSA called Variable Consistency Dominance-based Rough
Set Approach (VC-DRSA). An advantage of this variant is especially visible when the
number of inconsistent pairs of objects is significant. The idea of VC-DRSArank consists
in preceding induction of rules with structuring pairs of objects from outranking and
non-outranking relations, by identification, in both relations, of sufficiently consistent
pairs of objects (in the sense of an adopted consistency measure). These pairs form so-
called lower approximations of the considered relations. Next, a rule induction algorithm
is applied to induce (sufficiently certain) decision rules based on pairs of objects from the
lower approximations. The set of rules constructed in this way is highly reliable since it
represents only strong relationships observed in decision examples. An exemplary decision
rule is: “if price difference between disks a and b is no more than 100$, and capacity
difference between disks a and b is no less than 500 GB, then disk a is at least as good as
disk b”.

Induced rules are applied on a set of objects to be ranked. This yields a preference
structure on this set of objects that needs to be properly exploited in order to get a final
ranking. In the thesis, we analyze several exploitation procedures. In particular, we focus



our attention on a two-phase exploitation procedure that generalizes previously applied
approach based on net flow scores. This new procedure consists in transformation of the
preference structure to a valued relation, and in subsequent exploitation of this relation
using a ranking method. We analyze five rankings methods known from the literature,
with respect to several desirable properties, such as monotonicity, independence of non-
discriminating objects, independence of circuits, etc. We present a series of mathematical
proofs concerning these properties. In result, we identify the Net Flow Rule as the best
ranking method.

We also introduce a new measure for measuring concordance between a final ranking
and the initial pairwise comparisons of reference objects chosen from the set of ranked
objects. We prove that this new measure is a generalization of the Kendal rank correlation
coefficient.

In order to verify the proposed method for the multicriteria ranking problem, we per-
formed a computational experiment in which six variants of this method were compared
with a reference method SVMrank, considered by the machine learning community to
be one of the best learning approaches for the considered problem. The variants of VC-
DRSArank result, first, from different perception of the set of criteria (i.e., whether it is
considered to be a consistent set or a not necessarily consistent set of criteria), secondly,
from different interpretation of rule matching (qualitative interpretation – is there a rule
covering a given pair of objects; quantitative interpretation – what is the strength of the
strongest rule covering a given pair of objects), and thirdly, from different definitions
of rule strength in case of quantitative interpretation of rule matching. The experiment
showed that VC-DRSArank is strongly competitive to SVMrank. It also allowed to for-
mulate a number of conclusions concerning mutual comparisons of the six variants of
VC-DRSArank.

In the similarity-based classification problem, there is given a finite set of training
objects, described by a set of features (nominal and/or numerical ones), a set of marginal
similarity functions (one for each feature), and a set of predefined decison classes. Each
decision class is considered to be a fuzzy set – each object belongs with a certain degree,
between 0 and 1, to each of the classes. The aim of decision aiding is to present to a DM
a recommendation concerning a new object, in terms of a degree of membership of this
object to particular classes. This recommendation is obtained using CBR, taking into
account similarity with respect to some reference objects indicated by the DM.

In case-based reasoning, one needs a similarity model. Traditionally, this model has
the form of a real-valued aggregation function (e.g., Euclidean norm) or binary relation
(e.g., fuzzy relation). In this thesis, we present a method based on DRSA, using a new
similarity model in terms of a set of if-then decision rules employing dominance relation
in the space created by marginal similarity functions. Such a model makes it possible
to avoid an arbitrary aggregation of marginal similarity functions. An exemplary rule is:
“if similarity of patient y to patient x with respect to temperature is at least 0.8, and



similarity of y to x with respect to muscle pain is at least 1.0, then the membership of y
to class influenza is in the interval [0.8, 1.0]”, where x is a reference object characterized
by the following feature values: temperature=39, muscle pain=yes, and headache=yes.
Decision rules are induced separately for each decision classX and each reference object x,
for lower or upper approximations of sets of objects whose membership to class X is
in the interval [α, β] and outside the interval (α, β), where α and β are membership
values such that [α, β] contains the membership of x. These rules underline the monotonic
relationship “the more similar is object y to object x w.r.t. the considered features, the
closer is y to x in terms of the membership to a given decision class X”. Violation of
this principle causes an inconsistency in the set of objects, which is handled using DRSA.
An important characteristic of the proposed approach is that induced rules employ only
ordinal properties of marginal similarity functions. Thus, this approach is invariant to
ordinally equivalent marginal similarity functions.

We propose a rule-based classification scheme for determining a precise value of mem-
bership of a new object to each considered class. This scheme involves application of
induced certain/possible decision rules. It improves the classification scheme often ap-
plied in VC-DRSA.

It is worth underlining that our method for CBR provides additional useful information
that other similarity-based classification methods do not provide. In particular, when
determining membership of a new object z to classX, the DM can see the rules matching z,
and also view the training objects that support the matching rules. Moreover, the rules
clearly show the conditions for similarity.



Streszczenie

Rozprawa doktorska dotyczy problematyki wspomagania decyzji w problemie porządkowa-
nia (rankingu) obiektów z uwzględnieniem preferencji względem wielokryterialnych ocen
obiektów oraz w problemie wieloatrybutowej klasyfikacji obiektów na podstawie podobień-
stwa do znanych przypadków (ang. case-based reasoning, CBR). Dla każdego z tych prob-
lemów w rozprawie zaproponowano metodykę wspomagania decyzji wykorzystującą teorię
zbiorów przybliżonych opartą na dominacji (ang. Dominance-based Rough Set Approach,
DRSA).

W pierwszym z analizowanych problemów, dany jest skończony zbiór obiektów (wa-
riantów decyzyjnych, akcji, rozwiązań itp.), opisanych za pomocą zbioru kryteriów (iloś-
ciowych i/lub porządkowych). Celem wspomagania decyzji jest przedstawienie decyden-
towi (użytkownikowi) rekomendacji w postaci rankingu rozważanych obiektów, który
byłby zgodny z preferencjami tego decydenta. Ranking ten może mieć postać preporządku
zupełnego lub częściowego. Ponieważ relacja dominacji na zbiorze obiektów jest, poza
trywialnymi przypadkami, niewystarczająca do uporządkowania obiektów, w celu wypra-
cowania rekomendacji konieczne jest pozyskanie od decydenta dodatkowej informacji,
tzw. informacji preferencyjnej, w formie przykładów decyzji w postaci porównań parami
wybranych obiektów. Na podstawie tej informacji tworzy się tzw. model preferencji decy-
denta, który indukuje strukturę preferencji w zbiorze rozważanych obiektów. Odpowiednia
eksploatacja tej struktury prowadzi do rekomendowanego rankingu obiektów. Akceptacja
tego rankingu przez decydenta jako zgodnego z jego preferencjami zależy, z jednej strony,
od jakości predykcji porównań parami nowych obiektów, a z drugiej strony, od przeko-
nania decydenta, że model preferencji reprezentuje jego preferencje w sposób zrozumiały
i trafny.

Istniejące metody wspomagania decyzji różnią się rodzajem pozyskiwanej informacji
preferencyjnej i postacią modelu preferencji. Model ten może mieć postać funkcji rzeczy-
wistej (np. addytywnej funkcji użyteczności), relacji binarnej (np. relacji przewyższa-
nia) lub zbioru reguł decyzyjnych typu “jeżeli zachodzi koniunkcja warunków elemen-
tarnych na wybranych kryteriach/atrybutach, to sugerowane jest podjęcie określonej de-
cyzji”. Tradycyjne modele preferencji stosowane we wspomaganiu decyzji, mające postać
funkcji użyteczności lub relacji przewyższania, są mało zrozumiałe dla decydenta w pro-
cesie wspomagania decyzji, a ponadto wymagają od decydenta wielu trudnych informacji
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preferencyjnych i są oparte na stosunkowo silnych założeniach, które często nie są spełnione
w praktyce. Stąd też obecnie silnie postuluje się tworzenie modelu preferencji na podstawie
przykładów decyzji, czyli przez indukcję (uogólnianie). Takie podejście nie wymaga od de-
cydenta specyfikacji wartości parametrów modelu preferencji (progów, wag, itp.). Drugim
ważnym postulatem jest czytelność i zrozumiałość tworzonego modelu preferencji, nawią-
zująca do koncepcji tzw. “przejrzystej skrzynki” (ang. glass box), która jest przeciwień-
stwem “czarnej skrzynki” (ang. black box).

W celu spełnienia obydwu powyższych postulatów, w rozprawie przyjęto podejście
polegające na tworzeniu modelu preferencji w postaci zbioru reguł decyzyjnych. Reguły
te indukowane są na podstawie podanych przez decydenta przykładów decyzji w postaci
porównań parami obiektów referencyjnych typu “obiekt a jest co najmniej tak dobry jak
obiekt b” oraz “obiekt a nie jest co najmniej tak dobry jak obiekt b”. Tego typu holis-
tyczna informacja preferencyjna, odpowiadająca relacji przewyższania S (ang. outrank-
ing) i relacji braku przewyższania Sc (ang. non-outranking), jest względnie prosta do
pozyskania od decydenta. Z kolei model regułowy jest najogólniejszym znanym modelem
prefe-rencji, gdyż jest zdolny do reprezentowania ogólniejszych interakcji między atrybu-
tami niż modele funkcyjne i relacyjne. Dodatkową zaletą tego modelu jest jego czytelność,
interpretowalność, zdolność wyjaśniania związków między wielokryterialną oceną obiek-
tów a decyzją, występujących w przykładach decyzji, oraz możliwość zastosowania do
predykcji decyzji przyszłych.

W praktyce, przykładowe decyzje podjęte przez decydenta często okazują się niespójne
z zasadą dominacji, która jest podstawową zasadą racjonalnego podejmowania decyzji
w obecności wielu kryteriów. Niespójność taka obserwowana jest przykładowo w sytuacji,
gdy, z jednej strony, dla każdego rozważanego kryterium obiekt a jest co najmniej tak silnie
preferowany nad obiekt b jak obiekt c jest preferowany nad obiekt d (inaczej mówiąc, para
(a, b) dominuje parę (c, d)), z drugiej zaś strony, para obiektów (a, b) według decydenta
należy do relacji Sc a para obiektów (c, d) należy do relacji S. Przyczyn niespójności
upatruje się w pominięciu pewnych kryteriów istotnych dla decydenta, w niepewności
towarzyszącej jego decyzjom i w niestabilności jego preferencji.

Zaproponowana w rozprawie metoda porządkowania obiektów VC-DRSArank kon-
troluje spójność podanej przez decydenta informacji preferencyjnej mającej postać porów-
nań wybranych obiektów parami. Metoda ta opiera się na wariancie DRSA ze zmien-
ną spójnością (ang. Variable Consistency Dominance-based Rough Set Approach, VC-
DRSA). Przewaga tego wariantu na klasycznym DRSA jest widoczna szczególnie w sytu-
acji, gdy liczba niespójnych porównań jest znacząca. Istotą zaproponowanego w rozprawie
podejścia jest poprzedzenie indukcji reguł strukturalizacją zbioru par obiektów należą-
cych do relacji S i Sc poprzez identyfikację w obu relacjach par dostatecznie spójnych
(w sensie przyjętej miary spójności par obiektów). Pary te tworzą tzw. dolne przybliżenia
odpowiednich relacji. Następnie, stosuje się algorytm indukcji (dostatecznie pewnych)
reguł decyzyjnych w oparciu o pary obiektów z dolnych przybliżeń. Utworzony w ten



sposób zbiór reguł decyzyjnych cechuje się dużą wiarygodnością, gdyż reprezentuje je-
dynie silne zależności logiczne obserwowane w przykładach decyzji. Przykładowa reguła
decyzyjna ma postać: “jeżeli różnica cen dysków a i b nie przekracza 100 zł oraz różnica
pojemności tych dysków jest nie mniejsza 500 GB, to dysk a jest co najmniej tak dobry
jak dysk b”.

Wyindukowane reguły decyzyjne stosuje się na zbiorze obiektów podlegających porząd-
kowaniu (rangowaniu). Powstała w ten sposób struktura preferencji eksploatowana jest
za pomocą procedury rangującej. W rozprawie przeanalizowano szereg takich procedur.
Szczególną uwagę poświęcono procedurze dwufazowej, uogólniającej stosowane dotychczas
podejście do eksploatacji relacyjnej struktury preferencji. Procedura ta polega na trans-
formacji struktury preferencji do relacji wartościowanej, a następnie na eksploatacji tej
relacji za pomocą metody rangującej. W rozprawie przeanalizowano pięć metod rangu-
jących znanych z literatury, pod kątem kilkunastu pożądanych własności, takich jak
monotoniczność, niezależność od niedyskryminujących obiektów, niezależność od cykli, itp.
Przeprowadzono szereg dowodów matematycznych dotyczących tych własności. W wyniku
tej analizy ustalono, że metodą rangującą o najlepszych własnościach jest metoda Net
Flow Rule.

W rozprawie zaproponowano również nową miarę zgodności rankingu końcowego z in-
formacją preferencyjną decydenta w postaci porównań parami obiektów referencyjnych
wybranych ze zbioru porządkowanych obiektów. Wykazano, że miara te jest uogólnieniem
współczynnika korelacji rangowej Kendalla.

W celu weryfikacji zaproponowanej metody porządkowania obiektów, przeprowadzono
eksperyment obliczeniowy, w którym sześć wariantów tej metody porównano z metodą
SVMrank, uznawaną przez specjalistów od uczenia maszynowego (ang. machine learning)
za jedną z najlepszych metod uczenia się dla problemu rankingu. Wspomniane warianty
metody VC-DRSArank wynikały, po pierwsze, z rożnego spojrzenia na zbiór kryteriów
(spójny zbiór kryteriów; niekoniecznie spójny zbiór kryteriów), po drugie, z różnej in-
terpretacji pokrycia par obiektów wyindukowanymi regułami (interpretacja jakościowa –
czy para obiektów pokrywana jest przez co najmniej jedną regułę; interpretacja ilościowa
– jaka jest siła najsilniejszej reguły pokrywającej parę obiektów), a po trzecie, z różnej
definicji siły reguły w przypadku ilościowej interpretacji pokrycia regułami. Eksperyment
wykazał, m.in., że metoda VC-DRSArank jest silnie konkurencyjna w stosunku do metody
SVMrank. Pozwolił również sformułować szereg wniosków odnośnie do porównywanych ze
sobą wariantów metody VC-DRSArank.

W drugim z analizowanych w rozprawie problemów, dany jest skończony zbiór obiek-
tów uczących, opisanych za pomocą zbioru cech (atrybutów nominalnych bądź numerycz-
nych), zbiór funkcji podobieństwa, z których każda określa podobieństwo obiektów na
jednej z rozważanych cech oraz zbiór klas decyzyjnych będących w ogólności zbiorami
rozmytymi – każdy obiekt przynależy w pewnym stopniu, od 0 do 1, do każdej z klas
decyzyjnych. Celem wspomagania decyzji jest przedstawienie decydentowi rekomendacji



dla nowego obiektu, w postaci jego stopnia przynależności do poszczególnych klas de-
cyzyjnych, zaś sposobem dojścia do tej rekomendacji jest wnioskowanie na podstawie
podobieństwa do określonych przez decydenta obiektów referencyjnych.

Do wnioskowania na podstawie podobieństwa do znanych przypadków konieczny jest
model podobieństwa. Tradycyjnie, modelem podobieństwa w tym podejściu jest określona
funkcja rzeczywista (np. norma euklidesowa) lub relacja binarna (np. relacja rozmyta).
W rozprawie przedstawiona została metoda oparta na DRSA, wykorzystująca nowy model
podobieństwa w postaci zbioru reguł decyzyjnych wykorzystujących relację dominacji.
Jest to model najmniej obciążony arbitralnymi założeniami odnośnie do agregacji podo-
bieństw na poszczególnych cechach. Przykładowa reguła decyzyjna ma postać: “jeżeli
podobieństwo pacjenta y do pacjenta referencyjnego x na cesze temperatura jest ≥ 0.8

oraz podobieństwo y do x na cesze ból mięśni jest ≥ 1.0, to przynależność pacjenta y
do klasy decyzyjnej grypa zawiera się w przedziale [0.8, 1.0]”, gdzie obiekt referencyjny x
posiada następujące wartości cech: temperatura=39, ból mięśni=tak, ból głowy=tak. Regu-
ły decyzyjne indukowane są osobno dla każdej klasy decyzyjnej X i każdego obiektu
referencyjnego x, dla dolnych lub górnych przybliżeń zbiorów takich obiektów, których
przynależność do klasy X zawiera się w przedziale [α, β] oraz poza przedziałem (α, β),
gdzie α i β są wartościami funkcji przynależności do klasy X takimi, że przedział [α, β]

zawiera przynależność referenta x. Reguły decyzyjne podkreślają następującą zależność
monotoniczną: “im bardziej obiekt y jest podobny do obiektu x na rozważanych cechach,
tym bardziej podobna jest przynależność y do klasy X do przynależności x do klasy X”.
Odstępstwa od tej zasady powodują niespójności w zbiorze obiektów, analizowane z wyko-
rzystaniem DRSA. Ważną cechą zaproponowanego podejścia jest to, że reguły decyzyjne
wykorzystują jedynie porządkowe własności funkcji podobieństwa zdefiniowanych dla posz-
czególnych cech. Stąd też, proponowane w rozprawie podejście jest niewrażliwe na dobór
tych funkcji, pod warunkiem, iż są one porządkowo równoważne.

W celu zastosowania wyindukowanych pewnych/możliwych reguł decyzyjnych do nowe-
go obiektu z, w rozprawie zaproponowano ulepszony schemat klasyfikacji regułowej znany
z klasyfikacji porządkowej, który umożliwia dokonywanie predykcji punktowych, w tym
sensie, że dla każdej klasy decyzyjnej X decydent otrzymuje precyzyjną predykcję stop-
nia przynależności obiektu z do tej klasy (zamiast np. przedziału, do którego ten stopień
przynależności należy).

Warto podkreślić, że zaproponowana w rozprawie metoda dla problemu klasyfikacji na
podstawie podobieństwa do znanych przypadków dostarcza decydentowi szeregu użytecz-
nych informacji, których inne metody stosowane dla tego problemu nie udostępniają.
W szczególności, w związku z określeniem stopnia przynależności nowego obiektu z do
klasy X, decydent może uzyskać informację o regułach pokrywających ten obiekt, a także,
o obiektach uczących, które wspierają te reguły. Ponadto, reguły są czytelnym interpre-
tatorem warunków podobieństwa.



Preface

Human activity in real-life is inherently connected with solving decision problems. Usually,
these problems concern a set of objects (also called variants, actions, alternatives, cases,
observations, options, candidates) described by a set of attributes (also called features,
characteristics, criteria, variables). The attributes can be of different nature – nominal,
ordinal or numerical, and some of them may have ordered value sets, e.g., according to
user’s preferences. One considers mainly three types of decision problems: classification of
objects to pre-defined decision classes (also called categories, or simply classes), ranking
of objects from the best to the worst, and choice of a subset of the best objects. Some
typical decision problems are: assessment of bankruptcy risk of companies, ranking of
universities, or choice of a car to buy.

Due to complexity of many real-life decision problems, there is a need for scientific
decision aiding. This need has been answered by many decision aiding methodologies
developed withing the domain called Multiple Criteria Decision Aiding (MCDA). These
methodologies address mainly decision problems concerning a finite set of objects de-
scribed by a finite set of attributes whose value sets are totally ordered according to the
preferences of a decision maker (DM) (also called user, expert).

In MCDA, in case of classification problems, it is assumed that decision classes are
ordered according to the preferences of a DM. Therefore, classification problems addressed
by MCDA are called multicriteria sorting or ordinal classification with monotonicity con-
straints. In the domain of Machine Learning (ML), on the other hand, usually one does
not assume a priori any order in value sets of attributes. As to decision classes, there
exist two interesting versions of the classification problem, apart from the “standard”
classification with unordered crisp (hard) classes. The first version is so-called soft label
classification, where each object from the training set can belong to a certain degree to
each of the considered classes. An example of soft label classification is a problem of the
recognition of emotions in recordings of spoken sentences. The second version, called or-
dinal classification, concerns the case where decision classes are ordered. An example of
this version is a prediction problem when given values of several medical tests one needs
to decide to which illness severity class – Benign, Medium, or Severe – a patient belongs.

In the past, we have studied extensively application of the Dominance-based Rough Set
Approach (DRSA), and its variable-consistency generalizations, to ordinal classification
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with monotonicity constraints. We have observed that it has several merits comparing
to other methods from the fields of MCDA and ML. First, DRSA can handle inconsis-
tencies present in decision examples (training set) using the concept of lower and upper
approximations of considered unions of ordered decision classes; these approximations are
the basis for induction of decision rules. Second, DRSA can be used for heterogeneous
data, containing simultaneously nominal, ordinal, and cardinal (numerical) attributes –
no prior discretization of numerical attributes nor prior conversion of nominal and ordinal
attributes into numerical ones is required. Third, the basic idea of DRSA is concordant
with an important trend in MCDA consisting in induction of preference model from deci-
sion examples (also known as use of indirect preference information). Fourth, application
of DRSA enables to induce from decision examples an intelligible preference model in the
form of a set of monotonic if-then decision rules.

Considering the success of the application of DRSA to ordinal classification with mono-
tonicity constraints, we found it worthwhile to study applications of DRSA to other deci-
sion problems. This thesis is a result of this research. It concerns two decision problems.
The first one is the ranking problem as considered in MCDA, i.e., with attributes whose
value sets are ordered according to DM’s preferences. The second problem is the similarity-
based classification. In this thesis, the ranking problem is handled using a proper adap-
tation of the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA),
and the similarity-based classification is handled using a proper adaptation of DRSA to
similarity-based reasoning. We present both theoretical and experimental results concern-
ing the proposed approaches.
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Chapter 1

Introduction

1.1 Problem Setting

Multiple Criteria Decision Aiding (MCDA). The research field of Multicriteria
Decision Aiding (MCDA) [13, 53, 133] addresses different types of decision problems in-
volving a finite set of objects (also called variants, actions, alternatives, solutions, options,
candidates, etc.) evaluated by a finite set of preference-ordered attributes called criteria.
The criteria are equipped with monotonic preference scales which specify total preference
orders in their value sets. For example, in a decision regarding selection of a notebook, its
price and disk capacity are criteria because, obviously, a low price is better than a high
price, and high disk capacity is better that a low one. A typical assumption of MCDA is
the presence of a consistent set (family) of criteria [146], i.e., a set of criteria that satisfies
the properties of:

• completeness (all relevant criteria are considered),

• monotonicity (the better the evaluation of an object on considered criteria, the more
it is preferable to another object),

• and non-redundancy (there is no criterion which could be removed without violating
one of the previous two properties).

According to Roy [143], the main types of multicriteria decision problems are: descrip-
tion, ranking, choice, and sorting (also called ordinal classification). The emergence of
MCDA results from the need of scientific decision aiding for many real-life decision prob-
lems in which considered criteria represent conflicting viewpoints, preventing from finding
an objectively optimal solution of a problem at hand. MCDA offers a wide range of meth-
ods aiding decision makers (DMs) in making a decision by putting forward a problem-
specific recommendation. MCDA helps to structure decision problems, incorporate in the
analysis the preferences of a DM, develop a model of a decision situation, and exploit this
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2 Introduction

model to work out a final recommendation [148].

Machine Learning (ML). The research field of Machine Learning (ML) [19, 67, 99, 128,
129] addresses different kind of decision problems. Ones of the most often considered are
classification problems. Problems involving classification of objects are considered in the
subfield of supervised learning, where the task is to learn a classifier based on so-called
training objects for which the correct classification is known. The aim of the learning is to
construct a classifier that predicts as accurately as possible the class for the objects from
another set of so-called testing (unseen) objects.

Preference Learning (PL). Recently, one can observe Preference Learning (PL) [71]
emerging as an important subfield of ML. Most of the research in PL concerns “learning
to rank” types of problems [43, 46, 123, 140] which often boil down to a series of ordinal
classification problems (see, e.g., [3]). PL concerns new challenging applications related
to Internet, in particular, recommender systems and information retrieval. In the former
application, the task is to recommend to a user a new item (movie, book, etc.) that fits
her/his preferences. The recommendation is computed on the basis of the information
describing the past behavior of the user. In the latter application, the task is to rank the
documents retrieved by a search engine according to user’s preferences. There are several
algorithms that are tailored for these kinds of problems. The learning is traditionally
achieved by minimizing an empirical estimate of an assumed loss function [50]. The most
popular approaches are based on rank loss minimization. These include variants of support
vector machines [101, 113] and boosting [46, 65].

In ML, and in particular in PL, it is assumed that there exists a stochastic process
generating the observed data (the “ground truth”). Thus, training data are considered
to be a sample from some unknown multidimensional probability distribution. Moreover,
these data are considered to be noisy. Under these circumstances, the goal of the learning
is to induce a preference model that generalizes the training data (i.e., refers to an entire
population of individuals), and thus, allows for making good predictions on average. The
main focus of PL is on predictive accuracy of the learned model and on the scalability of
proposed algorithms (in view of massive data analysis).

As pointed out in [44, 46], MCDA and PL share some goals, concepts and method-
ological issues. The main difference between them consists in the way of building a DM’s
preference model. In PL, the preference model results from statistical analysis of data
(training objects). In MCDA, the preference model is built from preference information
elicited from the DM, often interactively.
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1.1.1 Multicriteria Ranking Problem

Multicriteria ranking. Among different types of multicriteria decision problems, in this
thesis we consider the ranking problem, where the goal is to rank order a given set of ob-
jects described by multiple criteria. The ranking to be obtained may be a total preorder
(i.e., a linear order with possible ties, also called complete preorder or weak order) or a par-
tial preorder (which allows to conclude that some objects are incomparable). Multicriteria
ranking problems are frequent quests in such fields as finance, economy, management, and
engineering [169, 175]. Some typical examples include ranking of universities, hospitals,
cities, countries, smartphones, notebooks, airlines, etc.

Ranking problem is, obviously, not a new problem and it has been investigated in
various fields such as decision theory, social sciences, information retrieval, mathematical
economics, MCDA and PL. In this thesis, we adopt the MCDA perspective, accounting
also for some approaches proposed in the field of PL.

In MCDA, the construction of evaluation criteria with explicit monotonic preference
scales is an important step in the procedure of decision aiding. The criteria are functions
with ordinal or cardinal (i.e., interval or ratio) scales, built on elementary features of
objects to permit a meaningful distinction of objects, i.e., objects which are indiscernible
with respect to (w.r.t.) a given set of criteria are considered indifferent. In PL, on the
other hand, the relationships between value sets of attributes and DM’s preferences are
discovered from data for a direct use in decision making. This means that in PL, the
monotonic preference scales converting elementary features to criteria are neither used
nor revealed explicitly.

Remark that given the taxonomy of “learning to rank” problems considered in PL [72],
the ranking problem considered in this thesis belongs to the category of object ranking
problems [43], where the task is to learn a “good” ranker (i.e., a model that predicts
a ranking), given some pairwise preference information.

Dominance relation. Given a finite set of objects A, and a finite set G = {g1, . . . , gn}
of criteria giving evaluations gi(a) to all a ∈ A, i = 1, . . . , n, the dominance relation
D over set A is defined as follows. Given a, b ∈ A, object a dominates object b, which
is denoted by aDb, if and only if gi(a) � gi(b) for each i = 1, . . . , n, where � means
“is at least as good as”. The dominance relation D is a partial preorder, i.e., a reflexive
and transitive binary relation defined over A on the basis of evaluations gi(·), i = 1, . . . , n.

Preference information and preference model. In MCDA, conclusions in terms
of the dominance relation, resulting only from the analysis of evaluations of objects on
multiple criteria, are usually too weak to make a useful recommendation. This is due to
the fact that the dominance relation usually leaves many objects incomparable.

In order to increase comparability of objects, it is necessary to obtain (elicit) from
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a DM an additional information about the objects at hand. This information is called
preference information. Different decision aiding methods for multicriteria ranking differ
by the adopted type of preference information and by the type of preference model created
using this information. This model is used to aggregate vector evaluations of objects in
the way that is consistent with the value system of a DM. A preference model can take the
form of a function (e.g., additive utility function) as considered in the Multiple Attribute
Utility Theory (MAUT) [117], binary relation (e.g., outranking relation) as considered
in the outranking approach [144], or a set of if-then decision rules [83, 84, 86, 159]. The
preference model induces a preference structure on the set of objects. Proper exploitation
of this structure yields a ranking of objects that is presented to the DM.

In PL, preference model is a result of statistical analysis of the training set of objects.
Thus, training data are the equivalent of preference information in MCDA.

Decision examples. An important recent trend in MCDA is the use of indirect prefer-
ence information. One of the most significant manifestations of this trend is the postulate
that the preference model should be created (learned) based on decision examples sup-
plied by a DM. The decision examples may be provided by the DM either on a set of real
or hypothetical objects, or may come from the observation of DM’s past decisions. Ex-
pression of preferences by making some exemplary decisions does not require from the DM
the knowledge of the details of applied decision aiding method, or the specification of pa-
rameter values (like thresholds, weights, substitution rates, etc.) of the applied preference
model.

Learning a preference model from decision examples follows the paradigm of inductive
learning used in artificial intelligence [126]. It is also concordant with the disaggregation-
aggregation paradigm [110], and with the principle of posterior rationality postulated by
March [124], since it emphasizes the discovery of DM’s intentions as an interpretation
of her/his actions rather than as a priori position. Inductive learning has been used to
construct various preference models from decision examples, e.g., general additive utility
functions [56, 94], outranking relations [96, 130], monotonic decision trees [75], and sets
of if-then decision rules [86].

In the considered multicriteria ranking problem, decision examples most often take
the form of pairwise comparisons of objects. This is quite natural since the position of
an object in a ranking depends of its relation with other objects to be ranked. For two
objects a, b, the simplest result of comparison of a against b is the information concerning
weak preference relation between a and b. In a more complex case, one could also consider
the intensity of preference of a over b.

Readability of a preference model. The second important postulate of MCDA is the
readability of the created preference model which relates to the concept of a glass box
[90]. This means that a good preference model should be comprehensible to the DM so
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(s)he can understand this model and decide whether it is acceptable from the viewpoint
of her/his value system.

Rule preference model.One of the preference models that fulfills the above postulates is
a logical preference model in the form of a set of if-then decision rules induced from decision
examples. This model has been introduced to decision analysis by Greco, Matarazzo, and
Słowiński [82, 84, 160]. A popular saying attributed to Slovic [157] is that “people make
decisions and then search for rules that justify their choices”. The rules can explain the
preferential attitude of a DM and enable understanding of the reasons of her/his decisions
taken in the past. The recognition of the rules by the DM [121] justifies their use for
decision aiding. Thus, the preference model in the form of rules derived from decision
examples fulfills both explanation and recommendation goals of decision aiding.

An advantage of representing preferences by decision rules is the possibility of taking
into account, at the same time, attributes of different nature – nominal, ordinal, and car-
dinal (numerical) ones. There is no need of discretization of numerical attributes. Rule
preference model is also attractive according to the results of axiomatic analysis of all
three preference model types considered in MCDA (i.e., value function, outranking re-
lation, and decision rules) [85, 87]. According to this analysis, a set of decision rules is
the only model that gives account of most complex interactions among criteria, is non-
compensatory, accepts ordinal evaluation scales, and does not convert ordinal evaluations
into cardinal ones. Moreover, decision rules are easily interpretable by users who trust
more proposed recommendation [86].

Domain knowledge. An important aspect in the analysis of decision problems is the
domain knowledge. Exploitation of this knowledge enables to increase quality of the cre-
ated preference model and to ensure compatibility of this model with the value system
of a DM. In case of the multicriteria ranking problem, domain knowledge concerns value
sets of criteria, their preference scales, and monotonic relationship of the following type:
improvement of object evaluation on one or more criteria should not result in deterio-
ration of position of this object in relation to other objects. Thus, a DM expects from
a decision aiding method for multicriteria ranking that the final ranking recommended by
this method will preserve dominance relation over the set of ranked objects.

Consistency of decision examples. In practice, decision examples given by a DM are
often inconsistent due to hesitation of the DM, unstable character of her/his preferences,
or incomplete determination of the set of criteria [145]. These inconsistencies should not
be considered as a simple error or as noise. They can convey important information that
should be taken into account when constructing the preference model of a DM. In case
of preference information in terms of pairwise comparisons of reference objects, used in
multicriteria ranking, an inconsistency is a violation of the following general monotonic
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relationship: “if object a is preferred to object b at least as much as object c is preferred
to object d w.r.t. each considered criterion, then the comprehensive preference of a over b
is not weaker than the comprehensive preference of c over d”.

Dominance-based Rough Set Approach (DRSA). In order to handle inconsistency
of decision examples w.r.t. dominance relation, Greco, Matarazzo and Słowiński proposed
the Dominance-based Rough Set Approach (DRSA) [78, 79, 82–84, 159], which has been
successfully applied to multicriteria sorting, choice, and ranking problems. In DRSA,
inconsistent decision examples are not simply corrected or ignored. Instead, all decision
examples are structured by calculation of lower and upper approximations of considered
sets (i.e., so-called unions of decision classes in case of sorting, or preference relations in
case of ranking), which enables to distinguish certain and possible knowledge, respectively.
In this way, it is possible to restrict a priori the set of decision examples that serve as
a basis for induction of a preference model to a subset of consistent decision examples
belonging to lower approximations. This restriction corresponds to the concept of learning
from consistent data, so that the knowledge gained from this learning is relatively certain
(or, in other words, the induced preference model is reliable).

As accurately observed in [46], “the usefulness of DRSA goes beyond the frame of
MCDA as the type of monotonic relationships handled by DRSA is also meaningful for
problems where preferences are not considered but a kind of monotonicity relating ordered
attribute values is meaningful for the analysis of data at hand. Indeed, monotonicity con-
cerns, in general, mutual trends existing between different variables, like distance and
gravity in physics, or inflation rate and interest rate in economics. Whenever a relation-
ship between different aspects of a phenomenon is discovered, this relationship can be
represented by a monotonicity w.r.t. some specific measures or perception of the consid-
ered aspects, e.g., ‘the colder the weather, the higher the energy consumption’ or ‘the
more a tomato is red, the more it is ripe’. The qualifiers, like ‘cold weather’, ‘high energy
consumption’, ‘red’ and ‘ripe’, may be expressed either in terms of some measurement
units, or in terms of degrees of membership to fuzzy sets representing these concepts.”

Variable Consistency DRSA (VC-DRSA). When the number of inconsistent deci-
sion examples is relatively large, the lower approximations calculated in DRSA are often
relatively small of even empty, which makes further analysis difficult. For this reason, dif-
ferent generalizations of DRSA have been considered in the literature, namely: different
Variable Consistency Dominance-based Rough Set Approaches (VC-DRSA) [22–24, 97]
and Variable Precision Dominance-based Rough Set Approach (VP-DRSA) [108]. These
generalizations relax the definition of the lower approximation of a union of decision
classes which leads to inclusion of objects which are “sufficiently consistent”. The consis-
tency of an object is measured using a consistency measure, which can be, e.g., rough
membership [97, 136, 177, 178], Bayes factor [156], one of many well-known confirmation
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measures [60], or measure ε [23] (see [24] for a systematic review of different consistency
measures). In [24], the authors compared different generalizations of DRSA w.r.t. four de-
sirable monotonicity properties denoted by (m1)–(m4). This comparison and the results
of subsequent computational experiments described in [20, 25, 26], concerning multicri-
teria sorting problems, showed the advantage of VC-DRSA with consistency measure ε
[20, 23, 24], denoted by ε-VC-DRSA.

1.1.2 Similarity-based Classification Problem

People tend to solve new problems using the solutions of similar problems encountered
in the past. This process if often referred to as similarity-based reasoning or case-based
reasoning (CBR). As observed by Gilboa and Schmeidler [74], the basic idea of CBR
can be found in the following sentence of Hume [104]: “From causes which appear similar
we expect similar effects. This is the sum of all our experimental conclusions.” We can
rephrase this sentence by saying: “The more similar are the causes, the more similar one
expects the effects”.

In this thesis, we consider classification performed according to the (broadly construed)
CBR paradigm, i.e., a similarity-based classification. Precisely, we consider the following
classification problem setting. There is given a finite set of objects U (called universe of
discourse, or case base) and a finite family of pre-defined decision classes D. An object
y ∈ U (a “case”) is described in terms of features f1, . . . , fn ∈ F . For each feature fi ∈ F ,
there is given a marginal similarity function σfi : U × U → [0, 1], such that the value
σfi(y, x) expresses the similarity of object y ∈ U to object x ∈ U w.r.t. feature fi; the
minimal requirement that function σfi must satisfy is the following: for all x, y ∈ U ,
σfi(y, x) = 1 ⇔ y and x have the same value of feature fi. Moreover, for each object
y ∈ U there is given an information concerning (normalized) credibility of its membership
to each of the considered classes. To admit graded credibilities, each decision class X ∈ D
is modeled as a fuzzy set in U [181], characterized by membership function µX : U → [0, 1].
Thus, each object y ∈ U can belong to different decision classes with different degrees of
membership. The aim of decision aiding is to present to a DM a recommendation con-
cerning a new object z, in terms of a degree of membership of this object to particular
classes.

In ML, problems involving graded membership to decision classes are often referred to
as soft label classification problems (see, e.g., [174]). Obviously, when µX ∈ {0, 1} for each
X ∈ D, then a soft classification problem boils down to a regular classification problem
with crisp classes.

Some exemplary soft label classification problems can be found in [132] and [167]. In the
first paper, soft labels (membership degrees to two considered decision classes) were given
by doctors who judged, looking at patient data, how strongly they feel a patient is at
risk of developing heparin-induced thrombocytopenia (HIT). The second paper concerns



8 Introduction

detection and classification of emotions in recordings of spoken sentences, where it is very
natural to have multiple emotions to varying degrees at the same time.

