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II..  IINNTTRROODDUUCCTTIIOONN  

II..11  RRNNAA  SSTTRRUUCCTTUURRAALL  AANNAALLYYSSIISS  AASS  BBIIOOIINNFFOORRMMAATTIICCSS  PPRROOBBLLEEMM  

Many phenomena in the animate and inanimate realms of nature can be traced back to 

molecular processes. Thus, cognition of organism structure as well as exploring functions, 

dependencies and processes on a molecular level have been, from years, one of the most 

fundamental tasks in many different research areas. 

Inventing the first computers in late 30-ties of the 20th century started the process 

of introducing calculation into every field of life. About twenty years later, the first 

biochemical theories, based on computation, started to appear: Margaret Dayhoff’s atlas of 

protein sequences, Needleman-Wunsch algorithm searching for similarities in protein 

sequences, DNA sequencing software, Smith-Waterman algorithm for identification of 

common molecular subsequences etc. (Setubal and Meidanis, 1997; Kanehisa, 2000; Lesk, 

2002). Thus, biology, computer science and information technology merged into a single 

discipline called bioinformatics. The ultimate goal of the field has been to enable the 

discovery of new biological insights as well as to create a global perspective from which 

unifying principles in biology could be discerned. There have been three important sub-

disciplines within bioinformatics: the development of new algorithms and statistics for 

associating relationships among members of large data sets, the analysis and interpretation 

of various types of data including nucleotide and amino acid sequences, protein domains, 

and protein structures, and, finally, the development and implementation of tools that 

allow for an efficient access and management of different types of information (Lesk, 

2002). Structural analysis, as one of bioinformatics main sub-disciplines, started to evolve 

those years. The development of new analytical methods rapidly sped up and the scope of 

experiments performed was extended. Owing to this, many molecular structures have been 

solved and modified, and the new sub-disciplines of medicine, biochemistry, genetics and 

biotechnology have emerged.  

Structural analysis of proteins and nucleic acids contributes to clarifying their 

biological functions and structure related properties in materials, components, liquid 

crystals, molecular electronics, drugs, pesticides and polymers, aiding identification of new 

diseases, raising new specimens of plants and animals, aiding progress in drug design as 

well as other synthetic methods and mechanisms, cataloguing new compounds, controlling 

compound quality etc (Williams and Fleming, 1996). Initially, the research in that area 
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concentrated on proteins and deoxyribonucleic acid (DNA). However, knowledge gained 

when studying these molecules appeared insufficient to answer all the questions that have 

been posed for years. Thus, the research has been extended for the molecules of the 

ribonucleic acid (RNA), which transmits genetic information from DNA into proteins and 

controls certain chemical processes in the cell. Recognition of the importance of RNA in 

many biological processes has increased dramatically in recent years. The discoveries of 

non-coding regulatory RNA and RNA interference have involved a broad line of 

disciplines. The discovery of catalytic activity by RNA (Cech, 1990; Cech, 1993) has 

stimulated speculation that life may have originated through the formation and evolution 

of RNA molecules. This hypothesis, dubbed the "RNA World" (Gilbert, 1986), has 

invalidated the apparent monopoly of proteins as biological catalysts and changed the view 

on their role in the early stages of evolution.  

Regarding RNA functional variety as well as its quick degradation under in vitro 

conditions, studying the structures of these molecules proved to be more difficult than the 

examination of proteins and deoxyribonucleic acids. Consequently, development of 

analytical methods dedicated to the exploration of RNA structure has been less dynamic 

than the spread of processing protein and DNA structures. 

Following the most common view (Guntert, 1998; Neidle, 1999; Westhof and 

Auffinger, 2000; Neidle, 2002), the subjects of RNA structural analysis are: its primary 

structure determined by the sequence of nucleoside monophosphates in the chain, the 

secondary structure describing one- and two-strand fragments as well as the formation of 

loops or helices and the tertiary structure, which characterizes the three-dimensional shape 

of the entire chain. For proteins, the quaternary structure, which describes interactions 

between polymer subunits is also analyzed. The thesis discusses and solves key problems of the 

tertiary structure analysis of RNA molecules.  

An elucidation of molecule tertiary structures has become possible owing to the 

development of crystallographic methods, Raman spectroscopy, fluorescence, nuclear 

magnetic resonance (NMR) spectroscopy as well as some other analytical methods. 

However, only X−ray crystallography and NMR spectroscopy give the complete 

information about the structure at this level of study. Recent years, yielded a quick spread 

of NMR spectroscopy, which has been now a well established method for structure 

determination of biomolecules in solution (Gunther, 1996; Hilbers and Wijmenga, 1996; 

Williams and Fleming, 1996). A suggestion of using NMR spectroscopy as a choice for 

probing the structure and dynamics of RNA molecules has resulted from two reasons: the 
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difficulty in crystallization of RNA molecules caused by their conformational flexibility, 

and the interest in the relationship between dynamic behavior of RNA and its biological 

function in solution.  