Soft label classification relates to the analysis of so-called compositional data concern-
ing mixtures [172]. An exemplary problem given in this reference concerns analysis of
soil samples w.r.t. fraction of sand, silt, and clay, where each sample is characterized by
some description attributes, e.g., the depth at which the sample was taken. One of the
other problems considered in there concerns fatty acid composition of milk obtained from
lactating cows subjected to different diets. In compositional data analysis, however, the
outputs (reflecting fractions of components in a mixture) are obviously dependent, and
the sum of fractions over all outputs is equal to one. On the other hand, in practical soft
label classification problems, the outputs may be independent and the input credibilities
of membership to different classes (which are often elicited by humans) need not to sum
up to one. As an example of such a case, one could consider a situation where a doctor
has to express the credibility that a patient has disease X, Y , or Z. Obviously, the patient
can suffer from several diseases simultaneously, so the sum of credibilities may exceed one.

1.2 Review of Existing Approaches to Multicriteria

Ranking

Ranking problem has been considered both in MCDA and PL. Below, we review ap-
proaches proposed in these research fields to handle this problem. Considered methods
differ mainly by the type of input preference information and by the form of employed
preference model. For the multicriteria nature of the considered ranking problem, we fo-
cus mainly on MCDA methods since they make explicit use of the domain knowledge
concerning order of evaluations on the scales of criteria. In this way, they “produce” pref-
erence models that are concordant with the DM’s value system and domain knowledge
concerning ordinal nature of considered criteria.

1.2.1 MCDA Approaches to Multicriteria Ranking

In the field of MCDA, multicriteria ranking problem has been handled by many deci-
sion aiding methods. Some of these methods require from a DM a direct specification of
preference model parameters, and others are based on induction of a preference model
from decision examples. There are also several “hybrid” methods in which some preference
model parameters are elicited directly from a DM, whereas other parameters are calcu-
lated based on decision examples provided by the DM. Below, we review different MCDA
methods that recommend to a DM a total preorder (i.e., a linear ranking of objects, with
possible ties) or a partial preorder (i.e., a ranking of objects, with possible ties and in-
comparabilities) on the set of objects, underlining the form of applied preference model
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(such as additive utility function, outranking relation, or a set of if-then decision rules),
the type of preference information required to build this model, and some other aspects
related to application of these methods. We also give several notes concerning limitations
and shortcomings of the reviewed methods.

Multiple Attribute Utility Theory (MAUT).

The goal of MAUT [117] is to represent the preferences of a DM on a set of objects A
by a value (utility) function U(g1(·), . . . , gn(·)) : Rn → R, written in short as U(·), such
that a � b (a is preferred to b) if U(a) > U(b), whereas a ∼ b (a is indifferent to b) if
U(a) = U(b). The main preference model of MAUT is the additive value function

U(a) =
n∑
i=1

ui(a), with a ∈ A, (1.1)

where U(a) is a short form of U(g1(a), . . . , gn(a)), ui(a) is a short form of ui(gi(a)), and
ui, i ∈ {1, . . . , n}, are monotone marginal value functions.

It is important to note that the use of the additive value function involves compensation
between criteria (i.e., a poor evaluation of an object on some criterion can be compensated
by its better evaluations on some other criteria). It also requires a rather strong assumption
concerning mutual independence of criteria in the sense of preference.

Over the years, several methods have been proposed within the framework of MAUT
for the multicriteria ranking problem, as discussed below.

• ASSESS method [52, 117]. The ASSESS method is based on interactive elicitation
of preference information by a DM. The DM is asked a series of questions concerning
the choice between two options: participation in a given lottery (with assumed prob-
ability of win and loss), and obtainment of some certain value offered without any
risk. Questions of this type are used to construct piecewise linear marginal utility
functions ui as well as to determine criteria weights ki, i = 1, . . . , n. The assessed
value function U is defined as

KU(a) + 1 =
n∏
i=1

(kiKui(a) + 1) ,

whereK is a scaling coefficient. Once value function is constructed, it directly implies
the ranking of all objects from set A.

It is important to note that assessing piecewise linear marginal value function is
problematic in case of a purely ordinal criterion since it requires an arbitrary con-
version of the ordinal scale to a cardinal scale. Moreover, practice shows that the
way of gathering preference information adopted in the ASSESS method may require
much effort on the part of the DM as the number of questions may be significant.
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• UTA (UTilités Additives) method [109, 154]. The UTA method, and its improved
version UTASTAR [155], introduce the disaggregation-aggregation paradigm. They
employ input preference information in terms of a ranking (total preorder) on a sub-
set AR ⊆ A of so-called reference objects, i.e., objects from set A which are relatively
well-known to the DM. This preference information is used to formulate constraints
of a linear programming (LP) problem solved to calculate coordinates of charac-
teristic points of monotone piecewise linear marginal value functions that when
plugged into (1.1), can reproduce given ranking of reference objects either exactly
or approximately.

When the preferences of a DM can be modeled using (1.1), there are usually many
value functions compatible with the ranking of reference objects supplied by the
DM. Obviously, the rankings of objects from set A yielded by these value functions
can be quite different. In such a case, there is no just single recommendation to be
presented to the DM. Different approaches have been proposed to avoid an arbi-
trary choice of a compatible value function. The first approach consists in leaving
this choice to the DM, possibly assisted by a software designed to interactively mod-
ify graphically presented marginal value functions; these functions can be changed
within allowed limits that result from the solution of appropriate ordinal regression
problems. Such a software assistance has been provided for the first time in UTA+
[120]. The second approach involves some predefined rules to choose a so-called rep-
resentative value function (see, e.g., [17, 27, 114, 115, 155]). The third approach
aims at drawing so-called robust conclusions by considering simultaneously all com-
patible value functions. This technique is called robust ordinal regression (ROR)
[44, 94, 96]. Two utility-based methods that follow the robust ordinal regression
paradigm, UTAGMS and GRIP, are discussed next.

It is useful to remind, that in case of the original UTA method, using piecewise
linear marginal value functions raises a concern when such a function is calculated
for an ordinal criterion. In such a case, to avoid not meaningful interpolation of
marginal utility, it is necessary to calculate this utility for each value in the value
set of the ordinal criterion.

• UTAGMS method [94]. The UTAGMS method employs the ROR paradigm. It ex-
tends the UTA method in several ways, e.g., by dropping the assumption that
marginal value functions are piecewise linear and by considering preference infor-
mation also in the form of pairwise comparisons of reference objects in terms of
preference and indifference relations. When the set of value functions compatible
with the preference information given by a DM is nonempty, the method consid-
ers simultaneously all compatible value functions in order to determine two weak
preference relations – necessary weak preference relation %N being a partial pre-
order, and possible weak preference relation %P which is strongly complete and
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negatively transitive. The former relation holds for a pair of objects (a, b) ∈ A×A if
U(a) ≥ U(b) for all compatible value functions. The latter relation holds for a pair
of objects (a, b) ∈ A×A if U(a) ≥ U(b) for at least one compatible value function.
The UTAGMS method is meant to be used interactively. As the DM enriches her/his
preference information, new pairs of objects are added to the necessary relation.

Applying the UTAGMS method, one does not get a ranking which is a total preorder
of objects from set A. To obtain such a ranking, one can choose a representative
compatible value function and apply this function on set A. Procedures for calculat-
ing representative value functions have been proposed, e.g., in [114, 115]. Obviously,
if one accepts the final ranking to be a partial preorder, one can simply use rela-
tion %N .

It is worth noting that it is possible that given the preference information of a DM,
there is no value function compatible with this information (the case of incompati-
bility). The reasons for this situation and different ways of handling it are discussed
in [94].

• GRIP (Generalized Regression with Intensities of Preference) method [56]. The
GRIP method is a generalization of the UTAGMS method that accounts for ordinal
intensities of preference between some pairs of reference objects, either in partial or
comprehensive comparisons. For instance, a DM may state that “a is preferred to b
at least as much as c is preferred to d”, referring to their comprehensive evaluation
or just to a single criterion gi ∈ G. The ways of obtaining a recommendation in
terms of a total preorder of all objects from set A are analogous to those used for
the UTAGMS method.

• AHP (Analytic Hierarchy Process) method [150, 151]. The AHP method employs
preference information in terms of pairwise comparisons of all elements present at
each level of hierarchy used to model considered decision problem. Thus, it involves
pairwise comparisons of the first level criteria, pairwise comparisons of the second
level sub-criteria, etc., and pairwise comparisons of objects from set A w.r.t. each
sub-criterion from the lowest level. For any two elements, say e1, e2, compared pair-
wise, the DM has to quantify the intensity of preference of e1 over e2, by choosing, in
fact, a value from the available set {1

9
, 1

7
, 1

5
, 1

3
, 1, 3, 5, 7, 9}. This information is used

to calculate weight (priority) of each node of the hierarchy. Then, utility U(a) of
each object a ∈ A is calculated as a sum of products of weights along each path
going from the root node to one of the leaf nodes corresponding to a.

An advantage of AHP is the ability to decompose complex problems into subprob-
lems. However, this method has also relatively many weak points, such as: the need
of performing relatively many pairwise comparisons of elements of considered hi-
erarchy, known cases of rank-reversals, difficulty of ensuring global consistency of
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pairwise comparisons, treatment of ordinal criteria in a “cardinal fashion”, unstable
character of absolute zero on the employed ratio scale of the intensity of preference,
and failure to satisfy the “Condition of Order Preservation (COP)” [6].

• PAPRIKA (Potentially All Pairwise RanKings of all possible Alternatives) method
[98]. The PAPRIKA method uses additive value function to assess overall utility of
each considered object. The overall utility of an object a ∈ A is calculated as a sum
of its points over all criteria. The number of points that object a gets for its evalua-
tion on criterion gi ∈ G depends on the fact to which so-called performance category
of gi the evaluation gi(a) belongs. In case gi is an ordinal criterion, its performance
categories usually correspond to particular evaluations in the value set of gi. In case
gi is a cardinal criterion, its performance categories, usually, correspond to intervals
defined on the scale of criterion gi (which requires prior discretization). In order
to derive points for each performance category of each criterion, the PAPRIKA
method employs preference information in terms of pairwise comparisons of objects
from considered set A. A DM is asked a series of questions concerning her/his prefer-
ence about pairs of mutually non-dominated objects (i.e., such pairs of a, b ∈ A that
neither a dominates b nor b dominates a). For each such pair the DM may decide
that (s)he prefers a over b, or b over a, or that a and b are equally good, or that
(s)he wants to skip a given pair. The objective of the method is to require from the
DM the fewest pairwise comparisons possible (thereby minimizing her/his cognitive
effort). Therefore, during the iterative process of comparing objects in a pairwise
fashion, some pairwise comparisons are implicitly assessed by the method to ensure
transitivity of calculated additive value function and to significantly decrease the
number of pairwise comparisons that the DM needs to make. Once the DM is done
with pairwise comparisons, points of considered performance categories are calcu-
lated by linear programming so as the calculated value function reproduces pairwise
comparisons supplied by the DM (multiple solutions are possible at this point).

It is worth noting that when using PAPRIKA, the number of pairwise comparisons
that need to be supplied by the DM may be substantial, especially in case of many
criteria with multiple performance categories. The second concern is the potential
non-uniqueness of obtained solutions. The third issue is the discretization of scales of
cardinal criteria, which often has to be performed to reduce the number of required
pairwise comparisons. Finally, the calculated preference model depends on the order
in which pairs of nondominated objects are presented to the DM (due to implicit
assessments of pairwise comparisons performed by the method).

Outranking Methods

Outranking methods construct the preference model in the form of a so-called outrank-
ing relation, usually denoted by S. This is a binary relation over the considered set of
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objects A. If aSb, a, b ∈ A, then a is considered to be (comprehensively) at least as good
as b. Outranking relation is reflexive, but not transitive nor complete, in general.

There exist various outranking methods that differ by the way of constructing the
outranking relation and by the way of subsequent exploitation of this relation to give
final recommendation. These methods mainly belong to one of the two families of out-
ranking-based methods developed by the MCDA community: ELECTRE [54, 55, 57] and
PROMETHEE [10, 37, 38]. Below, we give a general overview of these two families, and
we review some particular methods that are designed to deal with the multicriteria rank-
ing problem.

ELECTRE (ELimination Et Choix Traduisant la REalité – ELimination and Choice
Expressing the REality) family methods [54, 55, 57].

In the ELECTRE family methods, the outranking relation S is considered to hold
for a, b ∈ A if there are significant arguments that support the assertion aSb, while the
arguments to reject this assertion are not essential. The consideration of the arguments
for and against the outranking relation is concordant with the intuitive reasoning of most
DMs, which contributes to the popularity of outranking methods. On the other hand,
due to the general properties of the outranking relation, i.e., non-transitivity and non-
completeness, which allow incomparability of objects, the results that follow from using
outranking methods are often less conclusive than the results obtained using MAUT (e.g.,
one may get a ranking in form of a partial preorder rather than a total preorder).

All methods from the ELECTRE family are based on the same principle. For each
ordered pair of objects, they perform a concordance test and a non-discordance test to
check whether the outranking relation holds for this pair. Once determined, the outranking
relation is then exploited in a proper way, depending on the considered problem.

ELECTRE family methods make use of the concept of a pseudo-criterion [146]. A cri-
terion gi is a pseudo-criterion if it is associated with an indifference threshold qi and
a preference threshold pi, i ∈ {1, . . . , n}. The idea behind these thresholds is to take into
account the imperfection of evaluations.

ELECTRE family methods involve moreover two sets of parameters in the construction
of an outranking relation for pairs of objects: importance coefficients (weights) of criteria
ki and veto thresholds vi, i ∈ {1, . . . , n}. One other technical parameter that is used is the
concordance cutting level λ ∈ [0.5, 1]. Weight ki, i ∈ {1, . . . , n}, reflects the voting power
of criterion gi when this criterion is in the coalition of criteria voting for the assertion aSb.
The role of a veto threshold vi is to block assertion aSb in case when there is a relatively
large difference between evaluations gi(a) and gi(b), in disfavor of object a.

In the concordance test for aSb, one calculates concordance index C(a, b) as the



14 Introduction

weighted average of marginal concordance indices ci(a, b):

C(a, b) =

∑n
i=1 kici(a, b)∑n

i=1 ki
,

where ci(a, b) is:

• equal to 1, if gi(a) is either not worse than gi(b) or just insignificantly worse, i.e.,
gi(b) is better than gi(a) but the difference between these evaluations is not more
than qi,

• equal to 0, if gi(a) is clearly worse than gi(b), i.e., gi(b) is better than gi(a) and the
difference between these evaluations is pi or more,

• in the interval [0, 1] and calculated from linear interpolation, if gi(b) is better than
gi(a) and the difference between these evaluations is between qi and pi.

The result of the concordance test for pair (a, b) ∈ A × A is positive if C(a, b) ≥ λ;
otherwise the result is negative, in which case the hypothesis aSb is refuted.

If the result of the concordance test is positive for (a, b) ∈ A×A, the non-discordance
test is performed. The result of this test is “by default” positive, unless a veto occurs for
some criterion gi ∈ G, in which case one refutes the hypothesis aSb.

Some methods from the ELECTRE family, in particular those designed for dealing
with the multicriteria ranking problem, involve computation of a credibility degree of
the outranking relation rather than considering this relation to be crisp. The value of
the credibility degree reflects both the strength of the coalition of criteria supporting
conclusion aSb, and the strength of the criteria that oppose this conclusion. The credibility
degree, denoted by σ(a, b), is usually defined as follows (see [180]):

σ(a, b) = C(a, b) ·
∏
j∈F

1− dj(a, b)
1− C(a, b)

, (1.2)

where F = {i : 1 ≤ i ≤ n, di(a, b) > C(a, b)} and dj, j ∈ {1, . . . , n}, denotes marginal
discordance index that is:

• equal to 0, if gj(a) is not worse than gj(b) by more than pj,

• equal to 1, if gj(a) is worse than gj(b) by at least vj,

• in the interval [0, 1] and calculated from linear interpolation, if gj(b) is better than
gj(a) and the difference between these evaluations belongs to the interval [pj, vj].

The credibility degree makes S a valued outranking relation.
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• ELECTRE II-IV methods. The first method in the ELECTRE family designed to
deal with the multicriteria ranking problem was ELECTRE II [141]. Next method
was ELECTRE III that improved upon ELECTRE II by introducing pseudo-criteria
and valued outranking relation [142]. In this method, first, two total preorders are
built according to two variants of the distillation procedure, ascending and descend-
ing. Second, a partial preorder is created as the intersection of the two total pre-
orders. Third, a so-called median order (being a total preorder) is build using ranks
of objects in the partial preorder; a rank of object a ∈ A is the length of the path in
the graph of partial preorder from the best object to object a. Yet another method
is ELECTRE IV. It is based on the construction of five embedded outranking rela-
tions of different credibility [103]. It does not requires from a DM the specification
of weights ki. The ELECTRE IV exploitation procedure is the same as in ELEC-
TRE III.

It is important to note that due to the amount of parameters required by the
above methods to built an outranking relation, and due to the need of fixing precise
numerical values of these parameters, these methods are rather difficult to use and
require from a DM the knowledge of many technical details.

• ELECTREGKMS method [76, 114]. The ELECTREGKMS method implements ro-
bust ordinal regression in multicriteria ranking and choice ELECTRE methods.
The method reduces cognitive effort of a DM as it accepts preference information
in terms of pairwise comparisons of reference objects. For a pair of reference objects
(a, b) ∈ A × A, the DM can state the truth or the falsity of the outranking rela-
tion. Apart from pairwise comparisons, the DM should supply also the intra-criteria
preference information (i.e., indifference and preference thresholds), however, the
method admits that the DM can give intervals instead of precise numerical values.
Alternatively, the DM can compare some pairs of reference objects w.r.t. particular
criteria which conditions the comparison thresholds. The above preference informa-
tion is used to define a set of constraints on outranking models that are compatible
with the preference information. A single outranking model is a set of precise values
of model parameters, i.e., thresholds qi, pi, vi, and weights ki, i = 1, . . . , n, as well
as concordance cutting level λ. It defines also the shape of each marginal concor-
dance index ci(a, b), i ∈ {1, . . . , n}, in the interval corresponding to the situation
when gi(b) is better than gi(a) and the difference of these evaluations is between qi
and pi. Contrary to the “traditional” methods from ELECTRE family (e.g., ELEC-
TRE III), in ELECTREGKMS method, no linear characteristic of ci(a, b) is assumed
in this interval (only monotonicity of ci(a, b) is required).

ELECTREGKMS method involves calculation of necessary outranking relation SN

and possible outranking relation SP . The first relation holds for (a, b) ∈ A×A such
that aSb for every outranking model compatible with the preference information
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given by the DM. The second relation holds for (a, b) ∈ A×A such that aSb for at
least one outranking model compatible with the preference information given by the
DM. Calculation of relations SN and SP requires solving a series of mixed-integer
linear programming (MILP) problems. Remark that SP ⊇ SN , and both these
relations are reflexive, but, in general, they are neither transitive nor complete.

It is worth noting that it is possible that there is no outranking model compatible
with the preference information (the case of so-called incompatibility). Then, it is
necessary to identify the troublesome pieces of preference information in order to
remove this incompatibility [114].

In order to get a total preorder of objects from set A, one needs to exploit the
necessary and possible outranking relations. This can be done, e.g., in the way
proposed in [114], by calculating a net flow score (NFS) for each object a ∈ A.
Namely, NFS(a) is the number of objects b ∈ A, b 6= a, such that aSNb or not(bSPa)

diminished by the number of objects b ∈ A, b 6= a, such that bSNa or not(aSP b).
Another approach consists in applying a procedure for selection of a single so-called
representative set of parameters (representative outranking model), as proposed
in [114].

PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evalu-
ations) family methods [10, 37, 38].

PROMETHEE is a family of outranking-based methods that require from a DM to
specify for each criterion gi ∈ G:

• weight ki of this criterion,

• preference function (also called marginal preference index ) πi(a, b) being monoton-
ically non-decreasing function w.r.t. the difference di(a, b) = gi(a)− gi(b).

Six types of preference functions have been proposed. Thus, specification of a preference
function consists in choosing one type among these six types and, if necessary, giving
concrete values of parameters characteristic for the chosen type, e.g., indifference threshold
qi and preference thresholds pi for the “V-criterion with indifference area” type. In general,
preference functions are normalized, and defined so that πi(a, b) = 0 if di(a, b) ≤ qi, and
πi(a, b) = 1 if di(a, b) ≥ pi, where pi ≥ qi ≥ 0, i ∈ {1, . . . , n}.

It is worth noting, that some approaches for the PROMETHEE family methods aim
at calculation of weights ki of criteria using indirect preference information in terms of
pairwise comparisons of reference objects [70, 182].
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To quantify the overall preference of object a over object b, one calculates the prefer-
ence index π(a, b) defined as

π(a, b) =
n∑
i=1

ki · πi(a, b).

PROMETHEE family methods involve calculation of a positive outranking flow Φ+(a)

and a negative outranking flow Φ−(a) for every a ∈ A. These flows are defined as:

Φ+(a) =
1

n− 1

∑
b∈A

π(a, b),

Φ−(a) =
1

n− 1

∑
b∈A

π(b, a).

The balance between the above flows is reflected by the net outranking flow

Φ(a) = Φ+(a)− Φ−(a).

• PROMETHEE I method. In the PROMETHEE I method, the final recommen-
dation is a partial preorder resulting from the intersection of the ranking implied
by positive outranking flows Φ+(·) with the ranking implied by negative outranking
flows Φ−(·).

• PROMETHEE II method. In the PROMETHEE II method, the final recommen-
dation is a total preorder implied by net outranking flows Φ(·).

• PROMETHEEGKS method [114]. The PROMETHEEGKS method implements
robust ordinal regression in multicriteria ranking PROMETHEE methods. The
method accepts preference information in terms of pairwise comparisons of reference
objects. For a pair of reference objects (a, b) ∈ A× A, the DM can state the truth
of the weak preference relation (a % b), strict preference relation (a � b), or indif-
ference relation (a ∼ b). These relations can be defined at two levels: (1) at the level
of construction of the outranking relation, and (2) at the level of exploitation of the
outranking relation. In the first case, the statements of the DM are translated into
relations between preference indices π(a, b) and π(b, a). In the second case, they are
translated into relations between net outranking flows Φ(a) and Φ(b). It is important
to underline, that the above distinction of two levels of relations is unnecessary in
approaches based on MAUT, where constructed value function U(a) directly implies
a total preorder.

Apart from pairwise comparisons, the DM should also supply the intra-criteria
preference information (i.e., indifference and preference thresholds), however, the
method allows the DM to give intervals instead of precise numerical values. Al-
ternatively, the DM can compare some pairs of reference objects w.r.t. particular
criteria.
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The above preference information is used to define a set of constraints on outranking
models that are compatible with this preference information. In this case, a single
outranking model is a set of precise values of considered parameters, i.e., thresholds
qi, pi, and weights ki, i = 1, . . . , n. It defines also the shape of each preference
function πi(a, b), i ∈ {1, . . . , n}.

PROMETHEEGKS method takes into account all outranking models compatible
with the preference information to calculate necessary outranking relation %N and
possible outranking relation %P , either at construction level or exploitation level.
These relations are obtained by solving a series of linear programming problems. The
first relation holds for (a, b) ∈ A × A such that a outranks b for every outranking
model compatible with the preference information given by the DM. The second
relation holds for (a, b) ∈ A× A such that a outranks b for at least one compatible
outranking model.

It is worth noting that it is possible that there is no outranking model compatible
with the preference information (the case of so-called incompatibility). Then, it is
necessary to identify the troublesome pieces of preference information in order to
remove this incompatibility, analogously to ELECTREGKMS method.

To get a total preorder of objects from set A, one needs to exploit the necessary
and possible outranking relations. This can be done in the same way as in case of
ELECTREGKMS method.

Decision Rule-based Methods

Decision rule-based methods construct a logical preference model in terms of a set of
if-then decision rules. As results from the discussion in Section 1.1.1, rule model is the
most general preference model. Below, we review several rule-based MCDA approaches
proposed in the literature to deal with the multicriteria ranking problem. They employ in-
direct preference information in terms of pairwise comparisons of some reference objects,
given by a DM. Such decision examples are represented in a so-called pairwise comparison
table (PCT) [77, 80] and processed using DRSA or VC-DRSA to handle possible inconsis-
tencies and to generate a set of decision rules representing preferences of the DM that gave
the pairwise comparisons. The induced rules are then applied on a set A of objects to be
ranked and the resulting preference structure is exploited using some ranking procedure
to get a final ranking (total preorder). Thus, we can distinguish several key steps, which
are:

(s1) elicitation of preference information in terms of pairwise comparisons of some refer-
ence objects,

(s2) rough approximation of comprehensive relations implied by the pairwise compar-
isons,
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(s3) induction of decision rules from rough approximations of considered comprehensive
relations,

(s4) application of induced decision rules on set M ⊆ A, and

(s5) exploitation of the resulting preference structure on setM to get a ranking of objects.

The approaches reviewed below differ by the way of performing one or several of these
steps.

One common feature of the rule-based approaches to be reviewed concerns the as-
sumption that for each cardinal criterion gi ∈ G (i.e., criterion with a cardinal scale, for
which it is meaningful to consider intensity of preference) there is given a set of graded
preference relations Ti = {P h

i , h ∈ Hi}, where Hi is a finite set of integer numbers (“grades
of intensity of preference”) (see, e.g., [84]). Relations P h

i are binary relations over A, such
that

• if aP h
i b and h > 0, then object a is preferred to object b by degree h w.r.t. criterion

gi,

• if aP h
i b and h < 0, then object a is not preferred to object b by degree h w.r.t.

criterion gi,

• if aP h
i b and h = 0, then object a is similar (asymmetrically indifferent) to object b

w.r.t. criterion gi.

According to [84], the modeling of binary relations P h
i involves: (i) choosing a function

ki : R2 → R which measures the strength of preference (positive or negative) of object
a over object b, taking into account evaluations gi(a), gi(b), a, b ∈ A, (ii) dividing the
codomain of function ki using a suitable set of thresholds, and (iii) numbering the resulting
intervals by considered grades h ∈ Hi.

It is important to note that the modeling of binary relations P h
i , involving determi-

nation of several thresholds for each cardinal criterion, may be considered impractical.
After all, the thresholds are parameters of the constructed rule-preference model. Thus,
the need of defining these thresholds is in fact in the opposition to the idea of employing
decision examples.

• The first rule-based MCDA approach to multicriteria ranking problem considered
in [78, 79, 81, 82, 93] and reminded in [83, 159], denoted by α, is characterized by
the following steps:

(sα1 ) the pairwise comparisons of reference objects are expressed in terms of out-
ranking and non-outranking relations; given a pair of objects (a, b) ∈ A × A,
a DM may: (i) state that object a is comprehensively at least as good as ob-
ject b (or, in other words, a outranks b), denoted by aSb, (ii) state that object a
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is comprehensively not at least as good as object b (or, in other words, a does
not outrank b), denoted by aScb, or (iii) abstain from any judgment;

(sα2 ) relations S and Sc are approximated using graded dominance relations (called
in the following single-graded dominance relations) w.r.t. the set of criteria G;

(sα3 ) the approximations of S and Sc are used to generate four types of single-graded
decision rules (i.e., concerning the same grade of preference w.r.t. each criterion
present in the rule condition part), denoted by D++, D−+, D+−, D−−; if a pair
of objects (a, b) ∈ A × A is covered by a rule of the first two types, it is
concluded that aSb, while if it is covered by a rule of the last two types, the
conclusion is aScb;

(sα4 ) the application of induced rules on set M ⊆ A yields four outranking relations
called true outranking relation, false outranking relation, contradictory out-
ranking relation, and unknown outranking relation, which together constitute
so-called four-valued outranking [170, 171];

(sα5 ) the final ranking of objects from set M ⊆ A is obtained using their so-called
net flow scores ; the net flow score of an object a ∈ M , denoted by SNF (a), is
calculated as the sum of:

(i) the number of objects b ∈M such that the induced rules yield conclusion
aSb, and

(ii) the number of objects b ∈M such that the induced rules yield conclusion
bSca,

diminished by the sum of:

(iii) the number of objects b ∈M such that the induced rules yield conclusion
bSa, and

(iv) the number of objects b ∈M such that the induced rules yield conclusion
aScb.

It is worth noting that the first approach presented in [78, 79, 81, 82] does not
account for ordinal criteria (i.e., criteria with ordinal scale, for which consideration
of intensity of preference is not meaningful). Moreover, the single-graded dominance
relation is too restrictive as it assumes a common grade of intensity of preference
for all considered criteria.

• The second rule-based MCDA approach to multicriteria ranking problem, intro-
duced and characterized in [83, 84, 158–160], denoted by β, comprises of the follow-
ing steps:

(sβ1 ) ≡ (sα1 );
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(sβ2 ) relations S and Sc are approximated using the dominance relation that ac-
counts for both cardinal and ordinal criteria; w.r.t. cardinal criteria, the multi-
graded dominance relation is considered;

(sβ3 ) the approximations of S and Sc are used to generate three types of decision
rules (that can use different grades of preference w.r.t. each cardinal criterion
present in the rule condition part), denoted by D≥, D≤, and D≥≤; if a pair of
objects (a, b) ∈ A×A is covered by a rule of the first type, it is concluded that
aSb, while if it is covered by a rule of the second type, the conclusion is aScb;

(sβ4 ) ≡ (sα4 );

(sβ5 ) ≡ (sα5 ).

It is worth noting that definitions of lower approximations applied in approaches α
and β appear to be too restrictive in practical applications. In consequence, lower
approximations of S and Sc are often small or even empty, preventing a good gen-
eralization of pairwise comparisons in terms of decision rules.

• The third rule-based MCDA approach to multicriteria ranking problem, presented
in [86, 158], denoted by γ, is characterized by the following steps:

(sγ1) ≡ (sβ1 );

(sγ2) relations S and Sc are approximated using the dominance relation that ac-
counts for both cardinal and ordinal criteria; w.r.t. cardinal criteria, the multi-
graded dominance relation is considered; contrary to step (sβ2 ), the approx-
imations of S and Sc are calculated using a PCT-oriented adaptation of the
VC-DRSA proposed originally in [97] w.r.t. the multicriteria classification prob-
lems; as this VC-DRSA measures consistency of decision examples using rough
membership measure µ, it will be denoted by µ-VC-DRSA;

(sγ3) the lower approximations of S and Sc are used to generate two types of prob-
abilistic decision rules (that can use different grades of preference w.r.t. each
cardinal criterion present in the rule condition part), denoted by D≥ and D≤;
if a pair of objects (a, b) ∈ A × A is covered by a rule of the first type, it is
concluded that aSb, while if it is covered by a rule of the second type, the
conclusion is aScb;

(sγ4) ≡ (sβ4 );

(sγ5) ≡ (sβ5 ).

• The fourth rule-based MCDA approach to multicriteria ranking problem, denoted
by δ, was introduced in [63]. It is characterized by the following steps:

(sδ1) the pairwise comparisons of reference objects are expressed in terms of com-
prehensive graded preference relations �h, h ⊂ [−1, 1]; given a pair of objects
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(a, b) ∈ A×A, a DM may: (i) state that object a is comprehensively preferred
to object b in grade h, i.e., a �h b with h > 0, (ii) state that object a is
comprehensively not preferred to object b in grade h, i.e., a �h b with h < 0,
(iii) state that object a is comprehensively indifferent to object b, i.e., a �0 b,
or (iv) abstain from any judgment;

(sδ2) upward cumulated preference relations (upward unions of comprehensive graded
preference relations) �≥h and downward cumulated preference relations (down-
ward unions of comprehensive graded preference relations) �≤h are approxi-
mated using the dominance relation that accounts for both cardinal and or-
dinal criteria; w.r.t. cardinal criteria, the multigraded dominance relation is
considered; analogously to step (sγ2), the approximations of �≥h and �≤h are
calculated using a PCT-oriented adaptation of µ-VC-DRSA proposed in [97];

(sδ3) the lower approximations of �≥h and �≤h are used to generate two types of
probabilistic decision rules (that can use different grades of preference w.r.t.
each cardinal criterion present in the rule condition part), denoted by D≥ and
D≤; each induced rule is additionally characterized by the attained confidence
level ; if a pair of objects (a, b) ∈ A × A is covered by a rule of the first type,
it is concluded that a �≥h b, while if it is covered by a rule of the second type,
the conclusion is a �≤h b;

(sδ4) the application of induced rules on set M ⊆ A yields a graded fuzzy preference
relation (of level 2) over M ; this relation is graded because of different grades
of preference, but it is also fuzzy because of different confidence levels of rules
matching pairs of objects from M ×M ;

(sδ5) the final ranking of objects from set M ⊆ A is obtained by exploitation of the
preference structure on M using either the Weighted Fuzzy Net Flow Score
(WFNFS) procedure or a Lexicographic-fuzzy Net Flow Score procedure.

Remark that approach δ was partially considered also in [86], although only up to
step (sδ2). Moreover, an early version of approach δ can be found in [62]. This early
version, however, features an exploitation procedure that may produce a ranking
that does not respect the dominance relation over set M ⊆ A of ranked objects.

It is worth noting that elicitation of preferences in terms of comprehensive graded
preference relations �h requires, in general, greater cognitive effort of a DM. More-
over, it complicates exploitation of the preference structure resulting from applica-
tion of induced decision rules.

It is also important to note that the application of variable consistency model of
DRSA considered in approaches γ and δ, relying on rough membership consistency
measure µ, leads to the situation when calculated lower approximations of considered
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comprehensive relations lack several desirable monotonicity properties, as proved
in [24].

Other Methods

Below, we review some other relatively simple MCDA methods to multicriteria ranking
that do not exactly fit to the three categories of methods considered above.

Weighted sum model (WSM) [58, 168]. WSM is a very simple model where each
criterion gi ∈ G is assigned a weight wi (substitution rate) and the comprehensive utility
of an object a ∈ A is calculated as the weighted sum

∑n
i=1wi · gi(a).

It is important to note that this model admits compensation between criteria. More-
over, it can be meaningfully applied only when all the criteria are expressed in exactly
the same unit. As to a DM, to construct the preference model, (s)he needs to give criteria
weights, which is not an easy task, in general.

Weighted product model (WPM) [39, 127, 168]. When using WPM, each object is
compared with the others by multiplying a number of ratios, one for each criterion. Each
ratio is raised to the power equivalent to the weight of the corresponding criterion. Assum-
ing that all criteria need to be maximized, in order to compare pairwise objects a, b ∈ A,
the following product has to be calculated:

P (a, b) =
n∏
i=1

(
gi(a)

gi(b)

)wi

.

If P (a, b) is greater than 1, then object a is more desirable than object b (in the maxi-
mization case).

The WPM is often called dimensionless analysis because its mathematical structure
eliminates any units of measure. Thus, contrary to the WSM, this model can be used also
in case of incommensurable scales of criteria. However, it still admits full compensation
between criteria (which is not desirable in many practical applications) and requires a set
of weights to be given a priori by a DM. Moreover, there are two issues concerning the
above equation, i.e., evaluations equal to zero (problem with division) and presence of cri-
teria that need to be minimized. Finally, the sole values of “pairwise indicators” P (a, b),
a, b ∈ A, are not sufficient to rank the objects from set A. For this purpose one needs to
apply some ranking procedure, e.g., based on calculating net flow scores.

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) [105, 106].
TOPSIS method bases on the idea that the “utility” of an object a ∈ A depends on
its geometric (euclidean) distance from the positive ideal object (i.e., the object, likely
fictitious, that has the best possible evaluation on every criterion) and from the negative
ideal object (i.e., the object, likely fictitious, that has the worst possible evaluation on
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every criterion). Let denote the former distance by da,∗ and the latter distance by da,∗ .
Then, given objects a, b ∈ A, a is ranked higher than b if the ratio da,∗/(da,∗ + da,∗) is
smaller than the ratio db,∗/(db,∗ + db,∗).

It is important to note that TOPSIS requires prior normalization of multicriteria
evaluations. Therefore, this method is in general not meaningful, as demonstrated in
[125, 183]. Application of this method is obviously problematic in case of ordinal criteria.
The method requires also direct specification of weights of considered criteria. Finally, it
is yet another compensatory MCDA method. All this restricts its correct applications.

1.2.2 PL Approaches to Multicriteria Ranking

In PL approaches to considered multicriteria ranking problem (called object ranking
problem), the preference model is build by induction, using available training decision
examples. Typically, this model has the form of a utility function (or scoring, or value
function) or a so-called preference function, i.e., a function defined for pairs of objects
that induces a comprehensive weak preference relation over set A. In the former case
(called a score-based setting), one directly gets a total preorder over A. Learning a utility
function involves solving an (ordinal) regression problem (e.g., [101]). In the latter case
(called a preference-based setting), however, after learning a preference function (which
can be achieved by learning a binary classifier using pairwise training data), one needs
to exploit the resulting preference structure using some ranking procedure to obtain the
final ranking (as the induced comprehensive weak preference relation is non-transitive, in
general). Such two-stage (relational) approach was considered, e.g., in [3, 42, 43, 46].

Below, we remind a few well-known PL methods that, given some pairwise comparisons
of reference objects, learn a DM’s preference model which is subsequently used to calculate
a total preorder over test set A. More methods are considered, e.g., in [71, 123].

In our short survey, we underline the form of applied preference model, the type
of preference information required to build this model, and some other aspects related
to application of the considered methods. Next, we give some general notes concerning
limitations and shortcomings of the reviewed methods.

SVMrank

Ranking SVM [102, 112], was proposed to solve the problem of ordinal regression. It learns
a utility function (ranking function) such that the disagreement between the ranking
implied by this function and the observed pairwise comparisons is minimized. The idea is
to minimize a convex upper bound on the empirical ranking error (measured by a rank loss
function) over a class of (kernelized) ranking functions. The input preference information
consists of a total preorder of some reference objects.

Fast implementation of the ranking SVM is described in [113]. This implementation
was used in the ranking experiments described in Chapter 5.
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RankBoost

According to [65], RankBoost is an approach to the ranking problem based on a machine
learning method called boosting, in particular, on Freund and Schapire’s AdaBoost algo-
rithm [66] and its successor developed by Schapire and Singer [153]. Boosting is a ML
approach aimed at obtaining accurate prediction rules by combining many so-called weak
learners that can be only moderately accurate. Such combination is often referred to as
an ensemble of base learners. In RankBoost, boosting technique is used to learn a func-
tion H : A → R whose induced ranking on A is a total preorder that approximates the
(weighted) pairwise comparisons given by a DM. This function is defined as

H(a) =
T∑
t=1

αtht(a),

where a ∈ A, T is the number of combined weak learners, and αt ∈ R is the weight of
weak learner ht : A→ R inducing a total preorder over A.

RankBoost performs T so-called rounds. In each t-th round, t ∈ {1, . . . , T}, weak
learner ht is trained and added to the current ensemble. During training, ht has access
to evaluations of considered objects and to current square matrix of weights of pairwise
comparisons Dt. This matrix is modified after each round so that the training pairwise
comparisons not respected by the current model (i.e., the ensemble composed of the weak
learners added up to round t) get higher weights (higher priority) for the next round, and
thus, will have more influence on the minimized (exponential) ranking loss of ht+1.

Ensembles of Decision Rules

In [46], two ways of learning an ensemble of decision rules are considered. They differ by the
type of considered decision rules. The rules of the first type specify conditions concerning
differences of evaluations of two objects on particular attributes, implying comprehensive
preference of one object over the other object. The resulting approach is called PrefRules.
The rules of the second type specify conditions concerning evaluations of a single object
on particular attributes, implying a given increase or decrease of a comprehensive utility
(score) of this object. The resulting approach is called RankRules.

In PrefRules, the constructed ensemble of rules is applied on set A and the resulting
preference structure on A is exploited using the Net Flow Rule (NFR) ranking method
[30, 36] to get a final ranking. In RankRules, the learned ensemble of rules is applied on
set A and the resulting comprehensive utility of individual objects induces a final ranking.

In both cases, the input preference information is a set of pairwise comparisons of
training objects in terms of strict preference relation �, and the final ranking is a total
preorder over A.
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Critical Remarks

The methods reviewed above, although quite effective in learning utility or preference
functions and then in ranking with these functions, have several drawbacks from the
MCDA perspective. First, they tend to build preference models that are hard to interpret.
An extreme case among the above methods is the SVMrank method which is a black-box
procedure with little interpretative value. Second, the methods that learn a functional
model have problems handling criteria with ordinal scales – such scales tend to be ar-
bitrarily converted to cardinal ones. Third, the considered methods do not take directly
into account the domain knowledge concerning ordinal nature of considered criteria, and
thus, the induced models may confuse a DM as they may be not concordant with her/his
value system.

1.3 Review of Existing Approaches to

Similarity-based Classification

In this section, we review some approaches to classification problem that are based on
similarity-based reasoning. In our survey, we give several notes concerning limitations and
shortcomings of the reviewed methods.

Remark that we use terms similarity-based reasoning and case-based reasoning in-
terchangeably as we understand the latter term in a broad sense, as reflecting a generic
reasoning methodology (whose idea was given in Section 1.1.2). In the literature (e.g., in
[118]), however, the term case-based reasoning is often identified with a particular “lazy”
approach (in ML sense), involving maintenance of a memory of objects (cases) M and
reasoning by comparing a new case with the stored cases from M .

The approaches to CBR considered in the literature can be basically divided into two
groups – lazy learning methods (instance-based learning methods or memory-based learn-
ing methods) and eager learning methods. The approaches from the first group employ
similarity-based reasoning only to classify new (test) objects, while the methods from
the second group use the information concerning mutual similarity of objects (marginal
and/or comprehensive) to induce a similarity-based classifier.

1.3.1 Lazy Learning Methods

Lazy learning methods delay generalization beyond the training data until a new object is
presented to the system. Thus, instead of learning a classification model (classifier), these
methods just use the training objects to compile a memory of previous cases, so-called
case base. Then, when a new object needs to be classified, it is compared with the objects
from the case base and the object(s) most similar w.r.t. the considered features are used
to work out the classification of the new object.
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Among lazy learning classification methods based on the idea of similarity-based rea-
soning one can distinguish:

• k-nearest-neighbors classification method [61, 128];

• instance-based learning algorithms IB1, IB2, and IB3 [2];

• formalized CBR approaches [1, 118], where CBR is considered as a (cyclic) four-step
process composed of the retrieve, reuse, revise, and retain steps; these approaches
trace to the work of Robert Schank concerning dynamic memory model [152];

• the approach to case-based decisions proposed by Gilboa and Schmeidler [73, 74];

• approaches employing fuzzy set modeling (e.g., [51]).

It is important to note that the above methods, due to lack of generalization beyond
the training set of objects, may be susceptible to noise observed in the training data,
both with respect to irrelevant features, and with respect to outliers. Moreover, due to
the possibly large size of maintained case base, the classification of a new object may be
relatively slow when the similarity between this new object and each object in the case
base needs to be calculated. This issue often calls for different techniques of case base
reduction (see, e.g., [122]). An advantage of the above lazy learning classification methods
is the natural ability of incremental learning by including newly classified objects in the
case base.

1.3.2 Eager Learning Methods

Eager learning classification methods perform an explicit generalization of the training
data to build a classifier that will predict classification of new objects presented to the
system.

Among eager learning classification methods concerning mutual similarity of objects
(marginal and/or comprehensive) in the process of learning a classifier one can distinguish:

• radial-basis function (RBF) artificial neural networks [40, 134];

• dominance-based rough set approach to case-based reasoning [88, 89, 91];

• approaches operating on the comprehensive similarity matrix [41];

• approach employing the Similarity Based Classification (SBC) algorithm proposed
in [16].

In the first approach, training of a neural network involves learning of parameters of
radial-basis (usually Gaussian) activation functions for hidden layer neurons. Then, given
a new (test) object, output signal of each hidden layer neuron depends on the similarity
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between learned “neuron center” and this new object. This similarity is usually considered
to be the inverse of Euclidean or Mahalanobis distance between the “neuron center” and
the new object. Thus, the employed notion of similarity requires that object features are
expressed on a (commensurable) numerical scale, which limits potential applications.

In the second approach, the training objects are compared pairwise and marginal
similarities are aggregated (or rather combined) using decision rules based on the general
monotonic relationship “the more similar is object y to object x w.r.t. the considered
features, the greater the membership of y to a given decision class X”. Although the idea
of expressing similarity by decision rules is in itself very attractive, it is important to note
two shortcomings of the approach proposed in [88, 89, 91]. First, the assumed monotonic
relationship seems reasonable only if the membership of reference object x to class X
takes a maximum value. If, e.g., the membership of x to X is just 0.5, then there is no
reason to expect that the membership of y to X would increase up to maximum value of
1.0 when y becomes more and more similar to x w.r.t. the considered features. Second,
the respective papers focus mainly on the properties of considered rough approximations
of α-cuts of decision classes, and thus, they lack the proposal of, both, the way o inducing
decision rules, and the way of resolving conflicts arising during application of induced
rules to a new case.

In the third approach, the comprehensive similarity matrix (which is considered to
be given a priori, although, in general, it may be calculated using marginal similarities)
is transformed into a positive semidefinite matrix corresponding to a kernel function,
which enables further application of a kernel-based classifier, e.g., the support vector
machines (SVM). The transformation involves decomposition of the similarity matrix,
identification of its negative eigenvalues, and modification of these negative eigenvalues
(e.g., by setting them to zeros). This arbitrary modification is, obviously, the main concern
of the considered approach.

The fourth approach introduces a measure of similarity between an unclassified object
y and a crisp decision classX ∈ D, denoted by sX(y), defined as sX(y) =

∑
x∈X α(x)s(y, x),

where s(y, x) denotes similarity of object y to object x and α(x) ≥ 0, adjusted during
training of the classifier, reflects the relative importance given to object x ∈ U with re-
spect to D. Then, the class predicted for object y is calculated using the decision function
arg max

X
{sX(y)} or arg max

X
{sX(y) : sX(y) >

∑
Y ∈D\X

sY (y)}. The main difficulty of SBC is

the calculation of coefficients α(x). As noted by the authors, this method is also sensitive
to noisy data. Moreover, since s(y, x) is usually defined as s(y, x) = e||y−x||

2/2σ2 , the eval-
uation vectors of y and x need to be expressed on a (commensurable) numerical scale,
which limits potential applications.
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1.3.3 Measuring Similarity

Measuring similarity is the essential point of all approaches to CBR. Questions related to
measuring similarity are encountered at two levels:

• at the level of single features: how to define a meaningful similarity measure w.r.t.
a single feature?

• at the level of all features: how to properly aggregate the similarity measures w.r.t.
single features in order to obtain a comprehensive similarity measure?

Obviously, the task of choosing proper marginal similarity functions is not trivial and
should depend on the characteristic of considered features. Nevertheless, as described in
Section 1.1.2, instead of focusing on this issue, which is common for all similarity-based
classification approaches, we assume in this thesis that these functions are given, and we
concentrate on the second of the above levels, i.e., on the way of aggregating marginal
similarities into a comprehensive similarity.

1.4 Motivation for Dominance-based Rough Set

Approaches to Multicriteria Ranking and

Similarity-based Classification

The two problems considered in this thesis, i.e., multicriteria ranking and similarity-based
classification, are two problems of great practical importance. Exemplary ranking prob-
lems concern ranking of universities, ranking of investment funds, ranking of web pages,
ranking of sale offers, etc. Similarity-based classification problems arise in clinical prac-
tice (classification of patients into risk groups based of previous diagnoses), in document
categorization systems (classification of documents using a corpus), etc.

As we show in Sections 1.2 and 1.3, despite the importance of the two considered
problems, many methods applied to solve these problems are hard to use (i.e., require too
much cognitive effort on the part of a DM), and/or are not always appropriate (e.g., in
case of nominal/ordinal attributes), and/or produce preference/classification models that
are not meaningful to a DM.

Advantages of DRSA. In this thesis, we propose to handle both problems using adap-
tations of DRSA which are able to capture and model monotonic relationships typical
for these problems. DRSA is a very attractive approach as it requires very weak assump-
tions concerning the data. DRSA can be used for heterogeneous data, containing (even
simultaneously) nominal, ordinal, and cardinal (numerical) attributes – neither prior dis-
cretization of numerical attributes nor prior conversion of nominal and ordinal attributes
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into numerical ones is required. It can naturally handle inconsistency of available deci-
sion examples (training data) by calculating rough approximations of considered sets;
these approximations are the basis for induction of an intelligible preference/classification
model in the form of a set of monotonic decision rules. The rules clearly show logical
patterns observed in decision examples. In the era of databases, when many companies
store historical data, the availability of methods that can induce (learn) useful models
from these data is obviously of great interest.

Advantages of decision rules. Decision rules induced in DRSA are relatively easy to
read and understand by a DM. They have the ability to explain given decision examples as
well as to predict decisions for new cases; a recommendation given by rules is fully trace-
able, i.e., one can see not only the rules matching a new case, but also decision examples
supporting these rules. As shown in [87], and already mentioned in Section 1.1.1, axiomatic
analysis of all three preference model types considered in MCDA (i.e., value function, out-
ranking relation, and decision rules) leads to the conclusion that decision rules, as they
are defined in DRSA, are the only model that gives account of most complex interactions
among criteria – it is non-compensatory, accepts ordinal evaluation scales, and does not
convert ordinal evaluations into cardinal ones.

Use of domain knowledge. One of the very important aspects when dealing with
decision problems is domain knowledge. Exploitation of this knowledge can help to improve
the quality of the induced model and ensure its compatibility with the value system of the
DM. Due to application of DRSA, it is possible to take into account domain knowledge
concerning value sets of attributes, division of attributes into condition and decision ones,
preference scales of attributes and monotonic relationships between attributes.

1.4.1 Multicriteria Ranking Problem

The practical importance of multicriteria ranking problem, the observed shortcomings of
the methods reviewed in Section 1.2, as well as the above advantages of DRSA and rule-
based preference modeling, motivate us to propose an approach to multicriteria ranking
based on DRSA but improving and extending previous MCDA rule-based approaches.
Thus, our motivation is to propose a method that:

• is concordant with the current trend in MCDA which consists in induction of pref-
erence model from decision examples; this leads to reducing cognitive effort on the
part of the DM who is not required to provide values of some difficult parameters,
like weights of criteria or comparison thresholds (which is the case, e.g., for the
methods from ELECTRE and PROMETHEE families described in Section 1.2.1);

• involves simple decision examples in the form of pairwise comparisons of objects
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in terms of outranking and non-outranking relations; this information is easier de-
finable by a DM than the pairwise comparisons in terms of comprehensive graded
preference relations proposed in [63];

• can handle ordinal and cardinal criteria simultaneously, without prior discretization
of numerical attributes or prior conversion of ordinal attributes into numerical ones;

• does not require from a DM to define graded preference relations for particular
cardinal criteria, as considered in all rule-based MCDA approaches reviewed in
Section 1.2.1; instead it uses difference of evaluations as a simple measure of the
strength of preference;

• takes into account domain knowledge concerning ordinal character of criteria and
the general monotonic relationship “if object a is preferred to object b at least as
much as object c is preferred to object d with respect to each considered criterion,
then the comprehensive preference of a over b is not weaker than the comprehensive
preference of c over d”;

• is better oriented towards solving real-life multicriteria ranking problems by using
an adaptation of VC-DRSA [24], in particular VC-DRSA with consistency measure ε
(called ε-VC-DRSA) that was found to be promising in prior experimental studies
[25, 26];

• uses the rule preference model that is the most general preference model, easy to
understand by a DM; rules induced from a PCT should be of the following type:

“if car a has maximum speed at least 25 km/h greater than car b, and car a has
comfort at least high while car b has comfort at most medium, then car a is at least
as good as car b”;

• when applying decision rules, takes into account not only the existence of rules
concluding outranking or non-outranking but also the credibility and strength of
these rules;

• employs proper (i.e., satisfying desirable properties) exploitation procedure for ex-
ploitation of the preference graph resulting from the application of induced rules on
set A of objects to be ranked;

1.4.2 Procedures for Exploitation of Preference Graph

When using an MCDA rule-based preference model, application of rules on a set A of
objects to be ranked yields a preference structure on this set. The induced preference
structure, represented by a so-called preference graph, denoted by G, needs to be further
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exploited to get a final ranking of all objects from A. In the four MCDA rule-based
approaches reviewed in Section 1.2.1, only the procedures based on net flow scores of
objects have been considered in exploitation step (s5), which may be considered arbitrary.
This motivates us to investigate other exploitation procedures.

In our research, we have noticed rich literature concerning different so-called ranking
methods for exploitation of a (single) valued outranking relation over a set of objects
[7, 28–31, 34–36, 49, 137, 139]. Preference graphs representing a valued outranking relation
are obtained, e.g., in several outranking methods like ELECTRE III [57, 142] as well as
PROMETHEE I and II [37, 38].

When decision examples given by a DM concern assignment of pairs of reference ob-
jects to outranking relation S and non-outranking relation Sc, which is the case of the first
three MCDA rule-based approaches reviewed in Section 1.2.1 (denoted by α, β, and γ),
and also of the approach considered in this thesis, then the preference graph resulting
from application of rules induced from lower approximations of S and Sc represents two
relations over set A: S and Sc. These relations may be crisp or valued, in general. In the
previous MCDA rule-based approaches (α, β, and γ), only crisp relations have been con-
sidered. They were defined as: aSb (aScb) if there exists a rule that covers pair (a, b) and
concludes aSb (aScb), a, b ∈ A. In this thesis, we consider both crisp and valued relations.
In the latter case, S(a, b) (Sc(a, b)) can be understood as the credibility of outranking
(non-outranking) between a and b, a, b ∈ A. The valued relations can be constructed
using different statistics of induced decision rules.

The above duality, i.e., the existence of well-known ranking methods concerning ex-
ploitation of a (single) valued relation and “our” case of exploitation of two relations
resulting from application of decision rules, motivated us to look for an exploitation pro-
cedure that employs a suitable transformation of “our” preference graph G (representing
two relations) to a preference graph G′ representing a valued relation (that can be further
exploited using one of the existing ranking methods). As we have managed to find such
transformation, we faced a problem of choosing a proper ranking method for exploitation
of the resulting preference graph G′. This problem motivates us to analyze and compare
several existing ranking methods w.r.t. a number of desirable properties. Some of these
properties have been already studied in the literature, and some of them are introduced
for the first time in this thesis.

1.4.3 Similarity-based Classification Problem

In similarity-based classification, the key issue is the aggregation of marginal similarities of
objects into their comprehensive similarity. Typically, this aggregation is performed using
some real-valued aggregation function (involving operators, like weighted Lp norm, min,
etc.) (see, e.g., [51]) which is always arbitrary to some extent. This motivated us to look for
an approach that measures comprehensive similarity in a (more) meaningful way, avoiding
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the use of an aggregation function. An approach of this type, employing an adaptation of
DRSA, was proposed for the first time in [88], and improved in [89, 91]. In this approach,
comprehensive similarity is represented by decision rules induced from classification exam-
ples. This enables to obtain a meaningful similarity measure, which is, moreover, resistant
to irrelevant (or noisy) features because each decision rule, being a partial dominance cone
in a similarity space, may involve conditions concerning only a subset of features. As the
induced rules employ only ordinal properties of marginal similarity functions, the con-
sidered approach is also invariant to ordinally equivalent marginal similarity functions.
A rule-based approach to similarity learning was considered also in [111], although in the
context of unsupervised learning (clustering text documents).

Although attractive for the above reasons, the approach proposed in [88, 89, 91] has
two main shortcomings, as discussed in Section 1.3.2.

The practical importance of the similarity-based classification problem, observed short-
comings of the methods reviewed in Section 1.3, as well as the above advantages of DRSA
and rule-based preference modeling, motivate us to propose an approach to similarity-
based classification based on DRSA, improving and extending previous DRSA-based ap-
proaches introduced in [88, 89, 91]. Thus, our motivation is to propose a method that:

• uses an adaptation of DRSA to case-based reasoning;

• avoids aggregation of marginal similarities using a real-valued aggregation function
but rather combines these similarities in a meaningful way using monotonic decision
rules;

• exploits only ordinal properties of marginal similarity functions and membership
functions, and thus, it is invariant to ordinally equivalent marginal similarity func-
tions;

• employs decision rules based on the monotonic relationship “the more similar is ob-
ject y to object x w.r.t. the considered features, the closer is y to x in terms of the
membership to a given decision class X”; we believe that this relationship truly re-
flects the monotonicity characteristic for CBR, i.e., monotonic relationship between
comprehensive similarity of objects and their similarities w.r.t. single features; in-
duced decision rules should be of the following type:

“if similarity of flower y to flower x w.r.t. petal length is at least 0.7, and simi-
larity of flower y to flower x with respect to sepal width is at least 0.8, then the
membership of y to class setosa is between 0.7 and 0.9”,

where reference flower x has petal length 1.4, sepal width 3.0, and belongs to class
setosa in degree 0.8;
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• uses an adaptation of the rule classification scheme proposed in [21] to determine
membership of a new object to a considered decision class.

1.5 Goal and Scope of the Thesis

The overall goal of this thesis is to develop adaptations of the Dominance-based Rough Set
Approach (DRSA) to multicriteria ranking problem and to similarity-based classification
problem (case-based reasoning). This general goal is divided into the following specific
objectives:

(o1) develop the methodology for multicriteria ranking using VC-DRSA;

(o2) analyze alternative exploitation procedures that can be used to exploit the pref-
erence graph obtained in multicriteria ranking problem after application of a set
of induced decision rules on a set of objects to be ranked; in particular, analyze
properties of several well-known ranking methods that can be applied in one of the
exploitation procedures involving a suitable transformation of the preference graph;

(o3) develop the methodology for similarity-based classification using DRSA;

(o4) verify experimentally the proposed methodology for multicriteria ranking.

The main focus of the thesis is on the methodology for multicriteria ranking. To ver-
ify learning potential of the proposed method for multicriteria ranking, we compare
this method experimentally with another state-of-the-art method from the field of PL
– SVMrank.

The method for similarity-based classification using DRSA is illustrated by an ex-
ample concerning application of this newly proposed method. Its comparison with other
similarity-based classification methods in a simulated computational experiment is not
meaningful because the other methods do not account for the same input classification
information as our method. Precisely, this is the information concerning credibility of
membership to each of the considered classes. Moreover, most of the other methods do
not account for the same output classification information as produced by our method.
This is the information concerning credibility of membership to each of the considered
classes, which results from application of induced decision rules. Moreover, putting aside
the final classification result, our method also provides additional useful information that
other similarity-based classification methods do not provide.

1.6 Thesis Outline

The remainder of this thesis is organized as follows.
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Chapter 2 presents our methodology for dealing with multicriteria ranking problems
using VC-DRSA. This methodology is illustrated by an example given in Section 2.10.

In Chapter 3, we define several desirable properties of ranking methods, i.e., methods
that exploit a preference graph representing a valued relation over a set of objects to be
ranked, and yield a ranking (total or partial preorder) of all objects from this set. The
ranking method is a core component of a generic exploitation procedure that we propose
for exploitation of preference graph G, representing two relations (crisp or valued), that
is obtained when using our method for multicriteria ranking. In this chapter, we also
examine the properties of several existing ranking methods, like Net Flow Rule, Min in
Favor, etc. The respective proofs can be found in the Appendix. We conclude this chapter
by indicating a ranking method that enjoys the best properties.

Chapter 4 concerns adaptation of DRSA to similarity-based classification (case-based
reasoning). The proposed methodology is illustrated by an example presented in Sec-
tion 4.9.

In Chapter 5, we describe the setup and results of a computational experiment in
which we compared our method for multicriteria ranking with another approach from the
field of PL – SVMrank.

Chapter 6 summarizes the contribution of this thesis and presents possible directions
of future research.





Chapter 2

Application of VC-DRSA to
Multicriteria Ranking Problem

2.1 Introduction

In this chapter, we present a rule-based methodology for dealing with multicriteria ranking
problem. This methodology employs an adaptation of the ε-VC-DRSA (i.e., VC-DRSA
with consistency measure ε) [23, 24] to the multicriteria ranking problem. VC-DRSA
is a probabilistic version of DRSA, however, it is not a statistical preference learning
methodology in the sense of statistical machine learning, where the preference model is
learned so as to minimize a loss function admitted for parameter estimation over a training
set. In the current adaptation, decision examples have the form of pairwise comparisons
of some reference objects, i.e., objects relatively well known to a DM. These pairwise
comparisons, presented in a so-called pairwise comparison table (PCT), specify if a weak
preference relation, called an outranking relation S, holds for the considered pairs of refer-
ence objects or not. When weak preference relation does not hold, such a relation is called
a non-outranking relation Sc. As the pairwise comparisons given by a DM are prone to
inconsistencies, we approximate comprehensive preference relations S and Sc by calcu-
lating their lower and upper approximations according to ε-VC-DRSA. Then, we employ
VC-DomLEM rule induction algorithm [26] to induce probabilistic decision rules from the
lower approximations of S and Sc. Thus, induced decision rules involve pairs of objects.
They constitute the preference model of the DM who gave the pairwise comparisons. Ap-
plication of these rules on a set A of objects to be ranked yields a preference structure
on A, composed of relations S and Sc over A, and represented by a directed multigraph G
called preference graph. In order to pass from the preference structure (preference graph)
to the recommended ranking of objects, one has to apply an exploitation procedure. In this
chapter, we briefly discuss four suitable exploitation procedures and then, we focus on one
of these procedures which, in our opinion, deserves the most attention. This procedure
consists in two steps: (i) suitable transformation of the preference graph G (representing

37
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two relations over set A) to a preference graph G′ representing a (single) valued relation
over A; (ii) exploitation of the resulting graph G′ using a ranking method. We review
several ranking methods known from the literature. The properties of these methods are
analyzed in detail in Chapter 3.

This chapter comprises a synthesis and extension of the research results published
in [163, 164]. In [163], the relations S and Sc induced by decision rules were both crisp,
and thus, the corresponding preference structure was called crisp preference structure.
Moreover, we adopted a typical assumption of MCDA concerning presence of a consistent
set of criteria (as defined in Section 1.1). In [164], we did not make any assumption
concerning the set of criteria, which is rather typical for PL. Moreover, the relations S
and Sc induced by decision rules were both valued, and thus, the corresponding preference
structure was called valued preference structure. In this thesis, we investigate all four
combinations resulting from considering consistent or not necessarily consistent set of
criteria on one hand, and crisp or valued preference structure on the other hand. The
perception of the set of criteria (i.e., whether it is assumed to be a consistent set or a not
necessarily consistent set) influences the way of constructing PCT and preference graph;
the adopted type of preference structure (i.e., whether it is crisp or valued) influences
the way of constructing preference graph and the composition of the considered set of
desirable properties of a ranking method. Besides, when constructing valued preference
structures, we consider two alternative ways of defining the strength of a probabilistic
decision rule. The first way employs only credibility (consistency) of the rule, analogously
to [63]. The second way (adopted in [164]) employs the product of credibility and coverage
factor of the rule. Thus, altogether, we consider the following six versions of a rule-based
approach to multicriteria ranking employing ε-VC-DRSA:

• VC-DRSArank
c 0|1 – approach assuming that criteria make up a consistent set, and

employing crisp preference structure,

• VC-DRSArank
c 0-1cr – approach assuming that criteria make up a consistent set, employ-

ing valued preference structure, and measuring rule’s strength by its credibility,

• VC-DRSArank
c 0-1× – approach assuming that criteria make up consistent set, employing

valued preference structure, and measuring rule’s strength by the product of its
credibility and coverage factor,

• VC-DRSArank
nc 0|1 – approach allowing not necessarily consistent set of criteria, and

employing crisp preference structure,

• VC-DRSArank
nc 0-1cr – approach allowing not necessarily consistent set of criteria, em-

ploying valued preference structure, and measuring rule’s strength by its credibility,
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• VC-DRSArank
nc 0-1× – approach allowing not necessarily consistent set of criteria, em-

ploying valued preference structure, and measuring rule’s strength by the product
of its credibility and coverage factor.

All the above versions were considered and compared in the computational experiment
described in Chapter 5. In the following, when addressing all these versions simultaneously,
we use a generic denotation VC-DRSArank. Moreover, we use denotation VC-DRSArank

c

when referring to the versions assuming that criteria make up a consistent set, and VC-
DRSArank

nc when referring to the versions without this assumption.

2.2 Preliminaries

A valued relation R over a set of objects A is a function from A×A into [0, 1]. It is said
to be reflexive if R(a, a) = 1, for all a ∈ A. It is said to be irreflexive if R(a, a) = 0, for
all a ∈ A. We denote by RA the set of all valued relations over A. Moreover, we denote
by R/A′ the restriction of valued relation R over A to set A′ ⊆ A, i.e., valued relation
over A′ such that for all a, b ∈ A′, R/A′(a, b) = R(a, b). A valued relation R over A such
that R(a, b) ∈ {0, 1}, for all a, b ∈ A, is said to be crisp. In such case:

• if R(a, b) = 1, we say that pair (a, b) belongs to relation R, and we write aRb or
(a, b) ∈ R,

• if R(a, b) = 0, we say that pair (a, b) does not belong to relation R, and we write
not aRb or (a, b) /∈ R.

Let R be a crisp relation over A. This relation is said to be:

• transitive if (aRb and bRc⇒ aRc),

• complete if (aRb or bRa),

for all a, b, c ∈ A.
A total preorder (also called complete preorder or weak order) over A is a crisp binary

relation which is reflexive, transitive, and complete. A partial preorder over A, often called
simply preorder, is a crisp binary relation which is reflexive, and transitive. The symmetric
part of a total preorder relation R yields equivalence classes ordered by the asymmetric
part of R.

Let R be a crisp relation over A. We denote by G(A,R) the set of greatest elements
of A given R, i.e.,

G(A,R) = {a ∈ A : aRb for all b ∈ A \ {a}}. (2.1)

It should be noticed that G(A,R) may well be empty. When R is a total preorder, it is
easy to see that set G(A,R) is non-empty and equal to the first equivalence class of R.
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A ranking method (RM) � is a function assigning a total or partial preorder �(A,R)

over A to any finite set A and any valued relation R over this set. Remark that this is an
extended definition w.r.t. the one given in [35, 36, 93], where �(A,R) was supposed to
be a total preorder. Moreover, in [35, 36], � was called a ranking rule. However, in this
thesis, we call � a ranking method to avoid confusion with decision rules.

We, respectively, denote by = (A,R) and � (A,R) the symmetric and asymmetric
parts of �(A,R), i.e., the relations such that, for all a, b ∈ A,

a =(A,R) b⇔ a �(A,R) b and b �(A,R) a, (2.2)

a �(A,R) b⇔ a �(A,R) b and not b �(A,R) a. (2.3)

2.3 Problem Setting

In this section, we describe in detail the setting of the considered multicriteria ranking
problem introduced in Section 1.1.1. We formalize several aforementioned concepts and
give respective notation that is used in the remaining part of this thesis.

We consider a multicriteria ranking problem in which objects belonging to a finite
set A have to be ranked, either completely or partially. In the former case, one aims at
obtaining a total preorder over A. In the latter case, one accepts a partial preorder over A.
The objects from set A are evaluated by set G = {g1, . . . , gn} of n criteria. Each criterion
gi ∈ G, i = 1, . . . , n, is a real-valued function gi : A → R, with cardinal (i.e., interval or
ratio) scale or ordinal scale (which is given a priori or results from an order-preserving
number-coding of non-numerical ordinal evaluations). Thus, value gi(a), a ∈ A, represents
the evaluation of object a with respect to (w.r.t.) criterion gi. A criterion with the cardinal
scale is called a cardinal criterion; the set of all cardinal criteria is denoted by GN ⊆ G.
A criterion with the ordinal scale is called an ordinal criterion; the set of all ordinal criteria
is denoted by GO ⊆ G. Moreover, GN∪GO = G and GN∩GO = ∅. The meaning of the two
scales is such that in the case of a criterion gi ∈ GN with a cardinal scale, one can define
a function ki : R2 → R which measures the intensity of preference (positive or negative) of
object a over object b, taking into account evaluations gi(a), gi(b), a, b ∈ A. For properties
of function ki, and different ways of defining it, the reader is referred to [84]. Basically, ki
is non-decreasing w.r.t. the first argument, and non-increasing w.r.t. the second argument.
For the sake of simplicity, we assume in this thesis that for each cardinal criterion gi ∈ GN ,
intensity of preference is defined as: ki[gi(a), gi(b)] = ∆i(a, b) = gi(a)−gi(b). In the case of
a criterion gi ∈ GO with an ordinal scale, this is not possible (as differences of evaluations
are not meaningful) and one can only establish an order of evaluations gi(a), a ∈ A.

We assume, moreover, without loss of generality, that all the criteria are of gain-type,
i.e., the greater the criterion value the better.

Let us denote by Vgi = R the value set (domain) of criterion gi ∈ G. Then, set
VG =

∏
i=1,...,n

Vgi = Rn is called G-evaluation space.



2.3. Problem Setting 41

Given the statement of the multicriteria ranking problem, the only objective infor-
mation one can get is the dominance relation D over set of objects A, defined in the
G-evaluation space. Let us consider objects a, b ∈ A; object a is said to dominate ob-
ject b, denoted by aDb, if and only if (iff) for all gi ∈ G : gi(a) ≥ gi(b). The dominance
relation D is, however, too poor because it leaves many objects incomparable. In order
to make the objects more comparable, a DM must supply some preference information
revealing her/his value system w.r.t. multicriteria evaluations. We consider a frequent
case, when the preference information has the form of pairwise comparisons of some ob-
jects relatively well known to the DM, called reference objects. This information is thus
composed of some decision examples on the reference objects. Remark that pairwise com-
parisons may be given by a DM directly or they may be calculated using some other type
of preference information given by a DM, like a reference ranking (i.e., a linear ranking
of reference objects, possibly with ties) or an ordinal classification of reference objects.
We clarify this point below, after we adopt a particular form of pairwise comparisons.

Let us denote by AR the set of all reference objects. Set AR can be a subset of A,
however, it is not required by the presented methodology. If AR * A, then we just need
to define each criterion gi ∈ G, i = 1, . . . , n, as function A ∪ AR → R, and dominance
relation D over set A∪AR. In any case, A\AR is a set of objects unseen during preference
model learning.

Following [82, 84, 160], we consider that for each ordered pair (a, b) of different refer-
ence objects, i.e., (a, b) ∈ AR×AR, a 6= b, the DM can state either “object a is at least as
good as object b” (in other words – “object a outranks object b”) or “object a is not at least
as good as object b” (in other words – “object a does not outrank object b”), or abstain
from any judgment. The first situation is denoted by aSb (or (a, b) ∈ S), while the second
one is denoted by aScb (or (a, b) ∈ Sc). Moreover, we fix aSb for pairs (a, b) ∈ AR × AR

such that aDb (in case when set G is assumed to be a consistent set of criteria), or we
only fix aSa for all a ∈ AR (in case when set G is not assumed to be a consistent set of
criteria). Thus, from a formal point of view, the DM can reveal her/his preferences by
assigning pairs of objects to any of the two considered disjoint comprehensive preference
relations: outranking relation S or non-outranking relation Sc. Obviously, relation S is
a weak preference relation which, in general, is only reflexive. It is not symmetric, not
transitive, and not complete. Moreover, non-outranking relation Sc is irreflexive, and, in
general, it is not symmetric, not transitive, and not complete. This is to say that the
preference information coming from the DM is relatively weak and non-exhaustive.

As mentioned above, relations S and Sc may be also calculated using some other
type of preference information given by a DM, like a reference ranking or an ordinal
classification of reference objects. In the first case, calculated relation S is composed of
pairs (a, b) ∈ AR×AR such that object a is ranked not lower than object b, while calculated
relation Sc is composed of pairs (a, b) ∈ AR×AR such that object a is ranked lower than
object b. In the second case, calculated relation S is composed of pairs (a, b) ∈ AR × AR
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such that object a is classified to a decision class not worse than that of object b, while
calculated relation Sc is composed of pairs (a, b) ∈ AR×AR such that object a is classified
to a decision class worse than that of object b. Observe, however, that the calculated
relations S and Sc obtained in the above two cases are always transitive. Thus, the pairwise
comparisons adopted in this thesis are a more general type of preference information, as
the resulting relations S and Sc are not necessarily transitive. Moreover, the pairwise
comparisons provided by the DM need not to be complete, in the sense that (s)he may
assign pair (a, b) ∈ AR ×AR to relation S or Sc but abstain from assigning inverted pair
(b, a) to any of these relations.

By expressing her/his preferences using statements concerning outranking or non-
outranking, for each pair of objects (a, b) ∈ AR × AR, a 6= b, the DM can easily specify
any of the four situations typically considered in MCDA, i.e.:

• strict preference P :
aPb⇔ aSb ∧ bSca, (2.4)

• inverse strict preference P−1:

aP−1b⇔ aScb ∧ bSa, (2.5)

• indifference I:
aIb⇔ aSb ∧ bSa, (2.6)

• incomparability J :
aJb⇔ aScb ∧ bSca. (2.7)

It is worth stressing that expressing decision examples on the reference objects is
cognitively relatively easy for a DM. In our approach, instead of requiring that the DM
provides values of some difficult parameters like weights of criteria or different thresholds
(see, e.g., the outranking methods reviewed in Section 1.2.1), and then using this infor-
mation in a complex preference model, we treat the decision examples supplied by the
DM as training data, and then follow with learning of a preference model of the DM in
easy rule terms.

To simplify the notation, in the following, we will use unique symbol T to refer to any
of the comprehensive preference relations S and Sc when these relations are considered
jointly, unless this may cause misunderstanding. Moreover, we denote by IG, IGN , IGO ⊆
{1, . . . , n} the sets of indices of criteria belonging to G,GN , GO, respectively, where
IGN ∩ IGO = ∅ and IGN ∪ IGO = IG.

2.4 Pairwise Comparison Table

The preference information of a DM in the form of pairwise comparisons of reference
objects is used to create a pairwise comparison table (PCT), first introduced in [77,
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80]. Let us denote by B ⊆ AR × AR the set of pairs of reference objects for which the
comprehensive preference of the DM is known. The exact composition of this set depends
on the considered version of VC-DRSArank, as specified below:

• in case when set G is assumed to be a consistent set of criteria, set B is composed
of pairs (a, b) ∈ AR × AR, such that not aDb, for which the DM expressed her/his
preferences by declaring aSb or aScb, as well as of other pairs (c, d) ∈ AR×AR, such
that cDd, for which we assume relation S;

• in case when set G is not assumed to be a consistent set of criteria, set B is composed
of pairs (a, b) ∈ AR×AR, a 6= b, for which the DM expressed her/his preferences by
declaring aSb or aScb, as well as of pairs (a, a), a ∈ AR, which are assigned to S.