Tertiary structure determination procedure using NMR is composed of two general 

stages: experimental, where multidimensional correlation spectra are acquired and 

computational, where spectra are analyzed and structure is determined. Types of NMR 

experiments differ for proteins (Cavanach et al., 1996) and nucleic acids (Varani and 

Tinoco, 1991; Wijmenga and van Buuren, 1998). Nevertheless, in all methods of NMR 

structure analysis, raw experimental data are exposed to the action of processing, peak-

picking, assignment, restraints determination, structure generation and refinement. 

Extracting the structural information from the NMR spectrum is an art itself. The 

procedure assigning observed NMR signals to the corresponding protons and other nuclei 

is a bottleneck of the RNA structure elucidation process. The assignment is usually based 

on the analysis of two- (2D) and three-dimensional (3D) spectra resulting from NMR 

experiments performed for the determination of tertiary structures. For short DNA and 

RNA duplexes the assignment is performed manually in accordance with the 

experimenter’s knowledge and intuition. However, the larger the molecules we deal with, 

the more difficult the task becomes. Therefore, it has been of a great need to facilitate NMR 

structural analysis of biopolymers by an introduction of automatic procedures at this level. 

At present, automatization of NMR spectra analysis makes the strong impact on 

the elucidation of protein structures (Moseley and Montelione, 1999). Several programs 

exist which automatize the process of their assignment (Lukin et al., 1997; Zimmerman 

et al., 1997; Leutner et al., 1998; Atreya et al., 2000; Moseley et al., 2001; Linge et al., 2003). 

Unfortunately, these programs cannot be applied for an automatic assignment of the 

nucleic acids spectra. Distinctive patterns of NH peptide bond resonances, for several 

amino acid residues within protein structure, make their recognition via automatic 

assignment much easier than in case of nucleic acids, especially RNA. Only one 

proposition of automatic assignment method dedicated exactly for RNA chains has 

appeared (Roggenbuck et al., 1990). It has been based on the Reduced Adjacency Matrix 

and Backtracking procedures and has been applied for one RNA octamer duplex. 

However, the method has not been developed and its application is very limited. 
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II..22  SSCCOOPPEE  OOFF  TTHHEE  TTHHEESSIISS  

Following the above description (Section 1.1) of the state of the art in the considered field, 

the goal of the research, described in the thesis, may be stated as a generation of the new 

automatic methods of nuclei assignment, dedicated to RNA molecules. An assignment process starts 

from the construction of NOE (Nuclear Overhauser Effect) pathway in 2D−NOESY 

(Nuclear Overhauser Enhancement SpectroscopY) spectrum resulting from NMR 

experiment. The NOE peaks illustrated in the 2D−NOESY spectrum and representing 

correlation signals are connected to form the path, called the NOE pathway. The pathway 

shows a transfer of magnetization between the following pairs of protons within RNA 

chain: H6 (of pyrimidine residues) and H1’ (of ribose), or H8 (of purine residues) and H1’ 

(of ribose). After finding a pathway, each of its cross-peaks is assigned to an appropriate 

pair of protons, which generate the signal. 

In the thesis, a new combinatorial model of an automatic generation of pathways 

between H6/H8 and H1' resonances observed for RNA duplexes in a 2D−NOESY 

spectra, is proposed. As a result the NOE pathways analysis is reduced to a variant of the 

Hamiltonian path problem (Szachniuk et al., 2003; Szachniuk et al., 2004). The proposed 

combinatorial model takes into account the specificity of the required connectivity 

between consecutive proton signals in the NMR spectrum. As one can expect, the general 

problem of finding such a path is proved to be NP–hard in the strong sense, thus, unlikely to admit 

a polynomial time algorithm. Hence, two metaheuristics algorithms, based on tabu search and genetic 

procedures, are proposed. Both take into account the combinatorial model and structure-

specific aspects of the path generated. Their performance is compared to the third, 

enumerative algorithm also proposed and described in the thesis. A representative set of NMR 

spectra used for an experimental validation of the algorithms proposed proves high 

efficiency of the methods. 

An organization of the thesis is as follows. Chapter 2 defines basic notions of the 

disciplines involved in the thesis subject. It outlines the biological basis of RNA structure 

and functions, describes the main aspects of structural analysis of biopolymers, introduces 

to a nuclear magnetic resonance spectroscopy being a tool of structural analysis, and 

discusses main ideas of computational complexity theory, which is a starting point of the 

proposed combinatorial model. RNA acts in close relation to proteins and DNA, thus, 

these polymers roles are also referred. Chapter 3 characterizes a concept of RNA structural 

analysis in solution used in the context of the two-dimensional NOESY technique. 
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In Chapter 4, the new model of NOE path construction problem is proposed. The 

combinatorial complexity of the problem in question is discussed in Chapter 5. Chapter 6 

contains the detailed specification of three new algorithms based on enumerative, tabu and 

genetic procedures, which automatically generate NOE paths on the basis of spectral data 

obtained from NMR experiments for RNA molecules. Experimental data as well as the 

results of computational experiments performed with the use of all proposed algorithms 

are presented in Chapter 7. Chapter 8 sums up the results of application of the 

enumerative, tabu and evolutionary approaches to the problem of NOE paths assignment 

and points out the directions for further research. 
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IIII..  NNOOTTIIOONNSS  AANNDD  DDEEFFIINNIITTIIOONNSS  

The problem of automatic generation of NOE pathways belongs to interdisciplinary 

problems, which demand a lot of knowledge arising from different fields of science. 