Thus, B = S ∪ Sc.
Intuitively, a PCT created on the basis of preference information supplied by the DM

is an m×(n+1) data table, denoted by SPCT , where m is the cardinality of set B of pairs.
First n columns of this table correspond to criteria from set G. The last, (n+1)-th, column
represents the comprehensive preference relation S or Sc. Each row of SPCT corresponds
to a pair of reference objects from B. As announced in Section 2.3, when comparing two
objects a, b ∈ AR on a cardinal criterion gi ∈ GN , one puts in the corresponding column
of SPCT the difference gi(a)− gi(b). When comparing two objects a, b ∈ AR on an ordinal
criterion gi ∈ GO, one puts in the corresponding column of SPCT an ordered pair of ordinal
evaluations (gi(a), gi(b)).

Describing the PCT more formally, one can say that each pair of objects (a, b) ∈ B is
evaluated on set G of criteria, such that:

• for criterion gi ∈ GN , the evaluation of (a, b) ∈ B is defined as
qi(a, b) = gi(a)− gi(b) ∈ Vqi = R,

• for criterion gi ∈ GO, the evaluation of (a, b) ∈ B is defined as
qi(a, b) = (gi(a), gi(b)) ∈ Vqi = R× R.

Then, set VQ =
∏
i∈IG

Vqi is called Q-evaluation space.

2.5 Rough Approximation of Outranking and

Non-outranking Relations

In Section 2.3, we considered dominance relation D over set of objects A, defined in the G-
evaluation space. Here, we introduce another type of dominance relation, denoted by D2.
This binary relation is defined over set B of pairs of objects, in the Q-evaluation space.
However, as it is more convenient, below we introduce dominance relation D2 using only
the evaluations of objects from set AR on the criteria from set G.
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First, let us consider a case when set G is composed of cardinal criteria only, i.e.,
GN = G,GO = ∅. Then, given pairs of objects (a, b), (c, d) ∈ B, pair (a, b) is said to dom-
inate pair (c, d) w.r.t. criteria from G (denoted by (a, b)D2(c, d)) iff ∆i(a, b) ≥ ∆i(c, d)

for each gi ∈ G, where ∆i(a, b) denotes gi(a) − gi(b). Let Di
2 be the dominance relation

over B confined to single criterion gi ∈ G. This relation is reflexive, transitive and com-
plete. Therefore, Di

2 is a total preorder over B. Since an intersection of total preorders is
a partial preorder, and relation D2 over B is the intersection of relations Di

2, i ∈ IG, then
relation D2 is a partial preorder over B.

Secondly, let us consider a case when set G is composed of ordinal criteria only, i.e.,
GO = G,GN = ∅. Then, given pairs of objects (a, b), (c, d) ∈ B, pair (a, b) is said to
dominate pair (c, d) w.r.t. criteria from G iff gi(a) ≥ gi(c) and gi(b) ≤ gi(d) for each
gi ∈ G. In other words, pair (a, b) is said to dominate pair (c, d) w.r.t. criteria from G

iff aDc and dDb. Let Di
2 be the dominance relation over B confined to single criterion

gi ∈ G. This relation is reflexive, transitive but non-complete (i.e., it is possible that
neither (a, b)Di

2(c, d) nor (c, d)Di
2(a, b) for some (a, b), (c, d) ∈ B and gi ∈ G). Therefore,

Di
2 is a partial preorder over B. Since an intersection of partial preorders is also a partial

preorder, and relationD2 overB is the intersection of relationsDi
2, i ∈ IG, then relationD2

is a partial preorder over B.
Finally, when setG is composed of both cardinal and ordinal criteria, i.e., whenGN 6= ∅

and GO 6= ∅, then given pairs of objects (a, b), (c, d) ∈ B, pair (a, b) is said to dominate
pair (c, d) w.r.t. criteria from G iff (a, b) dominates (c, d) w.r.t. both GN and GO. Since
the dominance w.r.t. GN is a partial preorder over B and the dominance w.r.t. GO is
a partial preorder over B, then the dominance D2, being the intersection of these two
dominance relations, is also a partial preorder over B.

Let G′ ⊆ G and pairs (a, b), (c, d) ∈ B. Then, if (a, b) dominates (c, d) w.r.t. set G of
criteria, then (a, b) dominates (c, d) w.r.t. set G′.

Given a pair of objects (a, b) ∈ B we define the following:

• a set of pairs of objects dominating (a, b), called the dominating set or positive
dominance cone in the Q-evaluation space:

D+
2 (a, b) = {(c, d) ∈ B : (c, d)D2(a, b)}, (2.8)

• a set of pairs of objects dominated by (a, b), called the dominated set or negative
dominance cone in the Q-evaluation space:

D−2 (a, b) = {(c, d) ∈ B : (a, b)D2(c, d)}. (2.9)

In equations (2.8) and (2.9), pair of objects (a, b) is called an origin of the dominance
cone. Dominating and dominated sets of objects are “granules of knowledge” used to
approximate outranking and non-outranking relation, respectively.
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We formulate the following dominance principle w.r.t. pairwise comparisons of a DM:
“if a is preferred to b at least as much as c is preferred to d with respect to each gi ∈ G, then
the comprehensive preference of a over b is not weaker than the comprehensive preference
of c over d”. This means that if (a, b)D2(c, d), one expects that:

(i) if aScb, then cScd,

(ii) if cSd, then aSb.

Violation of this dominance principle is considered as an inconsistency w.r.t. domi-
nance relation D2 over B. Let us observe that, thanks to the presence in SPCT of pairs
(a, a) ∈ S, a ∈ AR, an inconsistency w.r.t. D2 appears also when given two objects
a, b ∈ AR, the DM states that aScb, while aDb. This is related to the reflexivity of S
and the irreflexivity of Sc. In fact, aDb implies (a, b)D2(a, a), and together with aSa, this
implies that aSb. Thus, the opposite statement aScb is inconsistent with the expectation
(ii) listed above.

In practice, decision examples given by a DM are often inconsistent due to hesitation
of the DM, unstable character of her/his preferences, or incomplete determination of the
set of criteria [e.g., 145]. These inconsistencies cannot be considered as a simple error
or as noise. They can convey important information that should be taken into account
when constructing a preference model of the DM. Rather than correct or ignore these
inconsistencies, we propose to handle them using a dominance-based rough set approach.
Before learning of a preference model of the DM, we structure pairs of objects contained
in SPCT by calculation of lower approximations of the two comprehensive preference
relations. In this way, we restrict a priori the set of pairs of objects on which the preference
model is built to a subset of sufficiently consistent pairs of objects belonging to lower
approximations. This restriction is motivated by a postulate for learning from (sufficiently)
consistent data, so that the knowledge gained from this learning is relatively certain (or,
in other words, the induced preference model is reliable). Analogous restriction proved
to be effective in case of ordinal classification problems with monotonicity constraints
[25, 26]. It is worth underlining that, although only sufficiently consistent pairs of objects
from SPCT are used to construct a preference model of the DM, the remaining pairs of
objects are not removed from SPCT . In other words, the approach proposed in this thesis
does not boil down to a simple pre-processing performed to remove inconsistent decision
examples. In fact, inconsistent pairs of objects play the role of “counterexamples”, helping
this way to induce a preference model.

In some previous PCT-oriented adaptations of DRSA to multicriteria ranking [e.g.,
82, 84, 160], outranking and non-outranking relations were approximated using strict
inclusion relation between dominance cones originating in pairs of objects (a, b) ∈ B

and the comprehensive preference relations. Precisely, lower approximations of relations
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S and Sc were defined as:

S = {(a, b) ∈ B : D+
2 (a, b) ⊆ S}, (2.10)

Sc = {(a, b) ∈ B : D−2 (a, b) ⊆ Sc}. (2.11)

These definitions of lower approximations appear to be too restrictive in practical
applications. In consequence, lower approximations of S and Sc are often empty, prevent-
ing generalization of pairwise comparisons in terms of sufficiently certain decision rules.
Therefore, in this thesis, we rely on the Variable Consistency Dominance-based Rough Set
Approach (VC-DRSA) [24, 97] which is a probabilistic extension of the classical DRSA.
Since originally VC-DRSA was introduced for multicriteria classification problems, here
we adapt its definitions of variable-consistency (v-c) lower approximations to the case of
approximating outranking and non-outranking relations. In the adapted definitions of v-c
lower approximations of S and Sc, we use consistency measure εT : B → [0, 1] (whose
prototype was introduced in [23, 24]) defined as:

εS(a, b) =
|D+

2 (a, b) ∩ Sc|
|Sc|

, (2.12)

εSc(a, b) =
|D−2 (a, b) ∩ S|

|S|
. (2.13)

Given pair of objects (a, b) ∈ B and relation T , value εT (a, b) reflects consistency of pair
(a, b) w.r.t. T . εT is a cost-type consistency measure, which means that value zero denotes
full consistency and the greater the value, the less consistent is a given pair of objects. The
definitions of v-c lower approximations adapted to the case of approximating outranking
and non-outranking relations are the following:

S = {(a, b) ∈ S : εS(a, b) ≤ θS}, (2.14)

Sc = {(a, b) ∈ Sc : εSc(a, b) ≤ θSc}, (2.15)

where consistency thresholds θS, θSc ∈ [0, 1). The values of these thresholds can be given
by a DM or fixed using a simple wrapper-like cross validation procedure. Note that in
case θS = θSc = 0, the v-c lower approximations (2.14) and (2.15) are equal to the lower
approximations (2.10) and (2.11), respectively. In the following, unless this may cause
misunderstanding, we drop “v-c” and call sets of pairs of objects defined by (2.14) and
(2.15) just lower approximations of relations S and Sc, respectively.

In [24], several consistency measures were defined. The choice of particular consis-
tency measure εT is dictated by several factors. The first one is that value εT (a, b), where
(a, b) ∈ B, features an easy interpretation – it can be interpreted as an estimate of
conditional probability that a pair of objects (c, d) ∈ B belongs to the dominance cone
originating in pair (a, b), given that pair (c, d) does not belong to comprehensive preference
relation T . The second factor is a good performance of measure εT in prior computational
experiments [25, 26], comparing to other consistency measures. The third factor is the fact
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that measure εT has all monotonicity properties [24] relevant to the case of a PCT with
just two possible decisions for each pair of objects, i.e., assignment to relation S or Sc. Pre-
cisely, measure εT has the following monotonicity properties: (m1) – monotonicity w.r.t.
the set of criteria, (m2) – monotonicity w.r.t. relation T , and (m4) – monotonicity w.r.t.
dominance relation D2 over B. Definitions of these properties, for the case of a cost-type
consistency measure, can be found in the Appendix (Definitions 14, 15, and 16).

Using definitions (2.14) and (2.15), one can define v-c upper approximations and v-c
boundaries of sets S and Sc as in [24].

The coefficient
γ(S, Sc) =

|S ∪ Sc|
|B|

(2.16)

defines quality of approximation of S and Sc by set G. Obviously, γ(S, Sc) ∈ [0, 1], and
γ(S, Sc) = 1 indicates that for given values of consistency thresholds θS, θSc ∈ [0, 1), the
lower approximations given by (2.14) and (2.15) contain all the pairs of objects from
relations S and Sc, respectively.

We define positive regions of relations S and Sc as follows:

POS(S) =
⋃

(a,b)∈S

D+
2 (a, b), (2.17)

POS(Sc) =
⋃

(a,b)∈Sc

D−2 (a, b). (2.18)

Positive region of relation S (respectively, Sc) contains pairs of objects sufficiently consis-
tent, i.e., belonging to lower approximation of relation S (2.14) (respectively, Sc (2.15)),
and can also contain some inconsistent pairs of objects which fall into dominance cones
D+

2 (·, ·) (respectively, D−2 (·, ·)) originating in pairs of objects from lower approximation of
relation S (respectively, Sc). Moreover, one can define boundary and negative regions of
relations S and Sc analogously to [22, 26]. It is also possible to perform further DRSA-like
analysis by calculating reducts and the core [e.g., 83, 84, 86, 159, 160].

2.6 Induction of Decision Rules

After structuring decision examples supplied by a DM into lower approximations of com-
prehensive preference relations, we induce a generalized description of sufficiently consis-
tent pairs of objects from SPCT in terms of a set of minimal decision rules. An induced
set of rules is considered to be a preference model of the DM who gave the pairwise
comparisons of reference objects. Each rule is a statement of the type:

if Φ, then Ψ,

where Φ and Ψ denote condition and decision part of the rule, called also premise and
conclusion, respectively. The condition part of the rule is a conjunction of elementary con-
ditions concerning individual criteria, and the decision part of the rule suggests assignment
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of pairs of objects covered by the rule to outranking relation S or to non-outranking re-
lation Sc. The rule is said to cover a pair of objects (a, b) ∈ A × A if this pair satisfies
all the elementary conditions of the rule. A pair of objects (a, b) ∈ B is said to support
the rule if this pair satisfies all the elementary conditions and the conclusion of the rule.
Rule rT , suggesting assignment of covered pairs of objects to relation T , is called minimal
if there is no other rule r′T having premise at least as general as that of rT (i.e., em-
ploying subset of elementary conditions of rT and/or more general elementary conditions
than rT ) and consistency not worse than that of rT (where by consistency of rule rT we
understand the value of a rule consistency measure defined later in this section). In the
following, a minimal decision rule is denoted by m-rule. The interest in minimal decision
rules comes, obviously, from the fact that they generalize decision examples better than
non-minimal rules. Thus, generation of minimal decision rules may be seen as a way to
avoid overfitting.

Decision rules are induced so as to cover pairs of objects from lower approximations
(2.14) and (2.15). However, in some cases it is impossible for a rule to cover only pairs
of objects from a lower approximation. To handle these cases, the positive region of the
considered comprehensive preference relation is computed according to (2.17) or (2.18).

Set T of pairs of objects belonging to the lower approximation of comprehensive pref-
erence relation T is the basis for induction of a set of minimal decision rules that suggest
assignment to T . A rule from this set is supported by at least one pair of objects from T ,
and it covers pair(s) of objects from POS(T ). The elementary conditions (selectors) that
form this rule are built using only evaluations of objects present in the pairs of objects
that belong to T .

Below, we define the syntax of decision rules that generalize description of sufficiently
consistent pairs of objects present in a PCT:

if
(
∆i1(a, b) ≥ δi1

)
∧ . . . ∧

(
∆ip(a, b) ≥ δip

)
∧(

gip+1(a) ≥ rip+1 ∧ gip+1(b) ≤ sip+1

)
∧ . . . ∧

(
giz(a) ≥ riz ∧ giz(b) ≤ siz

)
,

then aSb, (2.19)

if
(
∆i1(a, b) ≤ δi1

)
∧ . . . ∧

(
∆ip(a, b) ≤ δip

)
∧(

gip+1(a) ≤ rip+1 ∧ gip+1(b) ≥ sip+1

)
∧ . . . ∧

(
giz(a) ≤ riz ∧ giz(b) ≥ siz

)
,

then aScb, (2.20)

where: ∆ij(a, b) denotes gij(a) − gij(b), δij ∈ {gij(c) − gij(d) : (c, d) ∈ B} ⊆ R, for
ij ∈ {i1, . . . , ip} ⊆ IGN ; (rij , sij) ∈ {(gij(c), gij(d)) : (c, d) ∈ B} ⊆ R × R, for ij ∈
{ip+1, . . . , iz} ⊆ IGO . For instance, considering ranking of cars, a decision rule could be
“if car a has maximum speed at least 25 km/h greater than car b (cardinal criterion) and
car a has comfort at least 3 while car b has comfort at most 2 (ordinal criterion), then
car a is at least as good as car b”, where values 2 and 3 code ordinal evaluations ‘medium’
and ‘good’, respectively.
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The rules with syntax (2.19) are called at least rules, while the rules with syntax
(2.20) are called at most rules. Let us observe that the above syntax of decision rules
is concordant with the definition of dominance relation D2 over B in the sense that the
premise of each decision rule corresponds to a positive or negative dominance cone in
(a subspace of) the Q-evaluation space. Moreover, as we work with variable-consistency
lower approximations, in order to cover by rules all pairs of objects from S and Sc, we
have to agree that not all the rules will be fully consistent. For example, it is inevitable
that a rule suggesting assignment to relation S covers pairs of objects that do not belong
to S but dominate in the Q-evaluation space at least one pair of objects from S that
supports the considered rule. Therefore, we speak about probabilistic decision rules to
underline the fact that not all pairs of objects from SPCT that are covered by a rule have
to support this rule.

Decision rules can be characterized by many attractiveness measures (see [95] for
a study of some properties of these measures).

Since we are working with probabilistic decision rules, it is important to control con-
sistency of these rules. To this end, we define a cost-type rule consistency measure [25, 26]
denoted by ε̂T . This measure is a function ε̂T : RT → [0, 1], where RT is the set of rules
suggesting assignment to relation T . Let us denote by Φ(rT ), Ψ(rT ), and ‖Φ(rT )‖, the
condition part of rule rT , its decision part, and the set of pairs of objects covered by the
rule, respectively. Then, measure ε̂T is defined as:

ε̂T (rT ) =

∣∣‖Φ(rT )‖ ∩ ¬T
∣∣

|¬T |
, (2.21)

where ¬T = B \ T is the complement of relation T w.r.t. set B (obviously, ¬S = Sc and
¬Sc = S).

Induced rules have to satisfy the same constraints on consistency as pairs of objects
from the lower approximation which serves as a base for rule induction. In particular, each
rule rT is required to satisfy threshold θT , i.e., ε̂T (rT ) has to be not greater than θT . In the
following, rule rT satisfying threshold θT is called sufficiently consistent and denoted by
sc-rule. Since rule consistency measure ε̂T is a counterpart of consistency measure εT
defined as (2.12) and (2.13), it can be shown that ε̂T derives monotonicity properties
from εT .

Let us now remind some useful definitions concerning probabilistic decision rules,
introduced in [26].

A probabilistic decision rule rT suggesting assignment to relation T is discriminant
if it covers only pairs of objects belonging to positive region POS(T ). In the following,
a discriminant decision rule is denoted by d-rule. Moreover, rule rT is robust if there exists
a pair of objects (a, b) ∈ T which is a base of rT . Considering for example definition (2.19),
it means that qi1(a, b) = δi1∧. . .∧qip(a, b) = δip∧qip+1(a, b) = (rip+1 , sip+1)∧. . .∧qiz(a, b) =

(riz , siz). In the following, a robust decision rule is denoted by r-rule. Set RT of rules
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suggesting assignment to relation T is minimal if each pair of objects (a, b) ∈ T is covered
by at least one rule rT ∈ RT and elimination of any rule from RT makes that not all pairs
of objects (a, b) ∈ T are covered by the remaining rules. In the following, a minimal set
of decision rules is denoted by m-set of rules.

Induction of decision rules is a complex problem and many algorithms have been
introduced to deal with it. Main rule induction algorithms defined for DRSA can be
found in [25, 26, 47, 92, 161]. In general, these rule induction algorithms can be divided
into three categories that reflect different induction strategies:

(i) generation of a minimal set of decision rules,

(ii) generation of an exhaustive set of decision rules,

(iii) generation of a satisfactory set of decision rules.

When applied to a PCT, algorithms from category (i) focus on describing all pairs of
objects from lower approximations of S and Sc by an m-set of m-rules. Algorithms from
category (ii) generate all m-rules. Category (iii) includes algorithms that generate all
m-rules that satisfy some a priori defined requirements (concerning, e.g., maximum rule
length or minimum support). One should also mention another category of rule induction
algorithms based on calculating reducts of a considered set of attributes (see, e.g., [8, 9]),
although they concern the indiscernibility-based rough set approach.

In this thesis, we apply VC-DomLEM algorithm [25, 26] which belongs to category (i).
Each of the sets RS and RSc of decision rules induced by VC-DomLEM for comprehensive
preference relations S and Sc, respectively, is an m-set of m-sc-rules (i.e., is a minimal
set composed of minimal and sufficiently consistent decision rules). During induction of
a single rule, we employ ε-consistency measure defined in [26]. Moreover, we parameter-
ize the algorithm in such a way, that it induces d-rules (technically, this is achieved by
choosing covering option s = 1, which means that each induced rule rT ∈ RT is allowed
to cover only pairs of objects belonging to set POS(T )). It is important to note that the
rules generated by VC-DomLEM do not have to be robust, which means that each rule
rT can employ elementary conditions created using evaluations in Q-evaluation space of
different pairs of objects from T.

2.7 Application of Decision Rules

After induction of decision rules, the next step of the proposed methodology for multicrite-
ria ranking is the application of induced rules on set A. Each pair of objects (a, b) ∈ A×A
can be covered by some probabilistic decision rule(s) suggesting assignment to relation S
and/or to relation Sc. It can also be not covered by any rule. In order to address these
possibilities, we introduce two relations over set A, denoted by S and Sc, which result from
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application of decision rules on A. The precise definitions of these relations depend on
two determinants. The first determinant is the admitted perception of the set of criteria
(i.e., whether this set is assumed to be a consistent set or not). The second determinant is
the way of perceiving decision rules, which may be, in a sense, qualitative or quantitative.
Precisely, when considering a pair (a, b) ∈ A×A and comprehensive preference relation T ,
a DM may be interested to know:

(i) if there exists at least one rule suggesting assignment of (a, b) to T (qualitative
information), or

(ii) what is the strength of the strongest rule suggesting assignment of (a, b) to T (quan-
titative information).

In case (i) above, relations S and Sc are crisp and thus, the preference structure composed
of these relations is called the crisp preference structure. In case (ii) above, these relations
are valued and thus, the preference structure composed of these relations is called the
valued preference structure; precise values of S(a, b) and Sc(a, b) depend, obviously, on
the adopted definition of rule strength.

We consider two alternative definitions of the strength σ of rule rT :

σ(rT ) =
(
1− ε̂T (rT )

)
, (2.22)

σ(rT ) =
(
1− ε̂T (rT )

)
cf(rT ), (2.23)

where cf(rT ) denotes coverage factor of rule rT , defined as the ratio of the number of
pairs of objects supporting rT and the cardinality of relation T . In this way, the higher
the consistency of a rule (i.e., the lower the value ε̂T (rT )), and the greater the number
of pairs of objects supporting the rule, the stronger the rule is. Measuring rule strength
using definition (2.22) employing cost-type rule consistency measure ε̂T , is analogous to
measuring rule strength using gain-type rule confidence (credibility) measure (defined as
the ratio of the number of pairs of objects supporting rT and the number of pairs of
objects covered by rT ) applied in [63]. Measuring rule strength using definition (2.23),
introduced in [164], allows to take into account not only consistency of the rule, but also
the relative number of pairs of objects supporting this rule.

In the following, we give four definitions of relations S and Sc, corresponding to all
combinations of the two determinants introduced in this section: consistent set of criteria
or not necessarily consistent set of criteria on one hand, and qualitative or quantitative
interpretation of rule matching on the other hand.

2.7.1 Definition of Relations S and Sc – Consistent Set of

Criteria, Crisp Relations

When assuming that set G is a consistent set of criteria, and using only qualitative
information concerning rule matching, relations S and Sc over A, induced by the sets of
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decision rules RS and RSc , respectively, are defined as in [163]:

S = {(a, b) ∈ A× A : (∃ rS ∈ RS such that rS covers (a, b)) or (aDb)}, (2.24)

Sc = {(a, b) ∈ A× A : (∃ rSc ∈ RSc such that rSc covers (a, b)) and not (aDb)}, (2.25)

where ∃ rS ∈ RS is read as “there exists a rule rS ∈ RS”. Let us observe that relation S is
reflexive and relation Sc is irreflexive. Moreover, relations S and Sc are, in general, neither
transitive nor complete.

Considering the six versions of the rule-based approach to multicriteria ranking listed
in Section 2.1, defining relations S and Sc by (2.24) and (2.25), respectively, corresponds
to version VC-DRSArank

c 0|1 .

2.7.2 Definition of Relations S and Sc – Consistent Set of

Criteria, Valued Relations

When assuming that setG is a consistent set of criteria, and using quantitative information
concerning rule matching, relations S and Sc over A are defined as:

S(a, b) =

{
max{σ(rS) : rS ∈ RS, rS covers (a, b)}, if not aDb
1, if aDb

(2.26)

Sc(a, b) =

{
max{σ(rSc) : rSc ∈ RSc , rSc covers (a, b)}, if not aDb
0, if aDb

(2.27)

where σ(rS) denotes the strength of rule rS. Let us observe that relation S is reflexive and
relation Sc is irreflexive.

Considering the six versions of the rule-based approach to multicriteria ranking listed
in Section 2.1, defining relations S and Sc by (2.26) and (2.27), respectively, corresponds
to versions VC-DRSArank

c 0−1cr
and VC-DRSArank

c 0−1×
.

2.7.3 Definition of Relations S and Sc – Not Necessarily

Consistent Set of Criteria, Crisp Relations

When considering set G to be a not necessarily consistent set of criteria, and using only
qualitative information concerning rule matching, relations S and Sc over A, induced by
the sets of decision rules RS and RSc , respectively, are defined as:

S ={(a, b) ∈ A× A : (∃ rS ∈ RS : rS covers (a, b)) or (a = b)}, (2.28)

Sc ={(a, b) ∈ A× A : (∃ rSc ∈ RSc : rSc covers (a, b)) and not (a = b)}. (2.29)

where ∃ rS ∈ RS is read as “there exists a rule rS ∈ RS”. Let us observe that relation S is
reflexive and relation Sc is irreflexive. Moreover, relations S and Sc are, in general, neither
transitive nor complete.
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Considering the six versions of the rule-based approach to multicriteria ranking listed
in Section 2.1, defining relations S and Sc by (2.28) and (2.29), respectively, corresponds
to version VC-DRSArank

nc 0|1.

2.7.4 Definition of relations S and Sc – Not Necessarily

Consistent Set of Criteria, Valued Relations

When considering set G to be a not necessarily consistent set of criteria, and using quan-
titative information concerning rule matching, relations S and Sc over A are defined as
in [164]:

S(a, b) =

{
max{σ(rS) : rS ∈ RS, rS covers (a, b)}, if a 6= b

1, if a = b
(2.30)

Sc(a, b) =

{
max{σ(rSc) : rSc ∈ RSc , rSc covers (a, b)}, if a 6= b

0, if a = b
(2.31)

where σ(rS) denotes the strength of rule rS. Let us observe that relation S is reflexive and
relation Sc is irreflexive.

Considering the six versions of the rule-based approach to multicriteria ranking listed
in Section 2.1, defining relations S and Sc by (2.30) and (2.31), respectively, corresponds
to versions VC-DRSArank

nc 0−1cr
and VC-DRSArank

nc 0−1×
.

2.7.5 Four-valued Outranking – Crisp Relations

It is worth noting that the information contained in crisp relations S and Sc over set A
can be represented using the four-valued outranking model of preferences, introduced in
[170, 171] (see also [93]). In this model, given a pair of objects (a, b) ∈ A×A, one considers
four possible situations of outranking:

• true outranking, denoted by aST b, iff aSb and not aScb,

• false outranking, denoted by aSF b, iff not aSb and aScb,

• unknown outranking, denoted by aSUb, iff not aSb and not aScb,

• contradictory outranking, denoted by aSKb, iff aSb and aScb.

The relations ST , SF , SU , SK , defined over A, correspond to the four truth values of Belnap
logic [11, 12]: T (true), F (false), U (unknown), and K (contradictory).

2.7.6 Four-valued Outranking – Valued Relations

The information contained in valued relations S and Sc over set A can be also represented
using four graded (valued) outranking relations ST ,SF , SU ,SK ∈ RA, considered, e.g.,
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in [64, 138, 170]. These binary relations also correspond to the four truth values of Belnap
logic [11, 12]: T (true), F (false), U (unknown), and K (contradictory). Relations ST , SF ,
SU , and SK , are defined in the following way:

ST (a, b) = min(S(a, b), 1− Sc(a, b)), (2.32)

SF (a, b) = min(1− S(a, b),Sc(a, b)), (2.33)

SK(a, b) = min(S(a, b),Sc(a, b)), (2.34)

SU(a, b) = min(1− S(a, b), 1− Sc(a, b)), (2.35)

where a, b ∈ A. It is worth noting that the above definitions relate to preference, in-
difference, and incomparability indices introduced by Bisdorff [18]. Moreover, the above
definitions are generalizations of the corresponding definitions given in Section 2.7.5.

2.7.7 Preference Graph

The preference structure on A, composed of S and Sc, can be represented by a preference
graph. It is a directed multigraph G. Each vertex (node) va of the preference graph corre-
sponds to exactly one object a ∈ A. One can distinguish in G two types of arcs: S-arcs and
Sc-arcs. In case of a crisp preference structure, an S-arc (Sc-arc) from vertex va to vertex vb
indicates that aSb (respectively, aScb). In case of a valued preference structure, each S-arc
between vertices va and vb is weighted by value S(a, b). Analogously, each Sc-arc between
vertices va and vb is weighted by value Sc(a, b). G is a multigraph since there may be one
S-arc and one Sc-arc for each pair of objects (a, b) ∈ A× A. A final recommendation for
the multicriteria ranking problem at hand, in terms of a total or partial preorder of all
objects belonging to set A, can be obtained upon a suitable exploitation of the preference
graph.

2.8 Exploitation of Preference Graph

The exploitation of preference graph G resulting from application of induced decision rules
on set A is not an easy task, especially because this graph represents two crisp/valued
relations S and Sc. This task is more complex than the exploitation of a preference graph
representing a crisp or valued relation, well studied in the literature [7, 28–31, 34–36, 49,
137, 139, 173].

Preference graphs representing a crisp relation are obtained, e.g., in some decision
aiding methods proposed in the field of MCDA, in which preferences of a DM are modeled
in terms of binary relations. Among these methods, one can mention, e.g., ELECTRE IS
[57, 147]. Preference graphs representing a valued relation are obtained, e.g., when using
ELECTRE III [57, 142], or PROMETHEE I, or PROMETHEE II [37, 38] methods. When
preferences are modeled in terms of binary relations, the key question is the existence of
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evidence in favor of the considered relation. For example, in case of outranking relation S
concerned in the methods from ELECTRE family, the evidence concerns the sentence aSb
and/or bSa, for any pair of objects a, b ∈ A. In reality, the evidence is often incomplete,
thus inducing a graded (valued) relation aSb, i.e., “a is at least as good as b, up to a certain
degree of certainty”.

It is reasonable to claim that considering only evidence in favor of the considered bi-
nary relation does not allow to catch the reality of some decision problems. In fact, such
an approach leads to the situation where the evidence in disfavor of a sentence is seman-
tically considered – and thus modeled – as the evidence in favor of the opposite sentence.
This mental restriction may induce not only misunderstandings but, which is even more
important, it may also imply some loss of information (a good example clarifying this
point, concerning government composition, is presented in [64]). Therefore, in this thesis,
given a pair of objects (a, b) ∈ A × A, we consider not only the decision rules support-
ing conclusion aSb, but also the rules supporting the opposite conclusion, i.e., conclusion
aScb. In this way, we take into account the arguments in favor of preference of a over b
and in disfavor of it; in the following, they will also be called positive and negative argu-
ments, respectively. As described in Section 2.7, in case of a valued preference structure,
the accumulated strength of the positive arguments is reflected by the value S(a, b), while
the accumulated strength of the negative arguments is reflected by the value Sc(a, b).

2.8.1 Review of Possible Exploitation Procedures

Given a preference graph G, one can propose several exploitation techniques that lead to
final recommendation for the multicriteria ranking problem at hand, in terms of a total
or partial preorder of all objects from set A. We distinguish the following approaches:

(i) direct exploitation of relations S and Sc by the Net Flow Score (NFS) procedure [93]
(when S and Sc are crisp) or Fuzzy Net Flow Score (FNFS) procedure [63] (when S
and Sc are valued),

(ii) exploitation of the four graded outranking relations ST , SF , SU , and SK (see Section
2.7.6) in the way proposed in [64] (when S and Sc are valued),

(iii) independent exploitation of relations S and Sc,

(iv) suitable transformation of preference graph G to another graph G′ representing
a valued relation, then exploitation of this relation leading to a total or partial
preorder over A.

Approach (i) is based on scoring function SNF : A→ R defined as:

SNF (a) =
∑

b∈A\{a}

S(a, b)− S(b, a)− Sc(a, b) + Sc(b, a). (2.36)



56 Application of VC-DRSA to Multicriteria Ranking Problem

Function SNF induces a total preorder over A, which is the solution of the considered
multicriteria ranking problem.

In approach (ii), one associates with each object a ∈ A a vector ā, defined as:

ā = (tb, tc, . . . , fb, fc, . . .),

where tb (respectively, fb) is equal to ST (a, b) (respectively, SF (b, a)). Then, all vectors
corresponding to objects from set A are sorted in the non-decreasing order and compared
lexicographically (to resolve ties, one can also take into account for each object a ∈ A

additional vectors composed of values SK(a, ·) or SU(a, ·)). Such leximin-scoring procedure
yields a partial preorder over A.

The general idea of approach (iii) is to exploit relations S and Sc independently,
obtaining two separate total or partial preorders, and then to conjunct these preorders in
the same way as in the ELECTRE III method [57, 142]. This leads to obtaining a partial
preorder over A.

In this thesis, we focus on approach (iv), which is the most generic one. The first step
of this approach, i.e., the transformation of preference graph G to graph G′, is presented in
the following Section 2.8.2. The second step of this approach consists in application of a so-
called ranking method to exploit the valued relation obtained in step one. Several existing
ranking methods that can be employed in the second step are reviewed in Section 2.8.3.

We concentrate on approach (iv) mainly for the following reasons.

• First, the exploitation of a valued relation over a set of objects has been widely
studied in the literature [7, 28–31, 34–36, 49, 137, 139]. These prior studies supply
us with several potentially useful ranking methods.

• Second, the diversity of ranking methods proposed in the literature calls for a sys-
tematic comparison of their formal properties, which is, however, missing.

• Third, as we explain in the last paragraph of Section 2.8.3, using a suitable transfor-
mation of preference graph G and a particular ranking method to exploit the trans-
formed graph G′, it is possible to obtain the same final ranking as in approach (i).
Thus, approach (iv) can be seen as a framework that encompasses approach (i).

• Fourth, when applied to set A, most of the ranking methods considered in the
literature yield a total preorder over A, which is generally acknowledged to be more
operational for a DM than a partial preorder that can be obtained in approaches (ii)
and (iii).

2.8.2 Fusion of Relations S and Sc in Order to Exploit a Single

Relation

The suitable transformation of preference graph G representing two relations S and Sc to
graph G′ representing one valued relation R ∈ RA (that can be further exploited using



2.8. Exploitation of Preference Graph 57

a ranking method) consists in defining relation R in the following way:

R(a, b) =
S(a, b) + (1− Sc(a, b))

2
, (2.37)

where a, b ∈ A. Let us observe that scoring function SNF defined by (2.36) can be ex-
pressed in terms of R as: SNF (a) = 2[

∑
b∈A\{a}R(a, b) − R(b, a)]. Moreover, relation R

is reflexive.
Note that when relations S and Sc are crisp, relation R is identical to the valued

relation over A introduced in [93], originally denoted by R4v, defined as:

R4v(a, b) =


0 if aSF b
1
2

if aSUb or aSKb
1 if aST b

,

where a, b ∈ A, and relations ST , SF , SU , and SK , are defined as in Section 2.7.5. When
R(a, b) ∈ {0, 1

2
, 1} for any (a, b) ∈ A× A, we call relation R a three-valued relation.

In the following, considering exploitation of relation R, we assume that this relation
has no “structural properties” [32], i.e., we assume (what seems to be the case) that:

• given S and Sc are crisp, R may be any three-valued relation over A,

• given S and Sc are valued, R may be any valued relation over A.

The rationale for this assumption is that relation R is determined by a considered set of
decision rules, and, in general, this set of rules does not depend on A.

2.8.3 Review of Ranking Methods

In this section, we review different ranking methods that can be applied to exploit valued
relation R defined by (2.37).

In the literature, one can find many ranking methods “dedicated” to exploitation of
a valued relation over a set of objects [28, 30, 34–36, 139]. On the other hand, as argued
by Arrow and Raynaud [5], one can also be interested in another approach to rank objects
which consists in (downward) iterative application of a choice function. Let us denote by
PA the set of all nonempty subsets of a finite set of objects A. Then, choice function cf
is a function

cf : PA ×RA → PA. (2.38)

A choice function associates with each nonempty set A′ ⊆ A and each valued relation R
over A, a nonempty choice set cf(A′, R) ⊆ A′, which may be interpreted as the set of
the “best” objects in A′ given relation R. Iterative application of a choice function on
a finite set A was considered, e.g., in [33, 35, 36]. It leads to obtaining a total preorder
over A. Let us denote by Ai ⊆ A the set of objects considered in i-th iteration and
by |A| the cardinality of set A. Obviously, A1 = A. In i-th iteration, i ∈ {1, 2, . . . , |A|},
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given choice function cf is applied to set Ai. Then, the objects belonging to choice set
cf(Ai, R) are put in i-th rank of the constructed ranking and removed from set Ai. Thus,
Ai+1 = Ai \ cf(Ai, R). The construction of a final ranking is finished when this ranking
contains all objects from set A.

Most of the proposed “dedicated” ranking methods as well as ranking methods based
on iterative application of a choice function employ a scoring function. Given a finite set
of objects A and a valued relation R over A, scoring function is used to evaluate relative
performance of each object a ∈ A w.r.t. the objects in nonempty set A′ ⊆ A, taking into
account relation R. Thus, scoring function sf is a function

sf : A× PA ×RA → R. (2.39)

Value sf(a,A′, R) denotes the score of object a ∈ A calculated w.r.t. the objects in
A′ ⊆ A, given valued relation R.

We define two generic score-based ranking methods: single-stage ranking method (�1)
and multi-stage ranking method (�i). These ranking methods are parameterized by a set
of objects A, a valued relation R over A, and a scoring function sf . Moreover, they yield
a total preorder over A, by performing the following steps:

• �1(A,R, sf):

(1) assign score sf(a,A,R) to each object a ∈ A;

(2) rank all the objects from set A according to their scores, in such a way that
the higher the score of an object, the lower its rank (objects with the same
score have the same rank);

• �i(A,R, sf):

(1) define choice function cf as follows:
cf(A′, R) = {a ∈ A′ : sf(a,A′, R) ≥ sf(b, A′, R) for all b ∈ A′}, where A′ ⊆ A,
i.e., in such a way that it chooses subset of A′ composed of objects with the
highest score;

(2) perform (downward) iterative application of the above choice function cf on
set A.

Clearly, the aforementioned “dedicated” ranking methods are instances of �1, differing
only by the definition of function sf . Analogously, ranking methods based on iterative
choice considered in [35, 36] are instances of �i, differing only by the definition of func-
tion sf .

Let us consider a finite set of objects A and a valued relation R over A. Then, according
to Barrett et al. [7], the score of any object a ∈ A w.r.t. the objects in any set A′ ⊆ A
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can be calculated using one of the following scoring functions:

max in favor : MF (a,A′, R) = max
b∈A′\{a}

R(a, b), (2.40)

min in favor : mF (a,A′, R) = min
b∈A′\{a}

R(a, b), (2.41)

sum in favor : SF (a,A′, R) =
∑

b∈A′\{a}

R(a, b), (2.42)

–max against : −MA(a,A′, R) = − max
b∈A′\{a}

R(b, a), (2.43)

–min against : −mA(a,A′, R) = − min
b∈A′\{a}

R(b, a), (2.44)

–sum against : −SA(a,A′, R) = −
∑

b∈A′\{a}

R(b, a), (2.45)

max difference : MD(a,A′, R) = max
b∈A′\{a}

R(a, b)−R(b, a), (2.46)

min difference : mD(a,A′, R) = min
b∈A′\{a}

R(a, b)−R(b, a), (2.47)

sum of differences : SD(a,A′, R) =
∑

b∈A′\{a}

R(a, b)−R(b, a). (2.48)

It is worth noting that SD(a,A′, R) is a sum of SF (a,A′, R) and −SA(a,A′, R).
In this thesis, given a finite set of objects A and a valued relation R over A, we consider

exploitation of relation R using one of the following ranking methods, well studied in the
literature:

(1) Net Flow Rule [30, 36], defined as:

NFR(A,R) = �1(A,R, SD), (2.49)

(2) Iterative Net Flow Rule [36], defined as:

It.NFR(A,R) = �i(A,R, SD), (2.50)

(3) Min in Favor [28, 35, 36, 139], defined as:

MiF (A,R) = �1(A,R,mF ), (2.51)

(4) Iterative Min in Favor [35], defined as:

It.MiF (A,R) = �i(A,R,mF ), (2.52)

(5) Leaving and Entering Flows [34], defined as:

L/E(A,R) = �1(A,R, SF ) ∩ �1(A,R,−SA). (2.53)
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As can be seen, considered ranking methods employ only some of the defined scoring
functions, namely: mF (2.41), SF (2.42), −SA (2.45), and SD (2.48).

NFR orders objects according to their net flow scores. It has a long history in social
choice theory [4, 59]. It coincides with the rule of Copeland [cf. 59, 100, 149] when R is
crisp. When R(a, b) is interpreted as a percentage of voters considering that a is preferred
or indifferent to b (a, b ∈ A), it corresponds to the well-known rule of Borda [cf. 59, 179].
Moreover, NFR is used in the PROMETHEE II outranking method [37, 38].

It.NFR consists in iterative application of a choice function that chooses objects with
the highest value of scoring function SD (2.48). This ranking method was originally called
the Repeated Net Flow Rule and denoted by RNFR [36].

L/E is used in the PROMETHEE I method [37, 38]. This ranking method allows any
two objects a, b ∈ A to be declared incomparable. This happens when two conclusions con-
cerning ranking of these objects, one conclusion resulting only from the comparison of their
leaving flows, i.e., values SF (·, A,R), and the other one resulting only from the comparison
of their entering flows, i.e., values −(−SA(·, A,R)), are contradictory. Such contradiction
occurs, e.g., when SF (a,A,R) > SF (b, A,R), while −SA(a,A,R) < −SA(b, A,R).

It should be noted that NFR and L/E make use of the “cardinal” properties of values
R(a, b), with a, b ∈ A. On the other hand, MiF represents a prudent approach as it
is purely “ordinal” – it uses values R(a, b) as if they were a numerical representation of
a credibility of a crisp relation between a and b. Thus, from the fact that R(a, b) ≥ R(c, d)

it concludes only that the relation between a and b is not less credible than the relation
between c and d, with a, b, c, d ∈ A.

The number of conceivable ranking methods calls for a systematic comparison of their
properties, which is, however, missing in the literature. Therefore, in Chapter 3, we define
several desirable properties of a ranking method, and we compare w.r.t. these properties
the well-known ranking methods described in (2.49), (2.50), (2.51), (2.52), and (2.53).

Now, let us come back and explain the sentence “approach (iv) can be seen as a frame-
work that encompasses approach (i)”, which appeared in the context of the four approaches
for exploitation of preference graph G (see Section 2.8.1). By saying this, we meant that
the total preorder over A obtained using scoring function SNF (2.36) is the same as the
total preorder over A obtained using NFR(A,R) (2.49).

2.9 Analysis of Final Ranking

In this section, we propose a way of measuring concordance between a final ranking
�(A,R) being a partial preorder (in particular a total preorder) over A, and the initial
pairwise comparisons of reference objects from set AR ⊆ A. Remark that the issue of
measuring this concordance is only relevant for the case when |AR ∩A| ≥ 2 (i.e., when at
least two reference objects appear in the final ranking). Below, for the sake of simplicity,
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we focus on a particular sub-case when AR ⊆ A, and |AR| ≥ 2, which is particularly
interesting from the MCDA perspective. Moreover, we use the notation introduced in
Sections 2.2 and 2.4. First, in Section 2.9.1, we remind the definition of the Kendall rank
correlation coefficient τ , which is a classical measure used to measure concordance of
two total preorders. Second, in Section 2.9.2, we define a new concordance measure τ ′,
which is a generalization of measure τ , suited to the aforementioned task of measuring
the concordance between a partial preorder (in particular a total preorder) and pairwise
comparisons. In both sections, we denote by �A′ a partial preorder over set A′ ⊆ A.
Moreover, we use the following representation of �A′ in terms of strict preference, inverse
strict preference, indifference, and incomparability relations over set A′:

aP�A′
b⇔ a �A′ b and not b �A′ a, (2.54)

aP−1
�A′

b⇔ not a �A′ b and b �A′ a, (2.55)

aI�A′
b⇔ a �A′ b and b �A′ a, (2.56)

aJ�A′
b⇔ not a �A′ b and not b �A′ a, (2.57)

where a, b ∈ A′. Thus, aP�A′
b iff object a is ranked higher than object b, aP−1

�A′
b iff

object a is ranked lower than object b, aI�A′
b iff the ranks of objects a and b are equal,

and aJ�A′
b iff objects a and b are incomparable in partial preorder �A′ .

2.9.1 Kendall Rank Correlation Coefficient τ

Let �AR and �A be two total preorders, and let |AR| ≥ 2. Then

τ(�AR ,�A) = 1− 2

∑
(a,b)∈AR×AR,a 6=b

err(a, b)

|{(a, b) ∈ AR × AR : a 6= b}|
, (2.58)

where err(a, b) denotes an error accounted for a pair of objects (a, b) ∈ AR × AR, a 6= b.
This error is defined as:

err(a, b) =


0, if (aP�

AR
b and aP�A

b) or (aP−1
�

AR
b and aP−1

�A
b) or (aI�

AR
b and aI�A

b)

1
2
, if

(
(aP�

AR
b or aP−1

�
AR
b) and aI�A

b
)
or
(
aI�

AR
b and (aP�A

b or aP−1
�A
b)
)

1, if (aP�
AR
b and aP−1

�A
b) or (aP−1

�
AR
b and aP�A

b)

.

(2.59)
Thus, values of coefficient τ belong to the interval [−1, 1]. The best possible value of τ
is 1 (which corresponds to the maximum concordance of the two total preorders), and the
worst possible value is −1 (which, in turn, corresponds to the maximum discordance of
the two total preorders).

2.9.2 New Concordance Measure τ ′

Let �A be a partial preorder. Then the concordance between �A and pairwise compar-
isons of reference objects from set AR ⊆ A, determining two disjoint crisp relations S
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and Sc over AR, can be measured as

τ ′(S, Sc,�A) = 1− 2

∑
(a,b)∈B,a 6=b

err′(a, b)

|{(a, b) ∈ B : a 6= b}|
, (2.60)

where B = S∪Sc and err′(a, b) denotes an error accounted for a pair of objects (a, b) ∈ B,
a 6= b. This error is defined as:

err′(a, b) =


0, if (aSb and aP�A

b) or (aSb and aI�A
b) or (aScb and aP−1

�A
b)

or (aScb and aJ�A
b)

1, if (aSb and aP−1
�A
b) or (aSb and aJ�A

b) or (aScb and aP�A
b)

or (aScb and aI�A
b)

.

(2.61)
Thus, values of coefficient τ ′ belong to the interval [−1, 1]. The best possible value of τ ′

is 1 (maximum concordance), and the worst possible value is −1 (maximum discordance).
Now, let us show that measure τ ′ (2.60) is a generalization of measure τ (2.58). First,

remind that the pairwise comparisons of reference objects considered in this thesis are
a more general type of preference information than a reference ranking or an ordinal clas-
sification of reference objects (see Section 2.3). Second, observe that a total preorder �AR

can be represented in terms of relations P�
AR

, P−1
�

AR
, and I�

AR
, using properties (2.54),

(2.55), and (2.56), respectively. Moreover, the resulting relations P�
AR
≡ P , P−1

�
AR
≡ P−1,

and I�
AR
≡ I, can be represented in terms of relations S and Sc using properties (2.4),

(2.5), and (2.6), respectively. Thus, outranking and non-outranking relations implied by
total preorder �AR are the following:

• aSb if a �AR b,

• aScb if not a �AR b,

as already observed in Section 2.3. In such case, B = S∪Sc is equal to AR×AR, and thus,
the right hand sides of (2.58) and (2.60) differ only by the applied error measure. Third,
let �AR and �A be two total preorders, |AR| ≥ 2, and let S and Sc be the outranking
and non-outranking relations implied by total preorder �AR . Then

err(a, b) + err(b, a) = err′(a, b) + err′(b, a)

and thus,
τ(�AR ,�A) = τ ′(S, Sc,�A).

2.10 Illustrative Example

In this section, we present an illustrative example concerning application of the proposed
rule-based methodology for multicriteria ranking. In this example, for the purpose of
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obtaining the final ranking of considered objects, we apply scoring function SNF (2.36),
i.e., we exploit the preference graph, yielded by application of induced decision rules, using
approach (i) of Section 2.8.1.

Let us consider a hypothetical DM who is a scientist and wants to buy a notebook
for personal use. The DM would like to spend no more than e1700. The DM is going
to use the notebook for writing scientific papers, programming, performing some compu-
tational experiments, and watching movies in her/his free time. For these reasons, the
DM considers only 22 high-end notebooks, that have Intel Core i7 processor with four
cores, at least 4 MB of RAM (DDR3, 1333MHz), and at least a 15 in. monitor with full
high-definition resolution (1920 x 1080 pixels). The DM evaluates the notebooks by three
cardinal criteria: price in e(g1, to be minimized), diagonal of a monitor in inches (g2, to
be maximized), and weight in kilograms (g3, to be minimized). The weight is important
because of the work-related travels (e.g., attending conferences). The evaluations of all 22

notebooks using the three considered criteria are given in Table 2.1. The data come from
the Internet store www.komputronik.pl.

Table 2.1: Multicriteria evaluations of the considered notebooks

Id Model Price (g1) Diagonal (g2) Weight (g3)
n1 Asus N75SF-V2G-TZ025V 865 17.3 3.4
n2 Asus N75SF-V2G-TZ149V 877 17.3 3.4
n3 Asus N75SL-V2G-TZ043V 1066 17.3 3.4
n4 DELL XPS L502X 1031 15.6 2.7
n5 Asus N55SL-S1072V 1042 15.6 2.84
n6 Asus X93SM-YZ071V 971 18.4 4.11
n7 DELL XPS 15 1372 15.6 2.51
n8 DELL XPS L702X 1254 17.3 3.43
n9 Samsung NP700G7A-S01PL 1656 17.3 3.2
n10 Samsung NP700G7A-S02PL 1656 17.3 3.81
n11 Asus G53SW-SZ141 1161 15.6 3.8
n12 Asus G53SX-IX059V 1372 15.6 3.92
n13 Asus G53SX-S1163V 1348 15.6 3.92
n14 Asus G73SW-91037V 1538 17.3 3.9
n15 Asus G74SX-TZ055V 1372 17.3 4.28
n16 Asus G74SX-TZ210V 1419 17.3 4.28
n17 Asus VX7SX-S1090V 1538 15.6 3.82
n18 Lenovo ThinkPad T520 1467 15.6 2.5
n19 Lenovo ThinkPad W520 1538 15.6 2.61
n20 Sony VAIO VPC-F21Z1E 1467 16.0 3.1
n21 Sony VAIO VPC-F23S1E 1419 16.4 3.1
n22 Sony VAIO VPC-SE2V9E 1419 15.5 1.96

The set of objects from Table 2.1 constitutes set A of objects to be ranked. In the past,
the DM has tested notebooks n1, n4, n10, n12, n14, and n18 personally. These six objects
constitute set AR of reference objects. Based on personal experience, the DM is able to
rank the six reference objects as follows: n4 � n1 � n12 � n14 � n10 � n18 (i.e., object n4
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is the best, object n1 is second best, . . . , object n18 is the worst). Let us observe that the
ranking of reference objects can be used as a source of pairwise preference information.
Therefore, given any two notebooks a, b ∈ AR, we fix aSb whenever notebook a is ranked
by the DM not lower than notebook b. Moreover, we fix aScb whenever notebook a is
ranked lower than notebook b (in all such cases we have “not aDb”). In this way, we get
B = AR×AR. Remark that relations S and Sc are the same in case of set G = {g1, g2, g3}
being either consistent set of criteria or not necessarily consistent set of criteria.

Given the preference information, the following calculations are performed using jRank1

software [165].
The preference information in the form of pairwise comparisons of six reference objects

yields a PCT composed of 36 pairs of objects. This PCT is shown in Table 2.2. Let us
note that the cardinality of relation S is 21, and the cardinality of relation Sc is 15.

One can observe in Table 2.2 several pairs of objects inconsistent w.r.t. dominance
relation D2 over set B. Such inconsistency occurs when a pair of objects (a, b) ∈ S is
dominated by a pair of objects (c, d) ∈ Sc. Inconsistent pairs of objects appearing in
Table 2.2 are marked in this table by an asterisk. All inconsistencies w.r.t. dominance
relation D2 over B are also presented in Table 2.3, where an asterisk indicates that pair
(a, b) ∈ S from the corresponding row is inconsistent with pair (c, d) ∈ Sc from the
corresponding column.

In order to show an advantage of the proposed PCT-oriented adaptation of ε-VC-
DRSA to multicriteria ranking over previous PCT-oriented adaptations of DRSA to mul-
ticriteria ranking, we consider two independent calculation paths, taking the PCT shown
in Table 2.2 as a “point of departure”. Considering the steps (s1)-(s5) of decision rule-based
methods presented in Section 1.2.1, this corresponds to the situation when step (s1) has
already been performed and we start calculations from step (s2). Then, the two considered
calculation paths are composed of the following steps:

(s2) calculation of lower approximations of relations S and Sc, according to definitions
(2.14) and (2.15), respectively,

(s3) calculation of a minimal set of decision rules by VC-DomLEM algorithm,

(s4) application of the induced rules on set A,

(s5) exploitation of the preference graph, resulting from application of induced decision
rules, using scoring function SNF (2.36), i.e., using approach (i) of Section 2.8.1,

(s6) evaluation of the obtained final ranking on set A using measure τ ′ (2.60).

In step (s4) above, for simplicity, we consider the case of a crisp preference structure,
composed of crisp relations S and Sc calculated using definitions (2.28) and (2.29), re-
spectively.

1See http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html.
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Table 2.2: The PCT yielded by pairwise comparisons of six reference objects

(a, b) ∆1 ∆2 ∆3 Relation
(n4, n4) 0 0.0 0.0 S
(n4, n1)∗ 166 -1.7 -0.7 S
(n4, n12) -341 0.0 -1.22 S
(n4, n14) -507 -1.7 -1.2 S
(n4, n10) -625 -1.7 -1.11 S
(n4, n18) -436 0.0 0.2 S
(n1, n4)∗ -166 1.7 0.7 Sc

(n1, n1) 0 0.0 0.0 S
(n1, n12) -507 1.7 -0.52 S
(n1, n14) -673 0.0 -0.5 S
(n1, n10) -791 0.0 -0.41 S
(n1, n18) -602 1.7 0.9 S
(n12, n4) 341 0.0 1.22 Sc

(n12, n1) 507 -1.7 0.52 Sc

(n12, n12) 0 0.0 0.0 S
(n12, n14)∗ -166 -1.7 0.02 S
(n12, n10) -284 -1.7 0.11 S
(n12, n18)∗ -95 0.0 1.42 S
(n14, n4) 507 1.7 1.2 Sc

(n14, n1) 673 0.0 0.5 Sc

(n14, n12)∗ 166 1.7 -0.02 Sc

(n14, n14) 0 0.0 0.0 S
(n14, n10) -118 0.0 0.09 S
(n14, n18)∗ 71 1.7 1.4 S
(n10, n4) 625 1.7 1.11 Sc

(n10, n1) 791 0.0 0.41 Sc

(n10, n12) 284 1.7 -0.11 Sc

(n10, n14) 118 0.0 -0.09 Sc

(n10, n10) 0 0.0 0.0 S
(n10, n18)∗ 189 1.7 1.31 S
(n18, n4) 436 0.0 -0.2 Sc

(n18, n1) 602 -1.7 -0.9 Sc

(n18, n12)∗ 95 0.0 -1.42 Sc

(n18, n14)∗ -71 -1.7 -1.4 Sc

(n18, n10)∗ -189 -1.7 -1.31 Sc

(n18, n18) 0 0.0 0.0 S

The above steps (s2)-(s6) “produce” the following results: lower approximations of out-
ranking and non-outranking relations obtained in step (s2), sets RS and RSc of minimal
decision rules obtained in step (s3), crisp preference structure on A obtained in step (s4),
final ranking (total preorder) on A obtained in step (s5), and value of concordance mea-
sure τ ′ obtained in step (s6). These results differ, however, in both calculation paths only
due to decisions made in step (s2), concerning consistency thresholds θS and θSc used
to calculate lower approximations (2.14) and (2.15). In the first path, denoted by cpθ=0,
we assume that both consistency thresholds are equal to zero. Thus, calculated lower ap-
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Table 2.3: Inconsistencies in the PCT yielded by pairwise comparisons of six
reference objects

(a, b) ∈ S ↓ || (c, d) ∈ Sc → (n1, n4) (n14, n12) (n18, n12) (n18, n14) (n18, n10)

(n4, n1) ∗ ∗ ∗
(n12, n14) ∗
(n12, n18) ∗
(n14, n18) ∗
(n10, n18) ∗ ∗

proximations are the same as the ones obtained using definitions (2.10) and (2.11). In the
second path, denoted by cpθ>0, we choose θS = θSc = 0.1. In this way, we relax a little bit
the conditions for inclusion of pairs of objects to lower approximations (2.14) and (2.15).
In particular, a pair of objects (a, b) ∈ S is considered to be sufficiently consistent (and
thus included in S) if it is dominated by at most one pair of objects belonging to relation Sc

(this can be verified using definition (2.12): 1/15 = 0.067 < θS = 0.1 < 2/15 = 0.133).
Moreover, a pair of objects (a, b) ∈ Sc is considered to be sufficiently consistent (and thus
included in Sc) if it dominates at most two pairs of objects belonging to relation S (this
can be verified using definition (2.13): 2/21 = 0.095 < θSc = 0.1 < 3/21 = 0.143).

Table 2.4 summarizes the results obtained in subsequent steps (s2)-(s6), along both
calculations paths.

Table 2.4: Summary of results obtained in steps (s2)-(s6), for calculations
paths cpθ=0, cpθ>0

Calculation path |S| |Sc| |RS | |RSc | τ ′

cpθ=0 16 10 3 2 0.400
cpθ>0 19 14 3 2 0.733

Looking at Table 2.4, it is clear that the results obtained along calculation path cpθ>0

are better (greater lower approximations and a higher value of τ ′). Thus, for the considered
illustrative example, the PCT-oriented adaptation of ε-VC-DRSA to multicriteria ranking,
proposed in this thesis, proved to be more useful than previous PCT-oriented adaptations
of DRSA to multicriteria ranking. In view of this conclusion, in the following, we present
only the results obtained along calculation path cpθ>0.

The set of minimal decision rules induced by VC-DomLEM algorithm is presented in
Table 2.5, where “Supp” denotes the number of pairs of objects that support given rule rT .
Remark that the third rule covers all pairs of objects (a, b) ∈ A× A such that aDb, and
that none of the rules suggesting assignment to relation Sc covers any such pair of objects.
Thus, relations S and Sc implied by induced decision rules are the same independently of
whether set G = {g1, g2, g3} is a consistent set of criteria or a not necessarily consistent set
of criteria. It is worth noting that the induced rules are relatively short and the number
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Table 2.5: Minimal decision rules induced by VC-DomLEM algorithm

Decision rule rT Supp ε̂T (rT )

if
(
∆1(a, b) ≤ −284

)
, then aSb 9 0

if
(
∆1(a, b) ≤ −166

)
∧
(
∆3(a, b) ≤ 0.02

)
, then aSb 7 0.067

if
(
∆1(a, b) ≤ 71

)
∧
(
∆2(a, b) ≥ 0

)
, then aSb 15 0.067

if
(
∆1(a, b) ≥ 95

)
, then aScb 12 0.095

if
(
∆1(a, b) ≥ −189

)
∧
(
∆2(a, b) ≤ −1.7

)
, then aScb 4 0.095

of rules is small w.r.t. the size of the PCT. Moreover, the rules are easy to interpret by
the DM.

The final ranking of all objects from set A, obtained using scoring function SNF (2.36),
is presented in Table 2.6, where the six reference objects are marked in bold, and for each
rank we give respective net flow score, i.e., the value of scoring function SNF .

Table 2.6: Final ranking of all objects from set A, obtained using scoring
function SNF (2.36)

Rank Net flow score Object(s)
1 39.0 n1

2 38.0 n2

3 37.0 n6

4 30.0 n3

5 24.0 n4, n5

6 17.0 n8

7 14.0 n11

8 7.0 n15

9 6.0 n16

10 -2.0 n21

11 -7.0 n13

12 -8.0 n7, n12

13 -14.0 n14

14 -16.0 n20

15 -20.0 n22

16 -27.0 n18

17 -32.0 n17, n19

18 -35.0 n9, n10

Now, let us analyze the final ranking of reference objects, i.e., n1 � n4 � n12 �
n14 � n18 � n10, by comparing it to the ranking of these objects given as the preference
information, i.e., n4 � n1 � n12 � n14 � n10 � n18. The two rankings are quite similar
(i.e., the final ranking respects 26 out of 30 preference relations specified in the preference
information), with only two “inversions” (n1 exchanged with n4, n18 exchanged with n10).
The value of concordance measure τ ′ = 0.733, which is a good result concerning that
10 out of 36 pairs of objects given in Table 2.2 are inconsistent. It is worth underlining that
the pairs of objects that got “inverted” (i.e., (n4, n1) and (n10, n18)) were not sufficiently
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consistent (see the first and the last row of Table 2.3). For example, pair (n4, n1) ∈ S was
not included in the lower approximation of relation S since it was dominated by three
pairs of objects belonging to relation Sc: (n18, n12), (n18, n14), and (n18, n10). Taking this
into account, we can say that the induced set of rules presented in Table 2.5 is a good
preference model of the DM.



Chapter 3

Analysis of Desirable Properties of
Ranking Methods

When considering properties of a ranking method, it is important to take into account the
characteristics of an exploited valued relation R over set A. Concerning definition (2.37),
and the discussion from Section 2.8.2, we distinguish the following two cases:

• exploitation of a general valued relation R over A, when R(a, b) ∈ R for any a, b ∈ A,

• exploitation of a three-valued relation R over A, when R(a, b) ∈ {0, 1
2
, 1} for any

a, b ∈ A.

In Section 3.1, we define several desirable properties of a ranking method, which ex-
ploits a valued relation R over set A of objects in view of constructing a ranking (total
or partial preorder) of all objects from this set.

In Section 3.2, we give two supposed priority orders of considered desirable properties
(which, from our point of view, reflect relative importance of these properties), depending
on the characteristic of the exploited valued relation.

Section 3.3 presents the results of examination of the properties of the five well-known
ranking methods reviewed in Section 2.8.3. The respective proofs can be found in the
Appendix. We conclude this section by indicating a ranking method that enjoys the best
properties.

3.1 Desirable Properties of Ranking Methods

In the literature, one can find many properties considered in the context of ranking
methods exploiting valued relations. These properties concern the result of application
of a ranking method to a general valued relation, or to a valued relation with particu-
lar features, e.g., a relation which is crisp and transitive. It should be noticed, however,
that these properties concern only the dependencies between the exploited valued rela-
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tion and obtained final ranking. Thus, they do not concern the dependencies between
comprehensive preference relations S, Sc and the final ranking.

The properties of ranking methods can be basically divided into two non-disjoint
groups [28, 36]: desirable properties and “characterizing” properties. The former reflect
some expectations of a DM w.r.t. the final ranking produced by a ranking method. The
latter reflect intrinsic characteristics of a ranking method; given a ranking method, the
research concerning “characterizing” properties aims at defining minimal sets of properties
that a given ranking method is the only one to satisfy [28, 30, 34, 36, 139]. Since our goal
is to obtain the ranking that “best” represents the DM’s preferences, we compare different
ranking methods w.r.t. desirable properties only. The same way was adopted, e.g., in [173],
in the context of exploitation of a crisp relation.

In general, different properties can be considered desirable depending on a particular
multicriteria ranking problem (see [36]). In this section, we present the properties that
seem to be of interest for most multicriteria ranking problems.

We find it reasonable to consider the following desirable properties of a ranking method
to be applied to exploitation of valued relation R (2.37):

(1) Neutrality (property N)
This property was considered, e.g., in [28, 30, 34, 36, 139].

Definition 1 (Neutrality) A ranking method � is neutral if, for any finite set of
objects A and any valued relation R over A:(
σ is a permutation on A

)
⇒
(
a � (A,R) b ⇔ σ(a) � (A,Rσ) σ(b), for all

a, b ∈ A
)
,

where Rσ is defined by Rσ(σ(a), σ(b)) = R(a, b), for all a, b ∈ A.

Thus, neutrality expresses the fact that a ranking method does not discriminate
between objects just because of their labels (or, in other words, their order in the
considered set A). It is a classical property in this context (see, e.g., [100, 149]).

(2) Monotonicity (property M)
Property of this name was considered, e.g., in [34, 36, 139], although the proposed
definitions were semantically slightly different. In this thesis, we adopt the definition
of monotonicity property given in [34]. Intuitively, monotonicity says that improving
an object cannot decrease its position in the ranking and, moreover, deteriorating
an object cannot improve its position in the ranking. In our opinion, the other two
definitions, considered in [36, 139], miss at least one aspect of this intuitive formu-
lation. Thus, we propose the following formulation of the monotonicity property.

Definition 2 (Monotonicity) A ranking method � is monotonic if, for any finite
set of objects A, any valued relation R over A, and any a, b ∈ A:
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(
a �(A,R) b⇒ a �(A,R′) b

)
,

where R′ is identical to R except that(
R′(a, c) > R(a, c) or R′(c, a) < R(c, a), for some c ∈ A \ {a}

)
or(

R′(b, d) < R(b, d) or R′(d, b) > R(d, b), for some d ∈ A \ {b}
)
.

Precisely, the definition given in [139] w.r.t. the difference between R′ and R concerns
only that(
R′(a, c) > R(a, c), for some c ∈ A \ {a}

)
or(

R′(b, d) < R(b, d), for some d ∈ A \ {b}
)
.

Moreover, the definition given in [36] lacks the second part of the above disjunction,
i.e., the part concerning object b:

(
R′(b, d) < R(b, d) or R′(d, b) > R(d, b), for some

d ∈ A \ {b}
)
.

(3) Covering Compatibility (property CC)
This property was considered, e.g., in [36] and [173] (where it was called respect for
the covering relation).

Definition 3 (Covering Compatibility) A ranking method � is covering com-
patible if, for any finite set of objects A, any valued relation R over A, and any
a, b ∈ A:(
R(a, b) ≥ R(b, a), and for all c ∈ A \ {a, b}, R(a, c) ≥ R(b, c) and R(c, a) ≤

R(c, b)
)
⇒ a �(A,R) b.

Thus, property CC expresses the intuition that when a “covers” b, b should not be
ranked before a. Our interest in this property results also from a very important
fact – in case of exploitation of valued relation R defined by (2.37), property CC of
applied ranking method guaranties that the final ranking produced by this method
respects dominance relation D over set A. Formally, this can be expressed by:

Corollary 1 Given any two objects a, b ∈ A, such that aDb, property CC of ranking
method � applied to exploitation of relation R (2.37) guaranties that a �(A,R) b.

The proof of the above corollary can be found in the Appendix.

(4) Independence of Non-Discriminating Objects (property INDO)
This property was considered, e.g., in [36] (where it was called independence of
non-discriminating alternatives) and in [173] (where it was called independence of
non-discriminating elements: weak version).

Definition 4 (Independence of Non-Discriminating Objects) A ranking
method � is independent of non-discriminating objects if, for any finite set of
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objects A and any valued relation R over A:(
R(a, b) = k and R(b, a) = k′, for all a ∈ A′ and all b ∈ A \ A′, with A′ ⊂ A

)
⇒(

�(A′, R/A′) = �(A,R)/A′
)
.

In the above definition, set A \A′ is composed of non-discriminating objects. Thus,
independence of non-discriminating objects says that when there is a subset of
objects that compare in the same way to all other objects, the ranking of the other
objects is not affected by the presence of this subset.

(5) Independence of Circuits (property IC)
This property was considered, e.g., in [30, 36]. It reflects the way in which a ranking
method deals with circuits (cycles) in the considered valued relation. It uses the
concept of circuit equivalency of two valued relations.

Definition 5 (Circuit Equivalency) Let us consider a finite set of objects A.
Two valued relations R and R′ over A are circuit-equivalent if R′ is identical to R
except that, for some distinct a, b, c ∈ A and some ε ∈ [−1, 1]:(
R′(a, b) = R(a, b) + ε and R′(b, a) = R(b, a) + ε

)
or(

R′(a, b) = R(a, b) + ε, R′(b, c) = R(b, c) + ε, and R′(c, a) = R(c, a) + ε
)
.

Thus, R′ and R are circuit-equivalent if they are identical except for a circuit of
length 2 or 3 on which a positive or negative value has been added.

Definition 6 (Independence of Circuits) A ranking method � is independent
of circuits if, for any finite set of objects A and any two valued relations R and R′

over A:(
R′ and R are circuit-equivalent

)
⇒

(
�(A,R′) = �(A,R)

)
.

According to [36], property IC has a straightforward interpretation. When R′ and R
are circuit-equivalent via a circuit of length 2, independence of circuits implies that
the ranking is only influenced by the differences R(a, b) − R(b, a). When R′ and R
are circuit-equivalent via a circuit of length 3, independence of circuits implies that
intransitivities of the kind R(a, b) > 0, R(b, c) > 0 and R(c, a) > 0 can be “wiped
out”. It is important to notice that property IC makes an explicit use of the “car-
dinal” properties of values R(a, b), with a, b ∈ A (except for the particular case in
which both R and R′ are crisp).

(6) Ordinality (property O)
This property was considered, e.g., in [28, 35, 36, 139].

Definition 7 (Ordinality) A ranking method � is ordinal if, for any finite set of
objects A, any valued relation R over A, and any strictly increasing and one-to-one
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transformation φ : [0, 1]→ [0, 1]:
�(A, φ[R]) = �(A,R),
where φ[R] is the valued relation over A such that φ[R](a, b) = φ(R(a, b)), for all
a, b ∈ A.

Thus, ordinality implies that a ranking method should not make use of the “cardinal”
properties of values R(a, b), with a, b ∈ A.

(7) Continuity (property C)
This property was considered, e.g., in [28, 35, 36]. It is meaningful only when the
exploited relation R over A is a general valued relation. It uses the concept of
convergence of a sequence of valued relations to a given valued relation.

Definition 8 (Convergence) Let us consider a finite set of objects A and a se-
quence of valued relations (Ri, i = 1, . . .) that are defined over A. We say that this
sequence converges to valued relation R if for any (arbitrarily small) ε > 0 there is
an integer k, such that for all j > k and all a, b ∈ A, we have |Rj(a, b)−R(a, b)| < ε.

Definition 9 (Continuity) A ranking method � is continuous if, for any finite
set of objects A, any valued relation R over A, any sequence of valued relations
(Ri, i = 1, . . .) converging to R, and any a, b ∈ A:(
a �(A,Ri) b for all Ri in the sequence

)
⇒
(
a �(A,R) b

)
.

Thus, continuity says that “small” changes in an exploited valued relation should
not lead to radical changes in the final ranking produced by a ranking method.

(8) Faithfulness (property F )
This property was considered, e.g., in [36] and [173] (where it was called respect for
the data 1.1 ).

Definition 10 (Faithfulness) A ranking method � is faithful if, for any finite
set of objects A and any relation R over A:(
R is a total preorder over A

)
⇒
(
�(A,R) = R

)
.

Thus, faithfulness concerns behavior of a ranking method in a special case when
considered relation R is crisp and, moreover, it is a total preorder over A. This
property says that a ranking method applied to a total preorder should preserve it.

(9) Data-Preservation (property DP )
This property was considered, e.g., in [36] (where it was called data-preservation 1 )
and in [173] (where it was called respect for the data 1.3 ).
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Definition 11 (Data-Preservation) A ranking method � is data-preserving if,
for any finite set of objects A and any relation R over A:(
R is a transitive crisp relation over A

)
⇒
(
R ⊆ �(A,R)

)
.

Thus, data-preservation says that when it is possible to obtain a partial preorder
on the basis of R without deleting information contained in this relation, a ranking
method should do so. It is important to note that property DP is not implied by
property F and vice versa.

(10) Greatest-Faithfulness (property GF )
This property was considered, e.g., in [35, 36].

Definition 12 (Greatest-Faithfulness) A ranking method � is greatest-faithful
if, for any finite set of objects A and any relation R over A:(
R is a crisp relation and G(A,R) 6= ∅

)
⇒
(
G(A,�(A,R)) ⊆ G(A,R)

)
.

Greatest-faithfulness says that if there are some greatest elements of a given set A,
then the top-ranked objects should be chosen among them (observe that in case of
a ranking method that yields a partial preorder over A, there may be no top-ranked
objects, i.e., set G(A,�(A,R)) may be empty). Let us note, however, that some
authors (see, e.g., [35]) do not find greatest-faithfulness as a particularly intuitive
requirement for a ranking method, as this property concerns only the first equiva-
lence class of the obtained ranking (they rather consider this property in the context
of choice methods). Moreover, in spite of names, it should be noted that a faithful
ranking method is not necessarily greatest-faithful, and vice versa.

(11) Discrimination (property D)
This property was not considered in the literature concerning exploitation of a valued
relation, although it is relevant in the case of exploitation of a three-valued relation
(like relation R (2.37), when S and Sc are crisp).

Definition 13 (Discrimination) A ranking method� is discriminatory if for any
finite set of objects A, there exists a valued relation R over A, such that the number
of ranks in �(A,R) is equal to the number of objects in set A.

Thus, discrimination says that for each set of objects A, there exists at least one
valued relation R over A, such that the ranking obtained by a considered ranking
method is a total order over A (i.e., a relation over A that is transitive, antisym-
metric, and complete).
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3.2 Priority Orders of Desirable Properties

In order to avoid a situation where all considered ranking methods become incompara-
ble (non-dominated), we suppose two priority orders of considered desirable properties
(which, from our point of view, reflect relative importance of these properties). The first
priority order concerns the case of exploitation of a three-valued relation R over A, and
the second priority order concerns exploitation of a general valued relation R over A.
The supposed priority orders are presented in Table 3.1. These orders are to be used
only to resolve situations where two or more ranking methods satisfy the same maximum
number of properties.

Table 3.1: Priority orders of desirable properties, depending on the character-
istic of exploited valued relation R over A

three-valued relation R general valued relation R
neutrality (N) neutrality (N)
monotonicity (M) monotonicity (M)
covering compatibility (CC) covering compatibility (CC)
discrimination (D) independence of non-discriminating

objects (INDO)
faithfulness (F ) independence of circuits (IC)
data-preservation (DP ) ordinality (O)
independence of non-discriminating continuity (C)
objects (INDO)
independence of circuits (IC) faithfulness (F )
ordinality (O) data-preservation (DP )
greatest-faithfulness (GF ) greatest-faithfulness (GF )

3.3 Verification of Properties of Ranking Methods

and Choice of the Best Method

Before verifying properties of the five ranking methods reviewed in Section 2.8.3, let us
make a note concerning reflexivity of an exploited valued relation R over set A. In [139,
173], R was assumed to be irreflexive. In [28, 34], it was assumed that R(a, b) is defined
only for pairs of objects (a, b) ∈ A×A such that a 6= b. Finally, in [35, 36], R was assumed
to be reflexive. In this thesis, exploited relation R (2.37) is reflexive. However, since each
of the five ranking methods analyzed here makes use of a scoring function that, for any
finite set of objects A and any valued relation R over A, does not take into account values
R(a, a), with a ∈ A, previous results concerning properties of the five ranking methods
hold.

Table 3.2 and Table 3.3 present properties of the five considered ranking methods, for
the case of exploitation of a three-valued relation or a general valued relation, respectively.
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In these tables, the properties are ordered according to the respective priority orders
defined in Section 3.2. Symbols T and F denote presence and absence of a given property,
respectively. Moreover, bold font is used in case when a given pair (Property, RM) was
already considered in the literature (where a proof or a counterexample was given), while
italics is used otherwise, in which case a proof (showing that the respective property is
satisfied for a general valued relation) or a counterexample (showing that the respective
property is not satisfied for some three-valued relation) is given in the Appendix. Note
that in the row corresponding to property M , some symbols T and F are in italics due to
adoption of a particular definition of this property (see Definition 2).

Table 3.2: Desirable properties of ranking methods – exploitation of a three-
valued relation

Property / RM NFR It.NFR MiF It.MiF L/E
N T T T T T
M T F T F T
CC T T T T T
D T T F T T
F T T F T T
DP T T T T T

INDO T T F F T
IC T F F F F
O F F T T F
GF F F T T T

Table 3.3: Desirable properties of ranking methods – exploitation of a general
valued relation

Property / RM NFR It.NFR MiF It.MiF L/E
N T T T T T
M T F T F T
CC T T T T T

INDO T T F F T
IC T F F F F
O F F T T F
C T F T F T
F T T F T T
DP T T T T T
GF F F T T T
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Looking at Tables 3.2 and 3.3, one can observe that the two ranking methods based on
iterative application of a choice function, namely It.NFR and It.MiF , lack monotonicity
property. This observation is concordant with [33]. Moreover, all ranking methods have
property CC, which guaranties that when they are applied to exploitation of valued
relation R (2.37), they produce final rankings respecting dominance relation D over set A.

Further analysis of Tables 3.2 and 3.3 leads to the conclusion that, in view of the
considered lists of desirable properties, the best ranking method for exploitation of both,
a three-valued relation and a general valued relation, is the NFR method. This is because
it satisfies most of the properties, i.e., eight out of ten (which is, however, true also for
the L/E ranking method), and, moreover:

• in the case of exploitation of a three-valued relation, NFR satisfies the first eight
properties (i.e., N , M , CC, D, F , DP , INDO, and IC),

• in the case of exploitation of a general valued relation, NFR satisfies the first five
properties (i.e., N , M , CC, INDO, and IC).

In case of exploitation of a general valued relation, the lack of property O is alleviated
by the fact that values R(a, b), a, b ∈ A, may be interpreted in “cardinal” terms. This is
due to the definition of relation R (2.37), the way of constructing relations S and Sc, and
the semantics of values ε̂T (rT ) (2.21) (i.e., relative number of “negative pairs of objects”
covered by rule rT ) and cf(rT ) (i.e., relative number of “positive pairs of objects” covered
by rule rT ).

It is worth pointing out that the NFR ranking method is attractive not only because
of the desirable properties it possesses. It represents an intuitive way of reasoning about
relative worth of objects in set A, as it takes into account both positive and negative ar-
guments concerning each object (i.e., strength and weakness of each object), as advocated
in [64].





Chapter 4

Similarity-based Classification using
Monotonic Rules

4.1 Introduction

In this chapter, we propose an eager learning method for the similarity-based classification
introduced in Section 1.1.2. This method employs an adaptation of the Dominance-based
Rough Set Approach (DRSA) to case-based reasoning (CBR). In CBR, a conclusion about
a new case is inferred by the analysis of conclusions taken for similar cases in the past.
In the considered classification context, the new case corresponds to an object z, described
by the features from set F , and the conclusion to be made corresponds to the (credibility
of) membership of z to a given decision class X ∈ D, where D is a finite family of pre-
defined decision classes. In the proposed adaptation of DRSA to CBR, we consider the
following monotonic relationship:

(mr2) “the more similar is object y to object x with respect to the considered features, the
closer is y to x in terms of the membership to a given decision class X”.

It is important to underline that the monotonic relationship (mr2) is meaningful regardless
of the credibility of membership of reference object x to class X. Thus, this monotonic
relationship can be seen as a generalization of the monotonic relationship considered in
prior adaptations of DRSA to CBR [88, 89, 91], where it was considered that:

(mr1) “the more similar is object y to object x w.r.t. the considered features, the greater
the membership of y to a given decision class X”.

Such monotonic relationship is reasonable only if the membership of reference object x to
class X takes a maximum value, as explained in Section 1.3.2. Note that in such a case,
(mr2) works in the same way as (mr1).

The main goal of the proposed methodology is to be possibly “neutral” and “objective”
in addressing the questions related to measuring similarity at the two levels mentioned in

79
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Section 1.3.3. At the level of single features, we consider marginal similarities in ordinal
terms only. At the level of all features, the marginal similarities are aggregated within deci-
sion rules underlying the general monotonic relationship between comprehensive closeness
of objects and their marginal similarities.

In this chapter, we extend prior adaptations of DRSA to CBR also by proposing the
way o inducing decision rules, and the way of resolving conflicts arising during application
of induced rules to a new object (new case).

This chapter is organized as follows. In Section 4.2, we further formalize the setting of
the considered similarity-based classification problem introduced in Section 1.1.2; in par-
ticular, we define the so-called similarity space. We also present assumptions specific for
our approach. Section 4.3 particularizes the similarity learning task that we perform with
our method. In Section 4.4, we discuss the construction of so-called similarity tables.
A similarity table stores information that results from comparing each object y ∈ U with
a given reference object x ∈ U . Section 4.5 introduces two comprehensive closeness re-
lations. These are binary relations concerning closeness of objects y, x ∈ U in terms of
their membership to a considered decision class X ∈ D. In Section 4.6, we define rough
approximations of the sets of objects being in either kind of comprehensive closeness re-
lation with a reference object x ∈ U . These sets are approximated using dominance cones
in the similarity space. Section 4.7 describes induction of monotonic decision rules from
the considered rough approximations. Section 4.8 shows how the induced rules can be
applied to a new case. In Section 4.9, we present an example illustrating the proposed
methodology.

This chapter comprises a revision and extension of the research results originally pub-
lished in [162].

4.2 Basic Notions and Assumptions

Pairwise fuzzy information base. Given the setting of the similarity-based classifi-
cation problem introduced in Section 1.1.2, a pairwise fuzzy information base B is the
3-tuple

B =< U,F,Σ >, (4.1)

where U is a finite set of objects (a case base), F = {f1, f2, . . . , fn} is a finite set of
features, and Σ = {σf1 , σf2 , . . . , σfn} is a finite set of marginal similarity functions such
that σfi : U × U → [0, 1], fi ∈ F .

Marginal similarity functions. Different marginal similarity functions can be used,
depending on the value set Vfi of feature fi ∈ F . The minimal requirement function σfi
has to satisfy is that for all x, y ∈ U , σfi(y, x) = 1 if and only if (iff) y and x have the
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same value of feature fi. In case of a numeric feature fi, with values on interval or ratio
scale, similarity can be defined using a function, e.g.:

• σfi = 1− |fi(x)−fi(y)|
maxvi∈Vfi

−minvi∈Vfi
,

• σfi = 1
|fi(x)−fi(y)|+1

,

• σfi = 1
(fi(x)−fi(y))2+1

.

In case of a nominal feature fi, similarity can be defined using a table, like Table 4.1.

Table 4.1: Exemplary definition of similarity for a nominal feature

very low low medium high very high
very low 1.0 0.8 0.5 0.1 0.0

low 0.8 1.0 0.6 0.3 0.0
medium 0.5 0.6 1.0 0.5 0.3
high 0.1 0.3 0.5 1.0 0.6

very high 0.0 0.0 0.3 0.6 1.0

The marginal similarity functions from set Σ create an n-dimensional similarity space.
Each pair of objects (y, x) ∈ U × U is described in this space by a vector

DesF (y, x) = [σf1(y, x), . . . , σfn(y, x)] (4.2)

called description of (y, x). This vector represents the available information about simi-
larity between y and x on particular features.

Problem decomposition. In the following, we consider the decision classes belonging to
family D to be mutually independent in the sense of membership function values. Then,
we decompose the original multi-class problem π to a set of single-class subproblems πX ,
where X ∈ D. Thus, each subproblem concerns a single decision class X ∈ D modeled as
a fuzzy set in U , characterized by membership function µX : U → [0, 1].

Aggregation of membership values. For the sake of decreasing calculation time and
the number of induced decision rules, one can reduce the set of considered values of µX ,
X ∈ D. This can be done, e.g., in the following steps:

• define µoX(y) ≡ µX(y) (i.e., function µoX , identical to function µX),

• choose a finite set of k characteristic values V c
X = {v1, . . . , vk}, such that v1 ∈

[0,miny∈U µ
o
X(y)] and vk ∈ [maxy∈U µ

o
X(y), 1], e.g., V c

X = {0.0, 0.1, . . . , 1.0} or V c
X =

{0.0, 0.2, . . . , 1.0},
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• redefine function µX as:
µX(y) = round(µoX(y)), (4.3)

where function round : [0, 1] → V c
X replaces a given original membership value by

the nearest characteristic value from set V c
X .

Regardless of the nature of function µX (i.e., whether this function is the original mem-
bership function or it results from (4.3)), in the following, we consider set VµX defined as:

VµX = {µX(y) : y ∈ U}. (4.4)

Reference objects. We assume moreover that for each subproblem πX , there is given
a set of so-called reference objects UR

X ⊆ U . These are objects to which objects from set U
are going to be compared. Typically, the reference objects are indicated by a DM and
thus, the set of reference objects is usually relatively small. If such information is not
available, it is possible to employ some clustering techniques to choose a suitable set of
reference objects, to sample set U , or to treat all the objects from U as the reference ones.

4.3 Similarity Learning

The method proposed in this chapter is designed for the following learning task. Given:

• the pairwise fuzzy information base B,

• the family D of decision classes, implying subproblems πX , X ∈ D,

• the membership functions µX : U → [0, 1], X ∈ D,

• the sets of reference objects UR
X ⊆ U , X ∈ D,

learn, for each subproblem πX , a similarity-based classification model in terms of a set of
decision rules

RX =
⋃
x∈UR

X

RX(x), (4.5)

where RX(x) is the set of rules describing membership of an object y ∈ U to class X ∈ D
based on similarity of y to reference object x ∈ UR

X .

Notes.

(n1) In the proposed similarity-based classification method, set U is a training set of
objects; values µX(y), where X ∈ D and y ∈ U , are decision examples.
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(n2) The rules from set RX (4.5) can be used to determine membership µX(z) of a new
object (new case) z described by the same features f1, . . . , fn.

(n3) The entire method proposed in this chapter is meaningful also when there is only
a single decision class X ∈ D being a fuzzy set in U . For example, in a medical
diagnostic problem, class X may correspond to influenza, with µX(y) expressing
the credibility that patient y suffers from this disease. In such a case, a doctor could
be asked to select several patients to be the reference objects. The doctor may then
indicate, e.g., a “typical” profile xh of a patient with high credibility of being ill,
a “typical” profile xl of a patient with low credibility of being ill, and a “typical”
profile xm of a patient with credibility about 50%. Then, the set RX (4.5) would be
composed of three subsets of induced decision rules – RX(xh), RX(xm), and RX(xl).
These rules would constitute a classification model that could be used to judge what
is the credibility that a new patient z suffers from influenza.

(n4) As results from note (n3), and due to treating values µX(y), where X ∈ D and
y ∈ U , in ordinal terms only, the similarity-based classification method proposed in
this chapter may also be applied to ordinal classification problems.

4.4 Similarity Tables

Given a decision class X ∈ D, and a set of reference objects UR
X ⊆ U , we build for

each reference object x ∈ UR
X a so-called similarity table STX(x). This table stores the

information that results from comparing each object y ∈ U with the reference object x.

Formally, a similarity table created for a reference object x ∈ UR
X is an u× (n+ 1)

data table, denoted by STX(x), where u is the cardinality of set U , and n is the number
of features. First n columns of this table correspond to features from set F . The last,
(n+ 1)-th, column relates to the membership function µX . Each row of STX(x) corre-
sponds to an object y ∈ U and is composed of the following values:

• σf1(y, x) in the first column,

• σf2(y, x) in the second column,

• . . . ,

• σfn(y, x) in the n-th column,

• µX(y) in the last, (n+ 1)-th, column.
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4.5 Comprehensive Closeness of Objects

Given a decision class X being a fuzzy set in U , characterized by membership function
µX : U → [0, 1], we define two kinds of binary comprehensive closeness relations on U :

y %Xα,β x⇔ µX(x) ∈ [α, β] and µX(y) ∈ [α, β], (4.6)

y -Xα,β x⇔ µX(x) ∈ [α, β] and µX(y) /∈ (α, β), (4.7)

where y, x ∈ U and parameters α, β satisfy:

• in (4.6):
0 ≤ α ≤ β ≤ 1, (4.8)

• in (4.7):
0− δ ≤ α ≤ β ≤ 1 + δ, (4.9)

where δ ∈ R+.

When y %Xα,β x, then α ≤ µX(y) ≤ µX(x) ≤ β or α ≤ µX(x) ≤ µX(y) ≤ β, i.e., µX(y) is
on the left side of µX(x) but not farther than α, or µX(y) is on the right side of µX(x) but
not farther than β. On the other hand, when y -Xα,β x, then µX(y) is on the left side of
µX(x) but not closer than α, or µX(y) is on the right side of µX(x) but not closer than β.
Thus, α and β play roles of limiting levels of membership to X.

The “special” value 0 − δ, where δ ∈ R+, is considered in (4.9) in order to al-
low µX(y) /∈ (0 − δ, β) ⇔ µX(y) /∈ [0, β), which boils down to µX(y) ≥ β. More-
over, the “special” value 1 + δ, where δ ∈ R+, is considered in (4.9) in order to allow
µX(y) /∈ (α, 1 + δ) ⇔ µX(y) /∈ (α, 1], which boils down to µX(y) ≤ α. The inclusion of
values 0− δ and 1 + δ, δ ∈ R+, in (4.9) is important for several reasons. The first reason
concerns the case when class X is crisp, i.e., µX(y) ∈ {0, 1} for all y ∈ U . Then, one can
consider meaningful relations -Xα,β. Namely, it is meaningful to consider relation -X0,1+δ,
composed of pairs (y, x) ∈ U×U such that µX(y) ≤ 0, as well as relation -X0−δ,1, composed
of pairs (y, x) ∈ U×U such that µX(y) ≥ 1. Note that relation -X0,1 is equal to U×U (and
thus, it is not meaningful). Moreover, relation -X0,0 (or -X1,1) is composed of all possible
pairs of objects (y, x) such that y ∈ U and µX(x) = 0 (or µX(x) = 1, respectively), and
thus, it does not convey any useful information. The other reasons are given later in this
chapter.

Let us observe that %Xα,β is reflexive, symmetric and transitive and thus it is an equiv-
alence relation. Moreover, -Xα,β is only transitive.

Given a decision class X and a reference object x ∈ UR
X , we are interested in charac-

terizing, in terms of similarity-based decision rules, the sets of objects y ∈ U being in:

• %Xα,β relation with x, where α, β ∈ VµX ,

• -Xα,β relation with x, where α, β ∈ VµX ∪ {0− δ} ∪ {1 + δ}), and α < µX(x) < β.
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To this end, we define sets S(%Xα,β, x) and S(-Xα,β, x) as:

S(%Xα,β, x) = {y ∈ U : y %Xα,β x}, (4.10)

S(-Xα,β, x) = {y ∈ U : y -Xα,β x}, (4.11)

where parameters α, β satisfy:

• in (4.10): {
0 ≤ α ≤ µX(x) ≤ β ≤ 1

α, β ∈ VµX
(4.12)

• in (4.11): {
0− δ ≤ α < µX(x) < β ≤ 1 + δ

α, β ∈ VµX ∪ {0− δ} ∪ {1 + δ}
(4.13)

where δ ∈ R+.

The constraint α < µX(x) < β present in (4.13) prevents from considering not meaningful
sets S(-Xα,β, x), as will be explained in Section 4.6. From this point of view, it is crucial
that when µX(x) = 0 (or µX(x) = 1), one can take α = 0− δ (or β = 1 + δ, respectively),
where δ ∈ R+.

The sets of objects defined by (4.10) and (4.11) are to be approximated using domi-
nance cones in the similarity space created by functions σf1 , . . . , σfn , as defined in the next
section. Let us note that some of the sets S(%Xα,β, x) and S(-Xα,β, x) can be disregarded in
further considerations since they are equal to U . This is the case for any set S(%Xα,β, x) such
that α ≤ miny∈U µX(y) and β ≥ maxy∈U µX(y). Moreover, set S(-X0−δ,1+δ, x), with δ ∈ R+,
is empty for any x ∈ UR

X .

4.6 Rough Approximation by Dominance Relation

Now, let us define the dominance relation w.r.t. the similarity to an object x ∈ U , called
in short x-dominance relation, defined over U , and denoted by Dx. For any x, y, w ∈ U ,
y is said to x-dominate w (denotation yDxw) if for every fi ∈ F ,

σfi(y, x) ≥ σfi(w, x). (4.14)

Thus, object y is said to x-dominate object w iff for every feature fi ∈ F , y is at least as
similar to x as w is.

Given an object y ∈ U , x-positive and x-negative dominance cones of y in the similarity
space are defined as follows:

D+
x (y) = {w ∈ U : wDxy}, (4.15)

D−x (y) = {w ∈ U : yDxw}. (4.16)
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Note that y can be called a limit object, because it conditions the membership of w in
D+
x (y) or D−x (y).
The above x-dominance cones D+

x and D−x in the similarity space are used to approx-
imate sets S(%Xα,β, x) and S(-Xα,β, x), defined, respectively, by (4.10) and (4.11).

In order to induce meaningful certain and possible decision rules concerning similarity
to a reference object x ∈ UR

X , we structure the objects y ∈ U by calculation of lower and
upper approximations of sets S(%Xα,β, x) and S(-Xα,β, x) as follows.

The lower approximations of sets S(%Xα,β, x) and S(-Xα,β, x) are defined as:

S(%Xα,β, x) = {y ∈ U : D+
x (y) ⊆ S(%Xα,β, x)}, (4.17)

S(-Xα,β, x) = {y ∈ U : D−x (y) ⊆ S(-Xα,β, x)}, (4.18)

and the upper approximations of sets S(%Xα,β, x) and S(-Xα,β, x) are defined as:

S(%Xα,β, x) = {y ∈ U : D−x (y) ∩ S(%Xα,β, x) 6= ∅}, (4.19)

S(-Xα,β, x) = {y ∈ U : D+
x (y) ∩ S(-Xα,β, x) 6= ∅}. (4.20)

With respect to the three basic properties of set approximations defined for rough
sets in [135], it follows from definitions (4.10), (4.11), (4.17), (4.18), (4.19), and (4.20),
that lower and upper approximations defined above fulfill properties of rough inclusion
and monotonicity of the accuracy of approximation. Moreover, these approximations enjoy
also complementarity property, as shown in [162].

Using definitions (4.17), (4.18), (4.19), and (4.20), one can define the boundary of
set S(%Xα,β, x) (or set S(-Xα,β, x)), as the difference between the upper and the lower
approximation of this set. It is also possible to perform further DRSA-like analysis by
calculating the quality of approximation, reducts, and the core (see, e.g., [83, 84, 86, 160]).

In case of real data sets, the lower approximations defined according to (4.17) and
(4.18) may contain relatively small number of objects, due to inconsistencies w.r.t.
x-dominance relation in the similarity space. Such inconsistency occurs, e.g., when an
object y ∈ U is not less similar to reference object x on every feature fi ∈ F than object
w ∈ U is (i.e., y ∈ D+

x (w)) and, for given values of α and β, there is w %Xα,β x and not
y %Xα,β x. Thus, for (highly) inconsistent data sets, it is reasonable to consider some re-
laxations of definitions (4.17) and (4.18). For this purpose, one could adapt, for instance,
the ε-VC-DRSA [23, 24].

In prior adaptations of DRSA to CBR [88, 89, 91], the authors considered the following
sets of objects:

• weak upward cut of decision class X: X≥t = {y ∈ U : µ(y) ≥ t},

• weak downward cut of decision class X: X≤t = {y ∈ U : µ(y) ≤ t}.

Both sets were approximated using x-dominance cones in the similarity space. Set X≥t

was approximated analogously to set S(%Xα,β, x). Moreover, set X≤t was approximated
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analogously to set S(-Xα,β, x). Observe that setX≥t can be expressed in terms of S(%Xα,β, x)

by setting: α = t, β = 1, and by taking as reference object x any object y ∈ U such that
µX(y) ≥ t. Moreover, set X≤t can be expressed in terms of S(-Xα,β, x) by setting: α = t,
β = 1 + δ, and by taking as reference object x any object y ∈ U such that µX(y) > t,
where δ ∈ R+. This is the second reason for allowing β > 1 in (4.9).

In Section 4.5, we pointed out that by requiring in (4.13) that α < µX(x) < β, we
prevent from considering not meaningful sets S(-Xα,β, x). Now, let us support this claim
by showing an example of what could happen if we would assume α ≤ µX(x) ≤ β. First,
suppose that µX(x) = 0.5. Second, consider set S(-X0.5,0.7, x), i.e., let α = µX(x) = 0.5.
Third, consider two objects y, w ∈ U such that µX(y) = 0.5, µX(w) = 0.6, and σfi(y, x) ≥
σfi(w, x), for every fi ∈ F . In this way, we have a situation where y ∈ S(-X0.5,0.7, x),
w /∈ S(-X0.5,0.7, x), and w ∈ D−x (y), and thus, y /∈ S(-X0.5,0.7, x). Remark that the assumed
monotonic relationship is: “the more similar is object y to object x with respect to the
considered features, the closer is y to x in terms of the membership to a given decision
class X”. From this point of view, it is natural that object y, being more similar to
reference object x, belongs to class X in degree 0.5, while object w, being less similar
to x, belongs to class X in degree 0.6. In other words, values µX(y) and µX(w) obey the
assumed monotonic relationship. This shows that set S(-X0.5,0.7, x) is lacking a meaning,
as its rough approximation results in excluding objects obeying the assumed monotonic
relationship.

4.7 Induction of Decision Rules

Lower (or upper) approximations of considered sets S(%Xα,β, x) and S(-Xα,β, x) are the
basis for induction of certain (or possible) decision rules belonging to set RX(x), x ∈ UR

X .
Rules from this set generalize the descriptions of objects from similarity table STX(x).
Below, we distinguish two types of rules and give their formal syntax:

(1) at least rules :
“if σfi1(y, x) ≥ hi1 and . . . and σfip(y, x) ≥ hip, then certainly (or possibly) y %Xα,β x”,

(2) at most rules :
“if σfi1(y, x) ≤ hi1 and . . . and σfip(y, x) ≤ hip, then certainly (or possibly) y -Xα,β x”,

where {fi1, . . . , fip} ⊆ F , marginal similarity thresholds hi1, . . . , hip ∈ [0, 1], and lim-
iting levels of membership α, β satisfy 0 ≤ α ≤ β ≤ 1 in case of at least rules, and
0− δ ≤ α < β ≤ 1 + δ in case of at most rules, where δ ∈ R+.

For example, a certain rule of type (1) is read as: “if similarity of object y to reference
object x w.r.t. feature fi1 is at least hi1 and . . . and similarity of object y to reference
object x w.r.t. feature fip is at least hip, then certainly object y is in %Xα,β comprehensive
closeness relation with reference object x.
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Remark that according to definitions (4.6) and (4.7), the decision part of the rule of
type (1) and (2) can be rewritten, respectively, as:

(1) “then certainly (or possibly) µX(y) ∈ [α, β]”, i.e., the conclusion is that the mem-
bership of object y to decision class X is inside the interval [α, β],

(2) “then certainly (or possibly) µX(y) /∈ (α, β)”, i.e., the conclusion is that the mem-
bership of object y to decision class X is outside the interval (α, β).

Decision rules of type (1) and (2) can be induced using the VC-DomLEM algo-
rithm [26]. On one hand, these rules reveal similarity-based patterns present in the training
data. On the other hand, set RX =

⋃
x∈UR

X
RX(x) of induced certain/possible rules can

be applied to classify a new object (new case), i.e., to suggest its degree of membership
to considered decision class X, as discussed in the next section.

4.8 Application of Decision Rules

As a result of rule induction, one gets a set of certain (or possible) decision rules RX for
each decision class X ∈ D. Set RX is a union of sets of rules RX(x), where x ∈ UR

X . The
rules from RX can be applied to a new object (new case) z, described in terms of features
f1, . . . , fn ∈ F , to predict its degree of membership to class X. Then, the rules covering
the new case may give an ambiguous classification suggestion (intervals of µX instead of
a crisp value). In order to resolve this ambiguity, we propose to adapt and revise the rule
classification scheme described in [21]. In this way, for each new object z classified using
rules, one can obtain a precise (crisp) value of membership µX(z). The proposed approach
is described below, where Covz denotes the set of decision rules covering a given object z
and | · | denotes cardinality of a set.

In general, exactly one of the following three situations takes place:

(i) no rule from RX covers object z (i.e., Covz = ∅),

(ii) exactly one rule ρ ∈ RX(x) ⊆ RX , x ∈ UR
X , covers object z (i.e., |Covz| = 1),

(iii) several rules from RX cover object z (i.e., |Covz| > 1).

Next, we address the above situations one by one, using the following notation:

• R%X – subset of RX composed of certain (or possible) rules of type “at least”;

• R-X – subset of RX composed of certain (or possible) rules of type “at most”;

• V %X (z) – subset of VµX containing membership values that are covered by the decision
part of at least one rule of type “at least” matching object z, i.e.,

V %X (z) = {t ∈ VµX : there exists a rule ρ ∈ R%X ∩ Covz concluding µX(y) ∈ [α, β]

such that the interval [α, β] contains t}; (4.21)
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• R%X(t) – subset of R%X containing rules whose decision part covers t, i.e.,

R%X(t) = {ρ ∈ R%X : ρ concludes µX(y) ∈ [α, β] and the interval [α, β] contains t};
(4.22)

• V -X (z) – subset of VµX containing membership values that are covered by the decision
part of at least one rule of type “at most” matching object z, i.e.,

V -X (z) = {t ∈ VµX : there exists a rule ρ ∈ R-X ∩ Covz concluding µX(y) /∈ (α, β)

such that the interval (α, β) does not contain t}; (4.23)

• R-X(t) – subset of R-X containing rules whose decision part covers t, i.e.,

R-X(t) = {ρ ∈ R-X : ρ concludes µX(y) /∈ (α, β) and the interval (α, β)

does not contain t}; (4.24)

• U t
X – subset of U containing objects whose membership to class X is equal to t, i.e.,

U t
X = {y ∈ U : µX(y) = t}; (4.25)

• Uρ
X , where ρ ∈ RX – subset of U containing objects whose membership to class X

is covered by the decision part of rule ρ, i.e.,

Uρ
X = {y ∈ U : µX(y) = t and t makes true the statement ρ ∈ R%X(t) ∪R-X(t)}.

(4.26)

Situation (i). As there is no information, there is no reliable suggestion concerning µX(z).
However, if a concrete answer is expected, then one can suggest, e.g., that µX(z) is equal
to the most frequent value µX(y), where y ∈ U .

Situation (ii). It is necessary to calculate value ScoreρX(t, z) for each t ∈ V %X (z)

(if ρ ∈ R%X), or for each t ∈ V -X (z) (if ρ ∈ R-X). The value ScoreρX(t, z) is defined as:

ScoreρX(t, z) =
|Condρ ∩ U t

X |2

|Condρ||U t
X |

, (4.27)

where Condρ ⊆ U denotes the set of objects verifying the condition part of rule ρ. After
calculating ScoreρX(t, z) for all considered values of t, the suggested membership of ob-
ject z to class X is chosen as µX(z) = maxt Score

ρ
X(t, z). Let us observe that ScoreρX(t, z)

belongs to the interval [0, 1]. It can be interpreted as the degree of certainty of the sug-
gestion that µX(z) is equal to t.

It is important to note that we calculate ScoreρX(t, z) only for membership values t
belonging to V %X (z) or V -X (z). In this way, we not only adapt but also improve the ap-
proach proposed in [21], which, when applied to our context directly, would involve cal-
culating ScoreρX(t, z) for each t ∈ VµX . This could lead to the situation when value
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maxt Score
ρ
X(t, z) could be obtained for some t not belonging to V %X (z) or V -X (z). Such

situation could occur in case of employing set RX composed of possible rules, and also in
case of employing set RX composed of probabilistic rules (i.e., rules induced from lower
approximations of sets S(%Xα,β, x) and S(-Xα,β, x), calculated when using a variable con-
sistency dominance-based rough set approach to CBR).

Situation (iii). To take into account multiple suggestions of the rules covering object z, it
is necessary to calculate value ScoreX(t, z) for each t ∈ V %X (z)∪V -X (z). Value ScoreX(t, z)

is defined as:
ScoreX(t, z) = Score+

X(t, z)− Score−X(t, z), (4.28)

where Score+
X(t, z) and Score−X(t, z) represent the positive and negative part of ScoreX(t, z),

respectively.
Score+

X(t, z) takes into account the decision rules from RX that cover object z and are
concordant with the suggestion µX(z) = t, i.e., rules ρi ∈ Covz (i = 1, . . . , k) that belong
to R%X(t) or R-X(t). We define Score+

X(t, z) as:

Score+
X(t, z) =

|(Condρ1 ∩ U t
X) ∪ . . . ∪ (Condρk ∩ U t

X)|2

|Condρ1 ∪ . . . ∪ Condρk ||U t
X |

, (4.29)

where Condρ1 , . . . , Condρk ⊆ U denote the sets of objects verifying condition parts of
rules ρ1, . . . , ρk, respectively. Let us observe that Score+

X(t, z) ∈ [0, 1].
Score−X(t, z) takes into account the decision rules from RX that cover object z but are

discordant with the suggestion µX(z) = t, i.e., rules ρi ∈ Covz (i = k + 1, . . . , h) that
belong to RX \

(
R%X(t) ∪R-X(t)

)
. We define Score−X(t, z) as:

if Covz ∩
(
RX \

(
R%X(t) ∪R-X(t)

))
6= ∅, then

Score−X(t, z) =
|(Condρk+1

∩ Uρk+1

X ) ∪ . . . ∪ (Condρh ∩ U
ρh
X )|2

|Condρk+1
∪ . . . ∪ Condρh||U

ρk+1

X ∪ . . . ∪ Uρh
X |

,

otherwise,

Score−X(t, z) = 0, (4.30)

where Condρk+1
, . . . , Condρh ⊆ U denote the sets of objects verifying condition parts of

rules ρk+1, . . . , ρh, respectively. Let us observe that Score−X(t, z) ∈ [0, 1].
After calculating ScoreX(t, z) for all considered values of t, the suggested membership

of object z to class X is chosen as µX(z) = maxt ScoreX(t, z). It can be interpreted as
a net balance of the arguments in favor and the arguments against the suggestion “the
membership of object z to class X is equal to t”.

It is important to note that we calculate ScoreX(t, z) only for membership values t
belonging to V %X (z)∪V -X (z). In this way, we not only adapt but also improve the approach
proposed in [21], which, when applied to our context directly, would involve calculating
ScoreX(t, z) for each t ∈ VµX . This could lead to the same problem as in the case of
situation (ii).
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In Section 1.5, we have mentioned that our method for CBR provides additional useful
information that other similarity-based classification methods do not provide. Given a set
RX of rules induced for class X ∈ D, and a new object z whose membership to X needs
to be predicted, this information consists of:

• value ScoreρX(t, z) representing degree of certainty of the suggestion µX(z) = t

(when z is covered by one rule ρ ∈ RX only) or value ScoreX(t, z) representing
net balance of the arguments in favor and the arguments against the suggestion
µX(z) = t (when z is covered by more than one rule from RX),

• set Covz ⊆ RX of decision rules that cover given object z,

• set of objects y ∈ U that support each rule ρ ∈ Covz.

Thus, for a new object z classified using induced decision rules, it is possible to perform
full “backtracking”, i.e., to see what were the rules covering this object and, in turn, what
were the objects supporting these rules. This is an important feature of our approach,
comparing to other approaches to CBR.

4.9 Illustrative Example

Let us consider set U composed of five objects described by two features: f1, with value
set [0, 8], and f2, with value set [0, 1]. Moreover, let us consider decision class X being
a fuzzy set in U , characterized by membership function µX : U → [0, 1]. The five objects
and their membership function values are presented in Table 4.2. Note that according to
(4.4), VµX = {0.3, 0.4, 0.5, 0.6, 0.7}.

Table 4.2: Set of objects considered in the illustrative example

y ∈ U f1(y) f2(y) µX(y)
y1 2 0 0.3
y2 1 0 0.4
y3 5 1 0.6
y4 8 0 0.7
x 4 0 0.5

The five objects are also shown in Fig. 4.1, where the number below an object id
denotes the value of membership function µX for this object, the hatched area corresponds
to dominance cone D+

x (y3), and the two dotted areas (one for f1(y) ≤ 2, and the other
for f1(y) ≥ 6) correspond to dominance cone D−x (y1).

We assume that object x is a reference object, and that there are given two marginal
similarity functions σf1 , σf2 defined as:

σfi(y, x) = 1− |fi(y)− fi(x)|
fmaxi − fmini

,
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D−x (y1) D−x (y1)D+
x (y3)
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Figure 4.1: Set of objects considered in the illustrative example; the number
below an object id denotes the value of function µX for this object; the hatched
area corresponds to dominance cone D+

x (y3), and the two dotted areas (one for
f1(y) ≤ 2, and the other for f1(y) ≥ 6) correspond to dominance cone D−x (y1)

where i = 1, 2, and fmaxi , fmini denote max and min value in the value set of feature fi,
respectively.

Functions σf1 and σf2 create a 2-dimensional similarity space. Fig. 4.2 shows pairs of
objects (·, x) in this space. The number below a pair of object ids denotes the value of
membership function µX for the object whose id is the first in the pair.
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Figure 4.2: Pairs of objects (·, x) in the similarity space created by σf1 and σf2 ;
the number below a pair of object ids denotes the value of function µX for the
object whose id is the first in the pair; the hatched area corresponds to domi-
nance cone D+

x (y3), and the dotted area corresponds to dominance cone D−x (y1)

First, using (4.15) and (4.16), we calculate the following x-positive and x-negative
dominance cones in the similarity space:

D+
x (y1) = {y1, x}, D−x (y1) = {y1, y2, y4},

D+
x (y2) = {y1, y2, x}, D−x (y2) = {y2, y4},

D+
x (y3) = {y3, x}, D−x (y3) = {y3},

D+
x (y4) = {y1, y2, y4, x}, D−x (y4) = {y4},

D+
x (x) = {x}, D−x (x) = {y1, y2, y3, y4, x}.

Two of the above calculated cones are shown in Fig. 4.1 (in the feature space) and in
Fig. 4.2 (in the similarity space). Note that in Fig. 4.1, the positive cone D+

x (y3) corre-
sponds to one area, while the negative cone D−x (y1) corresponds to two areas.

Second, we calculate sets of objects S(%Xα,β, x) according to (4.10), for α ∈ {0.3, 0.4, 0.5}
and β ∈ {0.5, 0.6, 0.7}, i.e., for all values of α and β satisfying (4.12). Moreover, we cal-
culate S(-Xα,β, x) according to (4.11), for α ∈ {0 − δ, 0.3, 0.4} and β ∈ {0.6, 0.7, 1 + δ},
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where δ ∈ R+, i.e., for all values of α and β satisfying (4.13). Calculated sets S(%Xα,β, x)

and S(-Xα,β, x) are shown in Table 4.3.

Table 4.3: Considered sets of objects S(%Xα,β , x) and S(-Xα,β , x); δ ∈ R+

S(%Xα,β, x) β = 0.5 β = 0.6 β = 0.7

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U

α = 0.4 {y2, x} {y2, y3, x} {y2, y3, y4, x}
α = 0.5 {x} {y3, x} {y3, y4, x}

S(-Xα,β, x) β = 0.6 β = 0.7 β = 1 + δ

α = 0− δ {y3, y4} {y4} ∅
α = 0.3 {y1, y3, y4} {y1, y4} {y1}
α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2}

It is important to note that in order to calculate the sets given in Table 4.3, one
needs to take into account only the values of membership function µX . Moreover, one can
discard from the further analysis one of these sets equal to U and one of these sets that
is empty.

Third, sets S(%Xα,β, x) and S(-Xα,β, x) are approximated using the above x-positive and
x-negative dominance cones in the similarity space. The lower approximations of these
sets, calculated according to (4.17) and (4.18), as well as upper approximations of these
sets, calculated according to (4.19) and (4.20), are presented in Table 4.4.

Looking at Table 4.4, one can notice the complementarity of lower and upper approx-
imations w.r.t. U . For example,

S(%X0.3,0.5, x) = U \ S(-X0−δ,0.6, x)

and
S(%X0.5,0.6, x) = U \ S(-X0.4,0.7, x).

One can also find inconsistencies w.r.t. the x-dominance relation in the similarity space.
Let us give two examples:

• objects y2, y4 ∈ S(%X0.4,0.7, x) are inconsistent since they are x-dominated by ob-
ject y1, and y1 /∈ S(%X0.4,0.7, x) (because µX(y1) = 0.3),

• object y1 ∈ S(-X0.3,0.6, x) is inconsistent since it x-dominates object y2 and y2 /∈
S(-X0.3,0.6, x) (because µX(y2) = 0.4).

The calculated approximations become a basis for induction of decision rules. For
example, lower approximation S(%X0.3,0.5, x) = {y1, y2, x} yields the following certain “at
least” rule:
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Table 4.4: Lower and upper approximations of considered sets of objects
S(%Xα,β , x) and S(-Xα,β , x); δ ∈ R+

S(%Xα,β, x) β = 0.5 β = 0.6 β = 0.7

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U

α = 0.4 {x} {y3, x} {y3, x}
α = 0.5 {x} {y3, x} {y3, x}
S(%Xα,β, x) β = 0.5 β = 0.6 β = 0.7

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U

α = 0.4 {y1, y2, x} {y1, y2, y3, x} U

α = 0.5 {x} {y3, x} U

S(-Xα,β, x) β = 0.6 β = 0.7 β = 1 + δ

α = 0− δ {y3, y4} {y4} ∅
α = 0.3 {y3, y4} {y4} ∅
α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} ∅
S(-Xα,β, x) β = 0.6 β = 0.7 β = 1 + δ

α = 0− δ {y3, y4} {y4} ∅
α = 0.3 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2, y4}
α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2, y4}

“if σf1(y, x) ≥ 5
8
and σf2(y, x) ≥ 1, then certainly µX(y) ∈ [0.3, 0.5]”,

covering objects y1, y2, x, where marginal similarity threshold of 5
8

results from
1 − |f1(y2)−f1(x)|

8−0
= 1 − |1−4|

8
= 1 − 3

8
. Moreover, upper approximation S(-X0.4,0.7, x) =

{y1, y2, y4} yields the following possible at “most rule”:

“if σf1(y, x) ≤ 6
8
, then possibly µX(y) /∈ (0.4, 0.7)”,

covering objects y1, y2, y4, where marginal similarity threshold of 6
8

results from
1− |f1(y1)−f1(x)|

8−0
= 1− |2−4|

8
= 1− 2

8
.

Table 4.5 presents all certain and possible minimal decision rules induced by VC-
DomLEM algorithm from the non-empty lower and upper approximations shown in Ta-
ble 4.4 (other than approximations of set S(%X0.3,0.7, x) = U).

Example of application of induced decision rules. Let us now consider application
of induced certain decision rules to a new object z described in terms of the same features
f1 and f2. This application aims at predicting membership degree µX(z).

Let f1(z) = 5.5 and f2(z) = 0.5. These values yield σf1(z, x) = 6.5/8 and σf2(z, x) =

1/2. Looking at certain rules from Table 4.5, we can observe that object z is covered by
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Table 4.5: Certain and possible minimal decision rules induced by VC-
DomLEM algorithm; for each rule, column ‘Supp.’ presents ids of objects sup-
porting this rule, while column ‘¬ Supp.’ presents ids of objects covered by this
rule but not supporting it

Id Decision rule Supp. ¬ Supp.
ρ1 if σf1(y, x) ≥ 5

8 and σf2(y, x) ≥ 1, then certainly µX(y) ∈ [0.3, 0.5] {y1, y2, x}
ρ2 if σf1(y, x) ≥ 5

8 , then certainly µX(y) ∈ [0.3, 0.6] {y1, y2, y3, x}
ρ3 if σf1(y, x) ≥ 1, then certainly µX(y) ∈ [0.5, 0.5] {x}
ρ4 if σf1(y, x) ≥ 7

8 , then certainly µX(y) ∈ [0.5, 0.6] {y3, x}
ρ5 if σf1(y, x) ≥ 5

8 and σf2(y, x) ≥ 1, then possibly µX(y) ∈ [0.3, 0.5] {y1, y2, x}
ρ6 if σf1(y, x) ≥ 5

8 , then possibly µX(y) ∈ [0.3, 0.6] {y1, y2, y3, x}
ρ7 if σf1(y, x) ≥ 5

8 and σf2(y, x) ≥ 1, then possibly µX(y) ∈ [0.4, 0.5] {y2, x} {y1}
ρ8 if σf1(y, x) ≥ 5

8 , then possibly µX(y) ∈ [0.4, 0.6] {y2, y3, x} {y1}
ρ9 if σf1(y, x) ≥ 4

8 , then possibly µX(y) ∈ [0.4, 0.7] {y2, y3, y4, x} {y1}
ρ10 if σf1(y, x) ≥ 1, then possibly µX(y) ∈ [0.5, 0.5] {x}
ρ11 if σf1(y, x) ≥ 7

8 , then possibly µX(y) ∈ [0.5, 0.6] {y3, x}
ρ12 if σf1(y, x) ≥ 4

8 , then possibly µX(y) ∈ [0.5, 0.7] {y3, y4, x} {y1, y2}

ρ13 if σf2(y, x) ≤ 0, then certainly µX(y) ≥ 0.6 {y3}
ρ14 if σf1(y, x) ≤ 4

8 , then certainly µX(y) ≥ 0.7 {y4}
ρ15 if σf1(y, x) ≤ 7

8 , then certainly µX(y) /∈ (0.4, 0.6) {y1, y2, y3, y4}
ρ16 if σf1(y, x) ≤ 6

8 , then certainly µX(y) /∈ (0.4, 0.7) {y1, y2, y4}
ρ17 if σf2(y, x) ≤ 0, then possibly µX(y) ≥ 0.6 {y3}
ρ18 if σf1(y, x) ≤ 4

8 , then possibly µX(y) ≥ 0.7 {y4}
ρ19 if σf1(y, x) ≤ 7

8 , then possibly µX(y) /∈ (0.3, 0.6) {y1, y3, y4} {y2}
ρ20 if σf1(y, x) ≤ 6

8 , then possibly µX(y) /∈ (0.3, 0.7) {y1, y4} {y2}
ρ21 if σf1(y, x) ≤ 6

8 , then possibly µX(y) ≤ 0.3 {y1} {y2, y4}
ρ22 if σf1(y, x) ≤ 7

8 , then possibly µX(y) /∈ (0.4, 0.6) {y1, y2, y3, y4}
ρ23 if σf1(y, x) ≤ 6

8 , then possibly µX(y) /∈ (0.4, 0.7) {y1, y2, y4}
ρ24 if σf1(y, x) ≤ 6

8 , then possibly µX(y) ≤ 0.4 {y1, y2} {y4}

rules σ2 and σ15. The first rule, of type “at least” suggests that µX(z) ∈ [0.3, 0.6]. The
second rule, of type “at most”, suggests that µX(z) /∈ (0.4, 0.6), which can be also expressed
as µX(z) ≤ 0.4 or µX(z) ≥ 0.6. Thus, according to (4.21), V %X (z) = {0.3, 0.4, 0.5, 0.6},
whereas according to (4.23), V -X (z) = {0.3, 0.4, 0.6, 0.7}. As there is more than one rule
covering object z, we apply (4.29) and (4.30), and then (4.28), to calculate, respectively,
Score+

X(t, z), Score−X(t, z), and ScoreX(t, z), for each membership degree t ∈ V %X (z) ∪
V -X (z) = {0.3, 0.4, 0.5, 0.6, 0.7}. The result of these calculations is shown in Table 4.6.
Using the scores from Table 4.6, one can conclude that µX(z) is equal to 0.3, 0.4, or 0.6.
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Table 4.6: Scores of object z considered in the example of application of in-
duced decision rules

t ∈ VµX Score+
X(t, z) Score−X(t, z) ScoreX(t, z)

0.3 1
5 0 1

5

0.4 1
5 0 1

5

0.5 1
4 1 −3

4

0.6 1
5 0 1

5

0.7 1
4 1 −3

4



Chapter 5

Computational Evaluation of the
Proposed Methodology

In this chapter, we present the setup and results of a computational experiment per-
formed to compare six different versions of our method for multicriteria ranking, proposed
in Chapter 2, with another state-of-the-art method from the field of Preference Learning –
SVMrank (see Section 1.2.2). This method uses the same type of input preference informa-
tion as our method, i.e., pairwise comparisons of objects, and yields the same information
at the output, i.e., a total preorder of objects.

For our method, we used the implementation available in jRank1 software [165, 166].
For SVMrank, we used fast implementation2 of the ranking SVM described in [113].

We have also considered the possibility of comparing our method with the UTA
method, accepting the same type of input preference information, and producing a total
preorder at the output, but we abandoned this idea due to:

• lack of convenient implementations of the UTA method (i.e., software libraries rather
that GUI-based programs),

• size of data sets considered in the experiment, implying large number (around
100.000) of pairwise comparisons (and thus large number of constraints of LP prob-
lems),

• high number of inconsistent pairwise comparisons for some of the data sets consid-
ered in the experiment.

We describe the setup of our experiment in Section 5.1. In Section 5.2, we present and
discuss the results of this experiment.

1http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html
2http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
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5.1 Setup of Computational Experiment for

Multicriteria Ranking

In the experiment, we compared SVMrank and all six versions of the proposed rule-based
approach to multicriteria ranking, i.e.: VC-DRSArank

c 0|1 , VC-DRSArank
c 0-1cr , VC-DRSArank

c 0-1× ,
VC-DRSArank

nc 0|1, VC-DRSArank
nc 0-1cr , and VC-DRSArank

nc 0-1× (see Section 2.1). All experiments
were carried out on a computer cluster in order to speed up computations and to allow
a sufficient number of repetitions for observing statistically significant differences between
algorithms.

The experiment was performed using 14 publicly available data sets concerning ordinal
classification problems. Some of these data sets were taken “as is”, whereas others were
shrinked before calculations by a random sampling of objects (preserving distribution of
decision classes) so as to obtain maximum around 350 objects, and thus, decrease compu-
tation time. This number of objects was chosen to limit the number of pairs of objects in
a PCT up to around 100.000. The considered data sets are presented in Table 5.1, where
#Obj. denotes the number of objects, symbol ‘∗’ in column #Obj. indicates that given
number of objects results from shrinking original data set, #Crit. denotes the number
of criteria, #Class. denotes the number of decision classes, and γ(S, Sc) denotes average
value of the quality of approximation γ(S, Sc) defined by (2.16). The values in the last
column are averages over 30 PCTs (as explained below), calculated for θS = θSc = 0 and
for the case when set G is considered to be a not necessarily consistent set of criteria.
These average values define the order of data sets – from the (on average) most consistent
data set, to the less consistent one. For 3 out of 14 data sets we were not able to obtain
any results for SVMrank – these data sets are marked in Table 5.1 by (-). The reason
for this situation is the following: (i) car and breast-c data sets contain purely ordinal
criteria that are not accepted by SVMrank; (ii) the results for windsor data set could not
be obtained as the calculations (for all tested parameter settings, even if increasing the
tolerance for termination criterion) went on for many days without progress, and finally
had to be terminated.

Data sets: ERA (employee rejection/acceptance), ESL (employee selection), LEV (lectur-
ers evaluation), and SWD (social workers decisions) come from [14, 15]. Data sets: denbosch
and windsor, concerning housing prices, were taken from [45] and [119], respectively. Data
sets: car, housing, cpu, breast-w, balance-scale, and breast-c were taken from the
UCI repository3 (breast-c refers to the Breast Cancer data set while breast-w refers to
the Breast Cancer Wisconsin (Original) data set). Data sets bank-g (Bank of Greece) and
fame (Financial Analysis Made Easy) come from other public repositories. For windsor,
cpu, and housing data sets, original continuous decision attribute was discretized into
four levels, containing equal number of objects. For car data set, only cars having less

3http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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than 5 doors have been taken into account. For breast-c data set, original groups of
values of tumor-size criterion were aggregated (+) in the following way: {0-4, 5-9 +
55-59, 10-14 + 50-54, 15-19 + 45-49, 20-24 + 40-44, 25-29 + 35-39, 30-34}. In case of
data sets for which preference directions of criteria (i.e., information about which criteria
are of gain-type, and which are of cost-type) were not given directly, we obtained these
directions using domain knowledge about respective problems.

Table 5.1: Characteristics of data sets and average values of measure γ(S, Sc)
for θS = θSc = 0 and not necessarily consistent set of criteria

Id Data set #Obj. #Crit. #Class. γ(S, Sc)

1 (-) car 324∗ 6 4 0.9732
2 housing 253∗ 13 4 0.9703
3 cpu 209 6 4 0.7545
4 denbosch 119 8 2 0.7291
5 bank-g 353∗ 16 2 0.7210
6 fame 332∗ 10 5 0.6454
7 (-) windsor 273∗ 10 4 0.6084
8 breast-w 350∗ 9 2 0.6048
9 balance-scale 313∗ 4 3 0.4886
10 ESL 244∗ 4 9 0.3360
11 (-) breast-c 286 7 2 0.2494
12 SWD 334∗ 10 4 0.1844
13 LEV 334∗ 4 5 0.1219
14 ERA 334∗ 4 9 0.0087

For each data set, we performed 3 times (each time with a different random seed)
a ten-fold cross-validation, which amounts to 30 runs (folds) for each data set. In each
cross-validation, we divided the data set in ten parts. Then, in each fold, we took one
of these parts as set AR of reference objects (training set), and the rest of the objects
as set A of objects to be ranked (test set). In the following, we describe the calculations
performed in a single cross-validation fold by SVMrank and by each of the six versions of
VC-DRSArank.

SVMrank. In a given fold, SVMrank learned a model using training set AR and value of
regularization parameter c which reflects the trade-off between training error and margin
(default value was 0.01). We considered c ∈ {0.001, 0.01, 0.1, 1, 10} and we employed
(default) loss function minimizing the total number of swapped pairs of objects. The
other parameters were set to default values. Remark that the model learned by SVMrank

is implied by the pairwise preference constraints concerning objects from different classes
only. Precisely, if object a ∈ AR is classified to a better class than object b ∈ AR, then the
method incorporates the pairwise preference constraint that a should be ranked higher
than b.

After learning, the obtained model was applied on test set A, producing a total pre-
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order of objects from A defined by predicted ranking scores. The quality of this ranking
was assessed in the same way as described below for VC-DRSArank.

VC-DRSArank. In a given fold, the ordinal classification of objects from set AR was
used to calculate relations S and Sc over AR in the way described in Section 2.3. In the
versions VC-DRSArank

c , if ordinal classification implied aScb but object a dominated ob-
ject b, then we “corrected” the preference information by assuming aSb instead of aScb.
Lower approximations of relations S and Sc were calculated using (2.14) and (2.15), re-
spectively, with thresholds θS, θSc ∈ {0, 0.01, 0.05, 0.1, 0.15}, θS = θSc . We also calculated
coefficient γ(S, Sc) for θS = θSc = 0 and relations S, Sc implied directly (i.e., without any
“correction”) by the ordinal classification on AR. This value contributed to the average
given in the last column of Table 5.1. Lower approximation of S and Sc were the basis
for induction of probabilistic decision rules using VC-DomLEM algorithm [25, 26]. The
preference structure (crisp or valued) on set A, resulting from application of induced de-
cision rules on A, was exploited using the two-step exploitation procedure (iv) introduced
in Section 2.8.1. In the second step of this procedure, we used the NFR ranking method
to exploit valued relation R (2.37) and get a total preorder over set A.

The final total preorder over A, equal to NFR(A,R), and denoted by �f
A, was com-

pared with the initial total preorder over A, denoted by �i
A, resulting from available

ordinal classification of all objects from this set. We used two concordance measures for
this comparison. First, we calculated τ(�i

A,�
f
A), i.e., the Kendall rank correlation coeffi-

cient given by (2.58). Second, we calculated τ¬I(�i
A,�

f
A), which reflects concordance of

both total preorders but does not take into account the pairs of objects (a, b) ∈ A × A
such that a and b are considered indifferent according to the input preference information
(they belong to the same decision class). Thus, there is no error if objects from a given
decision class do not have the same rank in the final ranking on A, but instead are ranked
one after another, without “interference” of objects from other classes. Given two total
preorders �AR and �A, such that AR ⊆ A, |AR| ≥ 2, value τ¬I(�AR ,�A) is calculated
similarly to τ(�AR ,�A) defined by (2.58), with the following two differences:

• the sum of err(a, b) in the nominator is calculated over pairs of objects (a, b) ∈
P�

AR
∪ P−1

�
AR

,

• the denominator is equal to |P�
AR
∪ P−1

�
AR
|,

where relations P�
AR

and P−1
�

AR
are defined by (2.54) and (2.55), respectively. Thus:

τ¬I(�AR ,�A) = 1− 2

∑
(a,b)∈P�

AR
∪P−1

�
AR

err(a, b)

|P�
AR
∪ P−1

�
AR
|

, (5.1)

where err(a, b) is defined by (2.59). Obviously, values of coefficient τ¬I also belong to the
interval [−1, 1].
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5.2 Analysis of Results

Tables 5.2 and 5.3 present performance of the six versions of VC-DRSArank on all 14 data
sets, as well as performance of SVMrank on the 11 data sets to which we were able to
apply this method. Each cell of Table 5.2 (Table 5.3), corresponding to data set dat and
method meth, presents – as the first number – the largest average4 value of τ (2.58) (τ¬I

(5.1), respectively) in the set of 5 average values of τ (τ¬I , respectively) calculated for
θS = θSc ∈ {0, 0.01, 0.05, 0.1, 0.15} – when meth is a version of VC-DRSArank – or for
c ∈ {0.001, 0.01, 0.1, 1, 10} – when meth = SVMrank.

For each average shown in Table 5.2 and Table 5.3, we also present (in parentheses) its
rank in the corresponding table row (the lower the rank, the better), and we give (after
symbol ±) respective standard deviation (reflecting 30 folds). The averages and standard
deviations are presented using four decimal digits. Moreover, for each data set dat, we
use bold font to indicate the best average(s) avg∗dat in the respective table row, while
italics are used to indicate the averages that are smaller than avg∗dat−dev∗dat, where dev∗dat
denotes the (smallest) standard deviation associated with avg∗dat. The last two rows of
Tables 5.2 and 5.3 show average ranks of the compared methods (taking into account all
14 data sets, or only 11 data sets common to all methods); best ranks are given in bold,
and for each rank we give its position w.r.t. the other ranks. Obviously, one is interested
in obtaining the lowest average ranks.

Table 5.4 and Table 5.5 present the best parameter values (i.e., values yielding the
largest averages of τ and τ¬I , shown in Table 5.2 and Table 5.3, respectively) for the
six versions of VC-DRSArank and for SVMrank. Remind that for VC-DRSArank, we con-
sidered θS = θSc ∈ {0, 0.01, 0.05, 0.1, 0.15}, while for SVMrank, we took into account
c ∈ {0.001, 0.01, 0.1, 1, 10}.

Table 5.6 shows averages over 30 test sets of: (i) percentage of pairs of objects (a, b) ∈
A×A assigned by the ordinal classification on test set A to relation I 6=�i

A
= I�i

A
\ {(a, a) :

a ∈ A}, (ii) percentage of pairs of objects (a, b) ∈ A × A assigned by the ordinal classi-
fication on test set A to sum of relations P�i

A
∪ P−1

�i
A
, (iii) percentage of pairs of objects

(a, b) ∈ A× A such that (a, b) ∈ I 6=�i
A
and (a, b) ∈ I 6=

�f
A

= I�f
A
\ {(a, a) : a ∈ A}, (iv) per-

centage of pairs of objects (a, b) ∈ A× A such that (a, b) belongs simultaneously to P�i
A

and P�f
A
, or to P−1

�i
A
and P−1

�f
A

. Bold font is used to indicate situations where, on average,

more than 10% of pairs of objects from relation I 6=�i
A
was assigned by the final ranking

on A to relation I 6=
�f

A

.
Considering the results reported in Tables 5.2, 5.3, 5.4, 5.5, 5.6, and using the values

in the last column of Table 5.1, we draw out the following conclusions.

• The experiment shows that the proposed approach to preference learning in multicri-
teria ranking is competitive to SVMrank. Taking into account also wider applicability

4averaging was done over 30 folds
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Table 5.2: Performance of the six versions of VC-DRSArank (in short Vrank)
and SVMrank in terms of measure τ (largest average of τ (rank) ± standard
deviation)

Data set Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

(-) car 0.6750(2) 0.6255(3.5) 0 .4485 (6) 0.6956(1) 0.6255(3.5) 0 .4950 (5) –
±0.1133 ±0.0964 ±0.0189 ±0.1224 ±0.0966 ±0.0485

housing
0.6727(2.5) 0.6727(2.5) 0.6562(6) 0.6727(2.5) 0.6727(2.5) 0.6607(5) 0.6534(7)

±0.0433 ±0.0433 ±0.0560 ±0.0433 ±0.0433 ±0.0567 ±0.0523

cpu
0.7873(1.5) 0.7786(6) 0.7735(7) 0.7873(1.5) 0.7788(5) 0.7796(4) 0.7858(3)

±0.0155 ±0.0147 ±0.0154 ±0.0155 ±0.0147 ±0.0114 ±0.0061

denbosch
0.5125(1.5) 0.4774(4) 0.4570(7) 0.5125(1.5) 0.4792(3) 0.4754(5) 0.4747(6)

±0.1102 ±0.0937 ±0.0861 ±0.1100 ±0.0915 ±0.0925 ±0.0843

bank-g
0.2696(1) 0.2543(4) 0.2500(6) 0.2691(2) 0.2494(7) 0.2505(5) 0.2688(3)

±0.0344 ±0.0286 ±0.0293 ±0.0342 ±0.0318 ±0.0289 ±0.0191

fame
0.7097(4) 0.7070(6) 0.7030(7) 0.7097(3) 0.7072(5) 0.7132(1) 0.7131(2)

±0.0306 ±0.0315 ±0.0286 ±0.0307 ±0.0312 ±0.0270 ±0.0317

(-) windsor 0.5944(2) 0.5890(4) 0.5806(6) 0.5952(1) 0.5899(3) 0.5841(5) –
±0.0607 ±0.0527 ±0.0544 ±0.0586 ±0.0545 ±0.0577

breast-w
0.5387(1) 0.4839(4) 0.4696(6) 0.5385(2) 0.5078(3) 0.4819(5) 0.4678(7)

±0.0458 ±0.0097 ±0.0062 ±0.0458 ±0.0219 ±0.0178 ±0.0078

balance-scale
0.5787(1.5) 0.5772(3.5) 0.5659(7) 0.5787(1.5) 0.5772(3.5) 0.5665(6) 0.5670(5)

±0.0210 ±0.0224 ±0.0206 ±0.0210 ±0.0224 ±0.0200 ±0.0226

ESL
0.7650(1) 0.7607(3) 0.7556(7) 0.7648(2) 0.7599(4) 0.7592(5) 0.7574(6)

±0.0446 ±0.0416 ±0.0351 ±0.0370 ±0.0374 ±0.0374 ±0.0403

(-) breast-c 0.2208(4) 0.2182(5) 0.1996(6) 0.4415(1.5) 0.4415(1.5) 0.4193(3) –
±0.0928 ±0.0955 ±0.0873 ±0.1002 ±0.1002 ±0.1082

SWD
0.4074(3) 0.4045(6) 0.4132(2) 0.4054(4) 0.4020(7) 0.4157(1) 0.4046(5)

±0.0934 ±0.0938 ±0.0965 ±0.0954 ±0.0945 ±0.0967 ±0.0986

LEV
0.5452(5) 0.5424(7) 0.5573(3) 0.5474(4) 0.5424(6) 0.5634(1) 0.5615(2)

±0.0717 ±0.0713 ±0.0734 ±0.0719 ±0.0751 ±0.0789 ±0.0753

ERA
0.3658(6) 0.3656(7) 0.3837(3) 0.3685(4) 0.3671(5) 0.3876(2) 0.3976(1)

±0.0946 ±0.0936 ±0.0901 ±0.0919 ±0.0934 ±0.0892 ±0.0871

average rank (14) 2.57 (2nd) 4.68 (5th) 5.64 (6th) 2.25 (1st) 4.21 (4th) 3.79 (3rd) –
average rank (11) 2.55 (1st) 4.82 (5th) 5.55 (6th) 2.55 (1st) 4.64 (4th) 3.64 (2nd) 4.27 (3rd)

of our approach (which we were able to apply to all 14 data sets), and interpretabil-
ity of the decision rule preference model, our approach appears to be more attractive
for a DM.

• From Tables 5.2 and 5.3, one can discover that the situation (marked by italics)
when for a given data set dat, the average value of any method is smaller than
avg∗dat − dev∗dat is relatively rare (it occurs for 3 data sets in case of measure τ , and
for 2 data sets when using measure τ¬I). This shows that the methods perform
similar for most of the data sets.

• One can notice that the standard deviations given in Tables 5.2 and 5.3 are usually
similar for different methods with only few exceptions among which the most notable
one is the relatively very low standard deviation of SVMrank for bank-g data set,
considering measure τ¬I . For 88% of pairs (data set, method), a standard deviation
concerning measure τ is lower than the respective standard deviation concerning
measure τ¬I . The highest standard deviations, around 0.2, can be observed for
measure τ¬I and highly inconsistent breast-c data set. There are also several other
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Table 5.3: Performance of the six versions of VC-DRSArank (in short Vrank)
and SVMrank in terms of measure τ¬I (largest average of τ¬I (rank) ± standard
deviation)

Data set Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

(-) car 0.9632(3) 0.9620(5) 0.9685(1) 0.9623(4) 0.9613(6) 0.9658(2) –
±0.0412 ±0.0456 ±0.0306 ±0.0421 ±0.0464 ±0.0399

housing
0.8566(2.5) 0.8566(2.5) 0.8418(6) 0.8566(2.5) 0.8566(2.5) 0.8475(5) 0.8382(7)

±0.0538 ±0.0538 ±0.0721 ±0.0538 ±0.0538 ±0.0729 ±0.0673

cpu
0 .9866 (5.5) 0 .9888 (3.5) 0 .9823 (7) 0 .9866 (5.5) 0 .9888 (3.5) 0 .9897 (2) 0.9980(1)

±0.0211 ±0.0184 ±0.0187 ±0.0211 ±0.0184 ±0.0139 ±0.0064

denbosch
0.8485(6) 0.8533(3) 0.8378(7) 0.8494(5) 0.8500(4) 0.8715(1) 0.8704(2)

±0.1701 ±0.1262 ±0.1579 ±0.1687 ±0.1695 ±0.1697 ±0.1546

bank-g
0 .9064 (4) 0 .9055 (5.5) 0 .9256 (3) 0 .9047 (7) 0 .9055 (5.5) 0 .9272 (2) 0.9970(1)

±0.0989 ±0.0986 ±0.0908 ±0.1042 ±0.1015 ±0.0893 ±0.0142

fame
0.8769(6) 0.8778(4) 0.8728(7) 0.8772(5) 0.8780(3) 0.8855(1) 0.8850(2)

±0.0381 ±0.0392 ±0.0362 ±0.0382 ±0.0388 ±0.0338 ±0.0394

(-) windsor 0.7567(4) 0.7569(3) 0.7465(6) 0.7580(2) 0.7583(1) 0.7510(5) –
±0.0758 ±0.0759 ±0.0700 ±0.0722 ±0.0701 ±0.0742

breast-w
0.9952(4.5) 0.9952(4.5) 0.9957(1) 0.9952(4.5) 0.9952(4.5) 0.9954(2) 0.9923(7)

±0.0095 ±0.0096 ±0.0090 ±0.0095 ±0.0094 ±0.0086 ±0.0141

balance-scale
0.9637(1.5) 0.9635(3) 0.9614(7) 0.9637(1.5) 0.9631(4) 0.9624(6) 0.9630(5)

±0.0319 ±0.0313 ±0.0318 ±0.0319 ±0.0318 ±0.0304 ±0.0299

ESL
0.9089(3) 0.9101(1) 0.9041(7) 0.9086(4) 0.9093(2) 0.9085(5) 0.9062(6)

±0.0446 ±0.0443 ±0.0366 ±0.0447 ±0.0398 ±0.0396 ±0.0436

(-) breast-c 0.4625(4) 0.4661(1) 0.4498(6) 0.4635(3) 0.4649(2) 0.4617(5) –
±0.2096 ±0.2138 ±0.2049 ±0.2158 ±0.2159 ±0.1988

SWD
0.5805(5) 0.5807(4) 0.5933(2) 0.5770(7) 0.5772(6) 0.5970(1) 0.5810(3)

±0.1359 ±0.1359 ±0.1397 ±0.1367 ±0.1369 ±0.1400 ±0.1426

LEV
0.7317(6) 0.7322(5) 0.7526(3) 0.7289(7) 0.7323(4) 0.7609(1) 0.7583(2)

±0.0951 ±0.0955 ±0.0983 ±0.0952 ±0.1009 ±0.1059 ±0.1011

ERA
0.4075(7) 0.4084(6) 0.4288(3) 0.4108(4) 0.4101(5) 0.4332(2) 0.4445(1)

±0.1057 ±0.1046 ±0.1005 ±0.1030 ±0.1045 ±0.1000 ±0.0969

average rank (14) 4.43 (4th) 3.61 (2nd) 4.71 (5th) 4.43 (4th) 3.82 (3rd) 2.86 (1st) –
average rank (11) 4.64 (5th) 3.77 (3rd) 4.82 (6th) 4.82 (6th) 4.05 (4th) 2.55 (1st) 3.36 (2nd)

Table 5.4: Best parameter values for the six versions of VC-DRSArank (in
short Vrank) and for SVMrank – performance measured using measure τ

Data set Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

(-) car 0.1 0 0.1 0.1 0 0.1 –
housing 0 0 0.01 0 0 0.01 0.1

cpu 0.05 0.05 0.05 0.05 0.05 0.01 0.1
denbosch 0.01 0 0.05 0.01 0 0.01 0.01

bank-g 0.01 0 0.01 0.01 0 0.01 0.001
fame 0.01 0.01 0.01 0.01 0.01 0.01 0.001

(-) windsor 0.01 0 0.05 0.01 0.01 0.01 –
breast-w 0.01 0 0.1 0.01 0 0 0.001

balance-scale 0.05 0 0.15 0.05 0 0 1
ESL 0.01 0.01 0.15 0.15 0.15 0.15 1

(-) breast-c 0.1 0 0.15 0 0 0 –
SWD 0.01 0.01 0.1 0.01 0.01 0.01 0.001
LEV 0.01 0.01 0.1 0.15 0.15 0.1 10
ERA 0.01 0.01 0.1 0.01 0.01 0.1 0.01
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Table 5.5: Best parameter values for the six versions of VC-DRSArank (in
short Vrank) and for SVMrank – performance measured using measure τ¬I

Data set Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

(-) car 0.01 0.01 0.1 0.01 0.01 0.01 –
housing 0 0 0.01 0 0 0.01 0.1

cpu 0.05 0.05 0.05 0.05 0.05 0.01 0.1
denbosch 0.01 0.05 0.05 0.01 0.01 0.01 0.01

bank-g 0.05 0.05 0.01 0.01 0.01 0.01 0.1
fame 0.01 0.01 0.01 0.01 0.01 0.01 0.001

(-) windsor 0.01 0.01 0.05 0.01 0.01 0.01 –
breast-w 0 0 0.1 0.1 0.1 0.1 0.001

balance-scale 0.05 0.1 0.15 0.05 0.1 0 1
ESL 0.01 0.01 0.15 0.01 0.15 0.15 1

(-) breast-c 0.1 0.1 0.15 0.15 0.15 0.15 –
SWD 0.01 0.01 0.1 0.01 0.01 0.01 0.001
LEV 0.01 0.01 0.1 0.01 0.15 0.1 10
ERA 0.01 0.01 0.1 0.01 0.01 0.05 0.01

Table 5.6: Average percentage of pairs of objects (a, b) ∈ A × A such that:
(i) (a, b) ∈ I 6=�i

A

, (ii) (a, b) ∈ P�i
A
∪ P−1�i

A

, (iii) (a, b) ∈ I 6=�i
A

and (a, b) ∈ I 6=
�f

A

(columns denoted by ‘I 6=√ ’), (iv) (a, b) ∈ P�i
A
and (a, b) ∈ P�f

A
, or (a, b) ∈ P−1�i

A

and (a, b) ∈ P−1
�f

A

(columns denoted by ‘P√|P−1√ ’)

Column: 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

Data set P�i
A
∪ Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

I 6=�i
A

P−1
�i

A

I 6=√ P√|P−1√ I 6=√ P√|P−1√ I 6=√ P√|P−1√ I 6=√ P√|P−1√ I 6=√ P√|P−1√ I 6=√ P√|P−1√ I 6=√ P√|P−1√

(-) car 52% 22% 18% 0% 24% 18% 5% –
45% 44% 44% 44% 44% 44% 44% –

housing
21% 0% 0% 0% 0% 0% 0% 0%

75% 70% 70% 69% 70% 70% 69% 69%

cpu
20% 1% 0% 0% 1% 0% 0% 0%

75% 74% 75% 74% 74% 75% 75% 75%

denbosch
42% 5% 1% 0% 4% 1% 0% 0%

50% 46% 46% 46% 46% 46% 47% 47%

bank-g
71% 2% 1% 0% 2% 0% 0% 0%

26% 25% 25% 25% 25% 25% 25% 26%

fame
19% 0% 0% 0% 0% 0% 0% 0%

78% 73% 73% 73% 73% 73% 74% 74%

(-) windsor 21% 1% 0% 0% 0% 0% 0% –
75% 66% 66% 65% 66% 66% 66% –

breast-w
52% 7% 2% 1% 7% 4% 2% 1%

45% 45% 45% 45% 45% 45% 45% 45%

balance-scale
47% 8% 8% 7% 8% 8% 7% 7%

50% 49% 49% 49% 49% 49% 49% 49%

ESL
16% 1% 0% 0% 1% 0% 0% 0%

80% 76% 76% 76% 76% 76% 76% 76%

(-) breast-c 55% 2% 2% 0% 23% 23% 21% –
42% 31% 31% 30% 31% 31% 31% –

SWD
30% 1% 0% 0% 1% 0% 0% 0%

67% 53% 53% 53% 53% 53% 53% 53%

LEV
26% 1% 1% 1% 1% 1% 1% 1%

71% 62% 62% 62% 61% 62% 63% 63%

ERA
11% 0% 0% 0% 0% 0% 0% 0%

86% 61% 61% 62% 61% 61% 62% 62%
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data sets with standard deviations around 0.1 and above – bank-g (see measure τ¬I ,
and methods other than SVMrank) and denbosch, as well as the following highly
inconsistent data sets: SWD, LEV (see measure τ¬I), and ERA.

• The values of measure τ¬I given in Table 5.3 are all higher than the respective values
of measure τ given in Table 5.2. This proves that performance of all the methods
was better when considering preference and inverse preference relations only. This is
a result that one could expect. In our approach, two objects a, b ∈ A have the same
rank in the final ranking NFR(A,R) only in a rather rare case, i.e., when they have
exactly the same value of scoring function SD (2.48), which occurs if SD(a,A,R) =

SD(b, A,R). Moreover, SVMrank employs pairwise preference constraints concerning
objects from different classes only. In this way, it does not learn indifference relations.
Therefore, one can argue that in our experiment, values of measure τ¬I should be
treated with more care as they address directly the more important aspect, i.e.,
correct prediction of preference and inverse preference relations.

• We tried to identify reasons why for particular data sets we obtained generally lower
or higher values of measures τ (see Table 5.2) and τ¬I (see Table 5.3). In our opinion,
this can be roughly explained using two factors: (i) average value of the quality of
approximation γ(S, Sc) (2.16) (see Table 5.1), reflecting data set consistency, and
(ii) average percentages reported in Table 5.6. We observed the following general
trends:

– the lower the value γ(S, Sc) (presented in the last column of Table 5.1), the
lower the values of τ and τ¬I ,

– the higher the average percentage of pairs of objects (a, b) ∈ A× A such that
(a, b) ∈ I 6=�i

A
(presented in column 1A of Table 5.6), the lower the values of τ .

The latter trend underlines generally poor prediction of indifference relations by all
the methods, although VC-DRSArank

c 0|1 and VC-DRSArank
nc 0|1 are relatively the best at

this task, as results from the comparison of values in columns 2A, 3A, . . . , 8A of
Table 5.6.

• The choice of the best version of VC-DRSArank depends on the chosen performance
measure (τ or τ¬I).

Looking at the average ranks given in Table 5.2, one can observe that versions VC-
DRSArank

c 0|1 and VC-DRSArank
nc 0|1 obtained the best result (i.e., the lowest average rank)

according to measure τ , with a slight advantage of the latter method due to its lower
average rank for all 14 data sets. Moreover, VC-DRSArank

c 0|1 and VC-DRSArank
nc 0|1 were

better than SVMrank for 8 out of 11 data sets, with the greatest difference of τ in
favor of both our methods approximately equal to 0.071, and the greatest difference
of τ in disfavor of VC-DRSArank

c 0|1 equal to 0.0319.
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On the other hand, from Table 5.3, one can discover that version VC-DRSArank
nc 0-1×

performed best with respect to measure τ¬I . This version was better than SVMrank

for 7 out of 11 data sets, with the greatest difference of τ¬I in favor of our method
equal to 0.016, and the greatest difference of τ¬I in disfavor of VC-DRSArank

nc 0-1× equal
to 0.0698.

The above observations, and the percentages given in columns 2A, 2B, 5A, 5B,
7A, and 7B of Table 5.6, lead to the conclusion that the “crisp” versions of VC-
DRSArank (i.e., VC-DRSArank

c 0|1 , VC-DRSArank
nc 0|1) better predict indifference relations,

while the “valued” version VC-DRSArank
nc 0-1× is better at predicting preference and

inverse preference relations.

• According to performance measure τ , VC-DRSArank
nc 0-1× was better than VC-DRSArank

c 0-1×

for all 14 data sets.

• The version VC-DRSArank
c 0-1× is systematically (i.e., for both performance measures)

the worst version of VC-DRSArank and thus, it is not recommended.

• From Tables 5.4 and 5.5, one can confirm that employing ε-VC-DRSA improves
performance, especially in case of measure τ¬I – in most of the cases the largest
average value of considered performance measure was obtained for θS = θSc > 0.
An interesting observation is that a decrease of data set consistency (which occurs
when moving down the tables) does not involve, in general, an increase of thresh-
olds θS, θSc .

Following the guidelines from [48], we have applied two non-parametric statistical tests
to conduct analysis of the results presented in Tables 5.2 and 5.3, concerning the 11 data
sets for which we were able to obtain results using all 7 methods. The aim of this analysis
was to verify if the compared methods are statistically significantly different, and which
are the particular methods that differ in performance.

First, we performed Friedman’s test [68, 69] for each performance measure, with the
null-hypothesis that all 7 methods are equivalent (they perform equally well) and so their
average ranks are equal. In particular, we used less conservative Iman and Davenport’s
statistic FF [107], derived from Friedman’s statistic, and distributed according to F -
distribution. The p-value corresponding to calculated value of statistic FF was around
0.0022 for measure τ , and around 0.1097 for measure τ¬I . Assuming significance level
α = 0.01, we could reject the null-hypothesis only for measure τ . Using the Nemenyi post-
hoc test [131], with significance level α = 0.01, we obtained critical difference of average
ranks CD equal to 3.179748951. As the greatest difference of average ranks for the 11
data sets and measure τ was equal to 3.0 (e.g., between average ranks of VC-DRSArank

c 0|1

and VC-DRSArank
c 0-1×), applied post-hoc test did not reveal any significant difference in

performance of any two methods.
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As the Friedman’s test and the Nemenyi post-hoc analysis are based only on average
ranks of the methods (in our case, they were based on the average ranks given in the
last rows of Tables 5.2 and 5.3), we decided to apply also Wilcoxon signed-rank paired
test [176] to compare all the methods pairwise. The null-hypothesis in each paired test
was that both compared methods perform equally well. The p-values obtained in the
tests carried out for both performance measures are presented in Tables 5.7 and 5.8.
In these tables, bold font is used to denote situations where p-value obtained in the test is
lower than the assumed significance threshold α = 0.01, and, moreover, the method from
the corresponding row has lower average rank that the method from the corresponding
column.

Table 5.7: p-values in Wilcoxon signed-rank paired tests involving the six ver-
sions of VC-DRSArank (in short Vrank) and SVMrank – performance measured
using measure τ

Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

Vrankc 0|1 – 0.00592 0.08301 1.00000 0.00805 0.32031 0.27832

Vrankc 0-1cr 0.00592 – 0.41309 0.00592 0.72228 0.83105 0.76465

Vrankc 0-1× 0.08301 0.41309 – 0.08301 0.36523 0.00098 0.06738

Vranknc 0|1 1.00000 0.00592 0.08301 – 0.00592 0.32031 0.27832

Vranknc 0-1cr 0.00805 0.72228 0.36523 0.00592 – 0.76465 0.83105

Vranknc 0-1× 0.32031 0.83105 0.00098 0.32031 0.76465 – 0.63770

SVMrank 0.27832 0.76465 0.06738 0.27832 0.83105 0.63770 –

Table 5.8: p-values in Wilcoxon signed-rank paired tests involving the six ver-
sions of VC-DRSArank (in short Vrank) and SVMrank – performance measured
using measure τ¬I

Vrankc 0|1 Vrankc 0-1cr Vrankc 0-1× Vranknc 0|1 Vranknc 0-1cr Vranknc 0-1× SVMrank

Vrankc 0|1 – 0.05802 0.70020 0.67260 0.47720 0.05371 0.14746

Vrankc 0-1cr 0.05802 – 0.76465 0.07556 0.36273 0.08301 0.17480

Vrankc 0-1× 0.70020 0.76465 – 0.63770 0.63770 0.00195 0.10156

Vranknc 0|1 0.67260 0.07556 0.63770 – 0.07556 0.04199 0.08301

Vranknc 0-1cr 0.47720 0.36273 0.63770 0.07556 – 0.06738 0.08301

Vranknc 0-1× 0.05371 0.08301 0.00195 0.04199 0.06738 – 0.76465

SVMrank 0.14746 0.17480 0.10156 0.08301 0.08301 0.76465 –

Taking into account Table 5.7, we draw the following conclusion w.r.t. measure τ :

• VC-DRSArank
c 0|1 performs statistically significantly better than VC-DRSArank

c 0-1cr and
VC-DRSArank

nc 0-1cr ,
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• VC-DRSArank
nc 0|1 performs statistically significantly better than VC-DRSArank

c 0-1cr and
VC-DRSArank

nc 0-1cr ,

• VC-DRSArank
nc 0-1× performs statistically significantly better than VC-DRSArank

c 0-1× .

Moreover, using Table 5.8, we infer that VC-DRSArank
nc 0-1× performs statistically signifi-

cantly better than VC-DRSArank
c 0-1× also w.r.t. measure τ¬I .



Chapter 6

Summary and Conclusions

6.1 Main Contributions of the Thesis

This thesis was focused on new adaptations and improvements of the Dominance-based
Rough Set Approach (DRSA) to multicriteria ranking and similarity-based classification
(case-based reasoning) problems. This goal was decomposed into four specific objectives
(o1)-(o4) presented in Section 1.5. In our opinion, we managed to achieve all these objec-
tives. In what follows, we summarize respective contribution of our research reported in
this thesis.

Methodology for multicriteria ranking using VC-DRSA.

In Chapter 2, we proposed a rule-based methodology for multicriteria ranking, denoted
by VC-DRSArank. Our approach can be described by the following general features:

• it employs preference model in terms of a set of monotonic decision rules; rule
preference model is the most general preference model, relatively easy to understand
by a DM;

• it is concordant with the current trend in MCDA which consists in induction of
a preference model from decision examples;

• it involves simple decision examples in the form of pairwise comparisons of objects
in terms of outranking relation S and non-outranking relation Sc;

• it can handle cardinal and ordinal criteria simultaneously, without prior discretiza-
tion of numerical criteria or prior conversion of ordinal criteria into numerical ones
(it is sufficient that values of each criterion are expressed on an ordinal scale);

• it can handle (using the dominance-based rough set concept) inconsistency of deci-
sion examples, i.e., violations of the monotonic relationship “if object a is preferred
to object b at least as much as object c is preferred to object d with respect to each
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considered criterion, then the comprehensive preference of a over b is not weaker
than the comprehensive preference of c over d”; thanks to this ability, it does not
require that the set of criteria is a consistent one.

Introducing our approach, we proposed the following extensions and improvements of
the previous MCDA rule-based approaches presented in Section 1.2.1.

• VC-DRSArank does not require from a DM to define graded preference relations
for particular cardinal criteria, as considered in all rule-based MCDA approaches
reviewed in Section 1.2.1. Instead it uses difference of evaluations as a simple measure
of the strength of preference.

• VC-DRSArank is suited for solving real-life multicriteria ranking problems by using
an adaptation of ε-VC-DRSA. Thanks to employing this adaptation, lower approxi-
mations of outranking and non-outranking relations are allowed to contain not only
consistent pairs of objects, but also pairs of objects that are “sufficiently consistent”
according to cost-type consistency measures εS, εSc , defined in Section 2.5. Con-
sequently, VC-DRSArank employs probabilistic decision rules whose consistency is
measured using a cost-type rule consistency measure ε̂T (2.21).

• We considered two view points concerning the nature of the set G of criteria describ-
ing considered objects. The first one, typical for MCDA, and reflected by generic
version VC-DRSArank

c , consists in assuming that set G is a consistent set of cri-
teria (as defined in Section 1.1). The second one, typical for PL, and reflected by
generic version VC-DRSArank

nc , does not involve any assumptions concerning set G
(i.e., G is considered to be a not necessarily consistent set of criteria, so it can
miss some important criteria and/or contain some redundant ones). For each of the
two considered view points, we proposed an appropriate way of constructing PCT
from decision examples. We also showed how each view point should be taken into
account during application of decision rules.

• We employed VC-DomLEM rule induction algorithm to induce probabilistic decision
rules from lower approximations of S and Sc. Previous MCDA rule-based approaches
to multicriteria ranking relied on the DomLEM algorithm [92, 161].

• We considered, in total, six ways of constructing relations S and Sc resulting from
application of induced decision rules on a set A of objects to be ranked. These ways
are reflected by three versions of VC-DRSArank

c and three versions of VC-DRSArank
nc ,

all introduced in Section 2.1, and defined in Section 2.7. Thus, we considered:

– versions VC-DRSArank
c 0|1 and VC-DRSArank

nc 0|1, where relations S and Sc are crisp
(they reflect existence/non-existence of covering rules);
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– versions VC-DRSArank
c 0-1cr and VC-DRSArank

nc 0-1cr , with relations S and Sc being
valued and reflecting maximum strength of covering rules, where the strength
of a rule rT is measured as 1− ε̂T (rT ) (“credibility”);

– versions VC-DRSArank
c 0-1× and VC-DRSArank

nc 0-1× , with relations S and Sc being
valued and reflecting maximum strength of covering rules, where the strength
of a rule rT is measured as

(
1 − ε̂T (rT )

)
cf(rT ) (product of “credibility” and

coverage factor).

• We proposed a generic two-step procedure for exploitation of the crisp/valued pref-
erence structure on set A, composed of crisp/valued relations S and Sc, and rep-
resented by preference graph G. This procedure was introduced in Section 2.8.1 –
approach (iv). It consists in a suitable transformation (described in Section 2.8.2) of
preference graph G to another graph G′, representing valued relation R (2.37), and
in subsequent exploitation of this relation using a ranking method, leading to a total
or partial preorder over A. The proposed two-step exploitation procedure general-
izes the one-step procedure based on net flow scores (approach (i) of Section 2.8.1),
applied in the previous MCDA rule-based approaches presented in Section 1.2.1.
This is because the two-step exploitation procedure yields the same total preorder
over A when Net Flow Rule ranking method is applied in step two. Moreover, the
proposed two-step exploitation procedure enables to use any ranking method known
from the literature.

• In Section 2.8.3, we introduced a useful taxonomy consisting of two generic score-
based ranking methods: single-stage ranking method �1 (which ranks all objects in
a single run), and multi-stage ranking method �i (which involves iterative applica-
tion of a choice function). These ranking methods are parameterized by a scoring
function sf . We reviewed nine scoring functions, and we showed how five popular
ranking methods can be expressed in terms of �1 or �i, using particular scoring
functions.

• In Section 2.9.2, we proposed a new concordance measure τ ′ that generalizes Kendall
rank correlation coefficient τ . This measure is suited for the most general case of
measuring concordance between a ranking being a partial preorder over set A and
pairwise comparisons (in terms of outranking and non-outranking relations) of ob-
jects from a subset of A.

Analysis of preference graph exploitation procedures.

Our contribution concerning procedures for exploitation of a preference graph is the
following.
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• In Section 2.8.1, we analyzed four alternative strategies of exploitation of preference
graph G resulting from application of induced decision rules on a set A of objects
to be ranked.

• This analysis motivated us to investigate the newly proposed two-step exploitation
procedure consisting in a suitable transformation of preference graph G to another
graph G′, representing a valued relation over A, and in subsequent exploitation of
this relation using a ranking method, leading to a total or partial preorder over A.
As described above, in step one of this procedure, we employed the transformation
defined by (2.37). In case when relations S and Sc are crisp, this transformation
yields a three-valued relation over A; when S and Sc are valued, this transformation
yields a general valued relation over A. In step two, we considered application of one
of the five ranking methods known from the literature: Net Flow Rule, Iterative Net
Flow Rule, Min in Favor, Iterative Min in Favor, and Leaving and Entering Flows.

• We searched for “the best” ranking method. For this purpose, we considered in
Section 3.1 eleven desirable properties of a ranking method. Some of these properties
have been already studied in the literature, and some of them were introduced for
the first time in this thesis. We presented a large number of proofs concerning the
properties of the five ranking methods. They can be found in the Appendix.

• In Section 3.2, we proposed two priority orders of desirable properties of a ranking
method, one for the case of a three-valued relation, and the other for the case
of a general valued relation. These orders reflect relative importance of desirable
properties.

• We found out that the best ranking method for exploitation of, both, a three-valued
relation, and a general valued relation, is the Net Flow Rule method.

Methodology for similarity-based classification using DRSA.

In Chapter 4, we proposed a rule-based methodology for the similarity-based classifica-
tion problem introduced in Section 1.1.2. Our approach can be described by the following
general features:

• it is based on an adaptation of DRSA to case-based reasoning;

• it avoids using any real-valued aggregation function (involving operators, like weighted
Lp norm, min, etc.) to aggregate marginal similarities of objects into their compre-
hensive similarity; instead, comprehensive similarity is represented by decision rules
induced from classification examples;
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• it is an eager learning method – it involves learning of similarity in terms of decision
rules; comparing to lazy learning methods of CBR, our approach is thus less suscep-
tible to noise observed in the training data, both with respect to irrelevant features
(because each decision rule, being a partial dominance cone in a similarity space,
may involve conditions concerning only a subset of features), and with respect to
outliers;

• it is invariant to ordinally equivalent marginal similarity functions as induced rules
employ only ordinal properties of marginal similarity functions;

• it assumes that each decision class X is a fuzzy set in U , characterized by member-
ship function µX : U → [0, 1];

• it exploits only ordinal properties of membership functions of considered decision
classes.

Let us emphasize that the definitions of rough approximations presented in Section 4.6,
and the syntax of decision rules given in Section 4.7, employ only ordinal properties of
marginal similarity functions and membership functions. No algebraic operation, such as
sum or product, involving cardinal properties of marginal similarity functions, is consid-
ered.

Introducing our approach, we proposed the following extensions and improvements of
the previous dominance-based rough set approach to case-based reasoning presented in
Section 1.3.2.

• We employed a new monotonic relationship “the more similar is object y to object x
w.r.t. the considered features, the closer is y to x in terms of the membership to
a given decision class X”. In our opinion, this relationship truly reflects the mono-
tonicity characteristic for CBR, i.e., monotonic relationship between comprehensive
similarity of objects and their similarities w.r.t. single features.

• We revised the definitions of comprehensive closeness relations, appearing in early
versions of our methodology, by allowing, in one of these definitions, parameter α
to be less than zero, and parameter β to be greater than one.

• We introduced the concept of a similarity table.

• We introduced the concept of x-dominance relation and x-positive and x-negative
dominance cones in the similarity space, where x is a reference object.

• We proposed the way of inducing decision rules. The rules are induced independently
for each reference object and each decision class, using VC-DomLEM algorithm.

• We proposed a way of application of induced decision rules to a new object z (new
case), in order to predict its membership to a given decision class X. This way
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consists in calculating a score for each membership degree that is covered by the
decision part of at least one rule matching z. Then, the predicted membership degree
is the one with the highest score.

Experimental verification of the methodology for multicriteria ranking.

In Chapter 5, we presented the results of a computational experiment performed to
compare six different versions of VC-DRSArank, proposed in Chapter 2, with another
state-of-the-art method from the field of Preference Learning – SVMrank.

The experiment showed that the proposed approach to preference learning in multicri-
teria ranking is clearly competitive to SVMrank. Taking into account wider applicability
of our approach (which works also for ordinal criteria), and interpretability of the decision
rule preference model, our approach appears to be more attractive for a DM.

In order to compare performance of all seven methods, we used Kendall rank correla-
tion coefficient τ (see Section 2.9.1), as well as its variant τ¬I , introduced in Section 5.1.
The latter coefficient does not take into account pairs of objects (a, b) ∈ A × A such
that according to the true ranking on A, a is considered indifferent to b (both objects
have the same rank). According to measure τ , the “crisp” versions of VC-DRSArank, i.e.,
VC-DRSArank

c 0|1 and VC-DRSArank
nc 0|1, obtained in the experiment the best (i.e., the lowest)

average ranks over 11 data sets. On the other hand, version VC-DRSArank
nc 0-1× obtained the

lowest average rank with respect to measure τ¬I .
The experiment showed that by adaptation of ε-VC-DRSA, it was possible to obtain

better values of both performance measures than in case of adapting classical DRSA.
This is visible especially for measure τ¬I . In most of the cases, the largest average value
of considered performance measure (τ or τ¬I) was obtained for thresholds θS = θSc > 0,
rather than for thresholds θS = θSc = 0 typical for the classical DRSA.

We have also conducted a statistical analysis of average values of measures τ and τ¬I

obtained in the experiment. The aim of this analysis was to verify if the compared methods
are statistically significantly different, and which are the particular methods that differ
in performance. We assumed significance level α = 0.01. Using the Friedman’s test, we
were able to reject the null-hypothesis that all 7 methods perform equally well only in case
of measure τ . However, the Nemenyi post-hoc test did not reveal any significant difference
in performance of any two methods. We performed also a series of Wilcoxon signed-rank
paired tests to compare all the methods pairwise. The null-hypothesis in each paired test
was that both compared methods perform equally well. These tests let us to draw the
following statistically significant conclusions:

• VC-DRSArank
c 0|1 performs w.r.t. measure τ better than VC-DRSArank

c 0-1cr and better
than VC-DRSArank

nc 0-1cr ,
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• VC-DRSArank
nc 0|1 performs w.r.t. measure τ better than VC-DRSArank

c 0-1cr and better
than VC-DRSArank

nc 0-1cr ,

• VC-DRSArank
nc 0-1× performs w.r.t. measures τ and τ¬I better than VC-DRSArank

c 0-1× .

6.2 Directions of Future Research

Below, we list a few possible directions of future research.

• Extension of the computational evaluation of the proposed methodology for multi-
criteria ranking by considering also other methods than SVMrank, and more data
sets, including real-world decision problems.

• Development of other promising adaptations of DRSA. One possible adaptation
concerns problems with hierarchical structure of criteria. In this type of problems,
a ranking of objects concerning criteria considered at a given level of hierarchy
can be treated as a criterion of the upper level. Concerning the disadvantages of
the AHP method discussed in this thesis, an approach adapting DRSA to problems
with hierarchical structure of criteria could be a strong alternative to AHP. Another
possible adaptation of DRSA concerns a multicriteria ranking problem with prefer-
ence information given in terms of ordinal classification of objects, and processed
as purely ordinal using the concept of the ordinal intensity of preference. The first
version of this adaptation was already presented in [116].

• Further development of the methodology for similarity-based classification using
DRSA, in particular development of methods of selection of reference objects (cases),
and adaptation of ε-VC-DRSA.

• Experimental comparison of the proposed methodology for similarity-based classi-
fication using DRSA with other methods, admitting some “relaxation” of the pre-
sented problem setting, e.g., by:

– assuming only crisp decision classes – in such case we could compare our
method with some machine learning approaches to CBR, e.g., with k-NN,

– assuming that the classification does not need to be based on similarity to ref-
erence objects – in such case we could compare our method with some machine
learning approaches to soft label classification (like fuzzy-input fuzzy-output
SVM [167]).

It would also be interesting to verify performance of our similarity-based classifica-
tion method using DRSA when applied to ordinal classification problems. In partic-
ular, it would be interesting to compare its performance with that of the classical
DRSA.





Appendix

Definition 14 (Monotonicity property (m1)) A cost-type consistency measure ΘT ,
T ∈ {S, Sc}, has monotonicity property (m1) iff it is monotonically non-increasing w.r.t.
the considered set of criteria, i.e., iff for all P ⊆ R ⊆ G, and for all (a, b) ∈ B

ΘP
T (a, b) ≥ ΘR

T (a, b),

where ΘP
T (a, b) denotes the value of measure ΘT calculated for pair of objects (a, b) taking

into account only criteria from set P ⊆ G.

Definition 15 (Monotonicity property (m2)) A cost-type consistency measure ΘT ,
T ∈ {S, Sc}, has monotonicity property (m2) iff it is monotonically non-increasing w.r.t.
the considered comprehensive preference relation T , i.e., iff for all T ′ = T ∪ T∆,
T∆ ∩B = ∅, and for all (a, b) ∈ B

ΘT (a, b) ≥ ΘT ′(a, b).

Definition 16 (Monotonicity property (m4)) A cost-type consistency measure ΘT ,
T ∈ {S, Sc}, has monotonicity property (m4) iff it is monotonically non-increasing w.r.t.
dominance relation D2 over B, i.e., iff

∀(a, b), (c, d) ∈ B : (a, b)D2(c, d)⇒ ΘT (a, b) ≤ ΘT (c, d).

Proof (Corollary 1). Let us consider any two objects a, b ∈ A, such that aDb, and let us
denote by D′2 the dominance relation over set A×A, defined in the same way as the dom-
inance relation D2 over set B, with the only difference that B (appearing in the definition
of D2) is replaced by A×A. First, let us observe that aDb implies that (a, b)D

′
2(b, a), and,

moreover, given any object c ∈ A \ {a, b}, it is true that (a, c)D
′
2(b, c) and (c, b)D

′
2(c, a).

Secondly, note that every decision rule rS ∈ RS that covers the dominated (w.r.t. D′2) pair
of objects (b, a) (respectively, (b, c), (c, a)), covers also the dominating (w.r.t. D′2) pair of
objects (a, b) (respectively, (a, c), (c, b)). Analogously, every decision rule rSc ∈ RSc that
covers the dominating pair of objects (a, b) (respectively, (a, c), (c, b)), covers also the
dominated pair of objects (b, a) (respectively, (b, c), (c, a)). Therefore, after application of
decision rules on set A, according to definitions (2.24) and (2.25), or (2.26) and (2.27), or
(2.28) and (2.29), or (2.30) and (2.31), we get:
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• S(a, b) ≥ S(b, a) and Sc(b, a) ≥ Sc(a, b),

• S(a, c) ≥ S(b, c) and Sc(c, a) ≥ Sc(c, b),

• S(c, a) ≤ S(c, b) and Sc(a, c) ≤ Sc(b, c).

Thirdly, from (2.37), we get R(a, b) ≥ R(b, a), and, moreover, R(a, c) ≥ R(b, c), and
R(c, a) ≤ R(c, b). This set of inequalities is the antecedent of the implication given in
Definition 3, concerning property CC. Thus, from this definition, we have
a �(A,R) b. �

Proof (Properties of NFR).

(N) Satisfied according to [30, 36].

(M) Satisfied due to the definition of NFR, given by (2.49).

(CC) According to [36], this property is satisfied in case of exploitation of a crisp relation.
However, it is evident that this property is also satisfied in general, i.e., when an
exploited relation is valued.

(INDO) According to [36], this property is satisfied in case of exploitation of a crisp relation.
However, it is evident that this property is also satisfied in general, i.e., when an
exploited relation is valued.

(IC) Satisfied according to [30, 36].

(O) Not satisfied since for a given finite set of objects A and for a valued relation R

over A, NFR makes use of the “cardinal” properties of values R(a, b), with a, b ∈ A
[36].

(C) Satisfied according to [36].

(F ) Satisfied according to [36].

(DP ) Satisfied according to [36].

(GF ) Not satisfied according to [36].

(D) Satisfied. Due to the fact that NFR has property F , a total order relation R

over A (with |A| ranks) is not going to change after application of NFR, i.e.,
NFR(A,R) = R. �
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Proof (Properties of It.NFR).

(N) According to [36], this property is satisfied in case of exploitation of a crisp relation.
However, it is evident that this property is also satisfied in general, i.e., when an
exploited relation is valued.

(M) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d, e, f},
and valued relation R over A defined as: R(a, d) = 0.5, R(b, c) = 0.5, R(c, a) = 1,
R(c, e) = 1, R(d, b) = 1, R(d, f) = 0.5, R(x, x) = 1 for all x ∈ A, and R(x, y) = 0

for the remaining pairs (x, y) ∈ A × A. The ranking (total preorder) obtained for
relation R is: c � d � a, b, e, f (i.e., object c is the best, object d is second best,
and the remaining objects are in the third equivalence class). Observe that we
have a �(A,R) b. Now, consider relation R′ which is identical to R except that
R′(a, c) = 1. Thus, object a is improved. However, the ranking (total preorder)
obtained for relation R′ is: d � b, c � a, e, f , i.e., it is not true that a �(A,R′) b.

(CC) According to [36], this property is satisfied in case of exploitation of a crisp relation.
However, it is evident that this property is also satisfied in general, i.e., when an
exploited relation is valued.

(INDO) According to [36], this property is satisfied in case of exploitation of a crisp relation.
However, it is evident that this property is also satisfied in general, i.e., when an
exploited relation is valued.

(IC) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d, e},
and two valued relations R, R′ over A defined as:

• R(a, b) = 1, R(b, c) = 1, R(c, a) = 1, R(b, e) = 0.5, R(c, d) = 1, R(x, x) = 1 for
all x ∈ A, and R(x, y) = 0 for the remaining pairs (x, y) ∈ A× A,

• R′(b, e) = 0.5, R′(c, d) = 1, R′(x, x) = 1 for all x ∈ A, and R′(x, y) = 0 for the
remaining pairs (x, y) ∈ A× A.

Thus, R and R′ are circuit-equivalent (R′ is identical to R except for the circuit
a-b-c-a of length 3, on which value ε = 1 has been subtracted). If property IC

would be satisfied, we would have �(A,R′) = �(A,R). However, the ranking (total
preorder) obtained for relation R is: c � a � b � e, d (i.e., object c is the best,
object a is second best, object b is third best, and the remaining objects are in the
fourth equivalence class), while the ranking (total preorder) obtained for relation R′

is: c � b � a, e, d. Thus, we obtain that �(A,R′) 6= �(A,R).

(O) Not satisfied since for a given finite set of objects A and for a valued relation R

over A, It.NFR makes use of the “cardinal” properties of values R(a, b), a, b ∈ A.
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(C) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d}, and
the family of valued relations Rε over A, with ε ∈ (0, 1], defined by Table A.1.
For any ε ∈ (0, 1], we have c �(A,Rε) d (as object a is always chosen in the first

Table A.1: Considered family of valued relations

Rε a b c d
a – 1 1 0
b 1 – 0 0
c 0 1 – 1
d 0 1− ε 1 –

iteration, and object c in the second iteration), while for relation R (obtained when
ε = 0), we have d �(A,R) c (as objects a and d are chosen in the first iteration),
which violates continuity.

(F ) Satisfied according to [36].

(DP ) Satisfied according to [36].

(GF ) Not satisfied since NFR does not satisfy property GF , and the first equivalence
classes of the total preorders produced by NFR and It.NFR are the same.

(D) Satisfied. Due to the fact that It.NFR has property F , a total order relation R

over A (with |A| ranks) is not going to change after application of It.NFR, i.e.,
It.NFR(A,R) = R. �

Proof (Properties of MiF ).

(N) Satisfied according to [28, 36, 139].

(M) Satisfied. Note that given a finite set of objects A and a valued relation R over
this set, objects from A are ranked according to their scores calculated by function
mF (2.41). Thus, we have a �(A,R) b ⇔ mF (a,A,R) ≥ mF (b, A,R). Then, if
the value R(a, c), for some c ∈ A \ {a}, is improved, the score of object a cannot
decrease; the change of value R(c, a), for some c ∈ A \ {a} does not affect the score
of object a. Moreover, if the value R(b, d), for some d ∈ A \ {b}, is decreased, the
score of object b cannot increase; the change of value R(d, b), for some d ∈ A \ {a},
does not affect the score of object b. Thus, for any of the four considered changes of
relation R, reflected by relation R′, we have

(
a �(A,R) b⇒ a �(A,R′) b

)
.

(CC) Satisfied. Note that given a finite set of objects A and a valued relation R over this
set, objects from A are ranked according to their scores calculated by function mF
(2.41). If R(a, b) ≥ R(b, a) and for all c ∈ A \ {a, b} there is R(a, c) ≥ R(b, c), then
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according to definition (2.41), we have mF (a,A,R) ≥ mF (b, A,R). It implies that
a �(A,R) b.

(INDO) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d},
and valued relation R over A defined as: R(a, b) = 1, R(a, c) = 1, R(a, d) = 0.5,
R(b, a) = 1, R(b, c) = 0.5, R(b, d) = 0.5, R(c, d) = 0.5, R(x, x) = 1 for all x ∈ A,
and R(x, y) = 0 for the remaining pairs (x, y) ∈ A × A. Observe that object d is
a non-discriminating object since R(x, d) = 0.5 and R(d, x) = 0, for x ∈ A′, where
A′ = {a, b, c}. We obtain �(A′, R/A′) = a � b � c (i.e., object a is the best, and
object b is better than object c). This ranking is different than �(A,R)/A′ = a, b, c

(i.e., all three objects are in the first equivalence class).

(IC) Not satisfied when R is considered to be a general valued relation over set A [36].
Moreover, not satisfied also when R is considered to be a three-valued relation
over A, as shown by the following example. Consider set A = {a, b, c}, and two
valued relations R, R′ over A defined as:

• R(a, b) = 1, R(b, a) = 1, R(b, c) = 1, R(x, x) = 1 for all x ∈ A, and R(x, y) = 0

for the remaining pairs (x, y) ∈ A× A,

• R′(b, c) = 1, R′(x, x) = 1 for all x ∈ A, and R′(x, y) = 0 for the remaining
pairs (x, y) ∈ A× A.

Thus, R and R′ are circuit-equivalent (R′ is identical to R except for the circuit a-b-a
of length 2, on which value ε = 1 has been subtracted). If property IC would be
satisfied, we would have �(A,R′) = �(A,R). However, the ranking (total preorder)
obtained for relationR is: b � a, c (i.e., object b is the best, and the remaining objects
are in the second equivalence class), while the ranking (total preorder) obtained for
relation R′ is: a, b, c (i.e., all three objects are in the first and only equivalence class).
Thus, we obtain that �(A,R′) 6= �(A,R).

(O) Satisfied according to [28, 35, 36, 139].

(C) Satisfied according to [28, 35, 36].

(F ) Not satisfied according to [35, 36].

(DP ) Satisfied. Due to transitivity of a crisp relation R over a given finite set of objects A,
for any pair of objects (a, b) ∈ R we have mF (a,A,R) ≥ mF (b, A,R). This implies
that a �(A,R) b. Thus, R ⊆ �(A,R).

(GF ) Satisfied according to [35, 36].

(D) • Not satisfied for any three-valued relation R over A when |A| ≥ 4 – in such
a case the final ranking is composed of maximum three ranks, as there are only
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three possible values of scoring functionmF (2.41), i.e.,mF (a,A,R) ∈ {0, 1
2
, 1}

for all a ∈ A.

• Satisfied when R is a general valued relation over A. Let ε = 1
|A| , and let

consider an arbitrary order a{1}, a{2}, . . . , a{|A|} of all objects from set A.
Then, the following valued relation R over A:

R(a{i}, a{j}) =

{
1, if i = j

iε, otherwise
, (1)

where i, j = 1, . . . , |A|, is such that MiF (A,R) is a total order (a{|A|} � . . . �
a{1}) over A. �

Proof (Properties of It.MiF ).

(N) Obviously satisfied.

(M) Not satisfied, as shown by the following example. Consider set A = {a, b, c}, and
valued relation R over A defined as: R(a, b) = 0.5, R(b, a) = 0.5, R(c, a) = 1,
R(c, b) = 1, R(b, c) = 0.5, R(x, x) = 1 for all x ∈ A, and R(x, y) = 0 for the
remaining pairs (x, y) ∈ A×A. The ranking (total preorder) obtained for relation R
is: c � a, b (i.e., object c is the best, and objects a and b are in the second equivalence
class). Observe that we have a �(A,R) b. Now, consider relation R′ which is identical
to R except for the pair of objects (c, a), for which we have lower value R′(c, a) = 0.
This difference between R and R′ should not “negatively affect” object a. However,
the ranking (total preorder) obtained for relation R′ is: b � a, c. Thus, it is not true
that a �(A,R′) b.

(CC) Satisfied. Observe that, given a finite set of objects A and a valued relation R

over A, if object a “covers” object b w.r.t. set A, it is also true that object a “covers”
object b w.r.t. any subset A′ ⊆ A. Using the reasoning from the proof of property
CC of the MiF ranking method, this implies that for any A′ ⊆ A, mF (a,A′, R) ≥
mF (b, A′, R). Thus, in any iteration where both objects a and b are considered (i.e.,
a, b ∈ Ai, with Ai ⊆ A), it is impossible (since the choice among objects belonging
to set Ai is made based on maximum score, and the score of each object c ∈ Ai

is given by mF (c, Ai, R)) that object b will we chosen while object a will not be
chosen. Thus, a �(A,R) b.

(INDO) Not satisfied. Consider set A and valued relation R given in the proof of property
INDO of the MiF ranking method. We obtain �(A′, R/A′) = a � b � c (i.e.,
object a is the best, and object b is better than object c). This ranking is different
than �(A,R)/A′ = a, b, c (i.e., all three objects are in the first equivalence class).

(IC) Not satisfied since MiF does not satisfy property IC, and the first equivalence
classes of the total preorders produced by MiF and It.MiF are the same.
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(O) Satisfied according to [35].

(C) Not satisfied according to [35].

(F ) Satisfied according to [35].

(DP ) Satisfied. Let us consider a finite set of objects A, a transitive and crisp relation R
over A, and any pair of objects (a, b) ∈ R. Observe that due to transitivity of R,
relation R/A′ is also transitive, for any A′ ⊆ A. This implies that in each i-th
iteration, where a choice is made among objects belonging to set Ai ⊆ A, if the pair
of objects (a, b) belongs to R/Ai, it is true that mF (a,Ai, R) ≥ mF (b, Ai, R). Thus,
it is impossible (since the choice among objects belonging to set Ai is made based
on maximum score, and the score of each object c ∈ Ai is given by mF (c, Ai, R))
that object b will we chosen while object a will not be chosen. Therefore, after all
iterations, we have to obtain that a �(A,R) b. This implies that R ⊆ �(A,R).

(GF ) Satisfied according to [35].

(D) Satisfied. Due to the fact that It.MiF has property F , a total order relation R

over A (with |A| ranks) is not going to change after application of It.MiF , i.e.,
It.MiF (A,R) = R. �

Proof (Properties of L/E).

(N) Obviously satisfied.

(M) Satisfied according to [34].

(CC) Satisfied. Let us consider a finite set of objects A and a valued relation R over A.
If R(a, b) ≥ R(b, a) and for all c ∈ A \ {a, b} there is R(a, c) ≥ R(b, c) and R(c, a) ≤
R(c, b), then according to definitions (2.42) and (2.45), we have SF (a,A,R) ≥
SF (b, A,R) (in other words, object a has not smaller leaving flow than object b)
and −SA(a,A,R) ≥ −SA(b, A,R) (in other words, object a has not greater entering
flow than object b). Due to the definition of L/E (2.53), it implies that a �(A,R) b.

(INDO) Satisfied. Let us consider a finite set of objects A and a valued relation R over A.
Then, each non-discriminating object b ∈ A \ A′, with A′ ⊂ A, influences leaving
and entering flow of each object a ∈ A′ in the same way. Precisely, leaving flow
SF (a,A′, R) of each object a ∈ A′ increases (or decreases) by k while entering flow
−(−SA(a,A′, R)) of each object a ∈ A′ increases (or decreases) by k′.

(IC) Not satisfied, as shown by the following example. Consider set A = {a, b, c, d, e, f},
and two valued relations R, R′ over A, defined as:
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• R(a, b) = 0.5, R(b, c) = 0.5, R(c, a) = 0.5, R(e, d) = 0.5, R(d, f) = 0.5,
R(x, x) = 1 for all x ∈ A, andR(x, y) = 0 for the remaining pairs (x, y) ∈ A×A,

• R′(a, b) = 1, R′(b, c) = 1, R′(c, a) = 1, R′(e, d) = 0.5, R′(d, f) = 0.5,
R′(x, x) = 1 for all x ∈ A, and R′(x, y) = 0 for the remaining pairs
(x, y) ∈ A× A.

Thus, R and R′ are circuit-equivalent (R′ is identical to R except for the circuit
a-b-c-a of length 3, on which value ε = 0.5 has been added). If property IC would
be satisfied, we would have �(A,R′) = �(A,R). However, we have d �(A,R) b

and b �(A,R) d (i.e., objects b and d are in the same equivalence class in case of
exploitation of relation R), while not d �(A,R′) b nor b �(A,R′) d (i.e., objects b
and d are incomparable in case of exploitation of relation R′). Thus, we obtain that
�(A,R′) 6= �(A,R).

(O) Not satisfied since for a given finite set of objects A and for a valued relation R

over A, L/E makes use of the “cardinal” properties of values R(a, b), with a, b ∈ A.

(C) Obviously satisfied.

(F ) Satisfied. Let us consider a finite set of objects A and a total preorder relation R

over A. First, due to transitivity of R, given any pair of objects (a, b) ∈ R, ob-
ject a has not smaller leaving flow and not greater entering flow than object b,
i.e., SF (a,A,R) ≥ SF (b, A,R) and −SA(a,A,R) ≥ −SA(b, A,R), respectively.
Thus, a � (A,R) b. This means that R ⊆ � (A,R). Second, due to transitivity
and completeness of R, given any pair of objects (a, b) /∈ R, object a has smaller
leaving flow and greater entering flow than object b. Therefore, it is not true that
a �(A,R) b. This means that ¬R ⊆ ¬ �(A,R), where ¬ denotes complement of
a set. Thus, �(A,R) = R.

(DP ) Satisfied as shown in the first part of the proof of property F above.

(GF ) Satisfied. Let us consider a finite set of objects A and a crisp relation R over A.
First, assume that the antecedent of the implication in the definition of property
GF is true. Thus, G(A,R) 6= ∅. Second, due to the definition of L/E, given by
(2.53), every object a ∈ G(A,�(A,R)) has maximum leaving flow and minimum
entering flow among all objects from set A. To have maximum leaving flow, each
object a ∈ G(A,�(A,R)) has to belong to set G(A,R).

(D) Satisfied. Due to the fact that L/E has property F , a total order relation R over A
(with |A| ranks) is not going to change after application of L/E, i.e., L/E(A,R) = R.

�
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