To understand the nature and sense of it one should plumb into arcana of ribonucleic acid 

biology, cognize the principles of structural analysis of biopolymer molecules, sense the 

phenomenon of nuclear magnetic resonance, and be familiar with the theory of 

computational complexity as well as mathematics and combinatorial problems. The 

following sections explain the basis of all the mentioned branches of science and lead the 

reader to the appropriate starting point of the NOE pathway problem. 

IIII..11  RRNNAA  RROOLLEESS  AANNDD  SSTTRRUUCCTTUURREE  

In this section, the basics of biomolecule structure and roles are described. For years, 

biomolecules functions as well as their composition have been in the center of interest of 

the researchers representing different fields of science. Recognition of these functions is 

one of the main goals of structural study. The thesis’ focus is set to some aspects of 

ribonucleic acid structure, however it cannot be discussed separately from other 

biomolecules, which play crucial roles in all the processes in flora and fauna world. Thus, 

some paragraphs introduce the theme of proteins and deoxyribonucleic acid, while the 

others magnify the subject of RNA functioning. 

Life at its simplest can be pictured with the use of three basic notions: proteins, 

DNA and RNA, which build the molecular life model. All of these molecules belong to 

the family of biopolymers and compose the living cells of organisms as well as viruses. 

Biopolymer is defined as a polymer found in the nature, i.e. a long, repeating chain of atoms, 

formed through the linkage of many identical small molecules called monomers. Amino acids 

are natural monomers, which polymerize to form proteins, while nucleic acids compose 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) (Stryer, 2000; Bourne and 

Weissig, 2003). A nucleic acid chain, called also a strand, appears most often in single 

or double form. Typically, DNA molecule contains two strands whereas RNA molecules 

can be single- or double-stranded.  
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Figure 2.1.1. An exemplary nucleotide structure. 

The strand is composed of covalently-bond nucleotides (Figure 2.1.1), i.e. organic molecules 

consisting of a heterocyclic base (a purine or a pyrimidine), a sugar (deoxyribose in DNA 

or ribose in RNA), and a phosphate group (Stryer, 2000). Figure 2.1.2 shows structures 

of the sugars. 

 

(a) 

 

(b) 

Figure 2.1.2. Sugars: deoxyribose (a) and ribose (b). 

The length of a nucleic chain is represented by the number of monomer units, i.e. building 

blocks of DNA and RNA. There are five different monomers: adenosine, guanosine, 

cytidine, thymidine and uridine, which contain the following bases (respectively): adenine 

and guanine (which are purines), cytosine, thymine, and uracil (which are pyrimidines). 

Uracil is found in RNA only, while thymine replaces it in DNA. Commonly, the 

nucleotides in nucleic acid strand are represented as letters related to bases – an adenosine 

nucleotide is abbreviated as A, thymidine as T, guanosine as G, cytidine as C, and uridine 

as U. Figure 2.1.3 shows structural models of the bases.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2.1.3. Adenine (a), Guanine (b), Cytosine (c), Thymine (d) and Uracil (e). 

In case of a double-stranded nucleic acid, bases are paired between two strands. Therefore, 

its length is given by the number of base pairs. Oligonucleotides refer to short nucleic acid 

chains (< 50 bases or base pairs) and polynucleotides have longer chains (Neidle, 1999; 

Stryer, 2000). 

The following paragraphs present the basic information about proteins, DNA and 

RNA roles in the essential processes of the living organisms. 

Proteins play a crucial role in almost all biological processes and can be viewed 

as the working horses of living cells. They are chemicals that make up cell and organ 

structure, carry out reactions throughout the body and catalyze reactions (Kanehisa, 2000; 

Stryer, 2000). 

DNA acts as an information repository of all the cells in organism. It carries 

genetic instructions for the biological development of cellular forms of life. It is sometimes 

referred to as the molecule of heredity as it is inherited and used to propagate traits. 

During reproduction, DNA is replicated and transmitted to the offspring. DNA molecule 

is very stable. It is composed of a long linear strand of millions of nucleotides, and is most 

often found paired with a partner strand. In a DNA molecule proposed by Watson and 

Crick, adenine is paired with thymine and they form two hydrogen bonds, while guanine is 

paired with cytosine and they form three hydrogen bonds (Watson and Crick, 1953). 

In less typical structures, other base pairs (e.g. (G:T) and (C:T)) may also form hydrogen 

bonds, although their strengths are not as strong as in case of (C:G) and (A:T) pairing 

(Stryer, 2000; Bourne and Weissig, 2003). Due to this specific base pairing, DNA’s two 
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strands are complementary to each other. These strands wrap around each other in the 

double helix (Figure 2.1.4). 

 
Figure 2.1.4. DNA double helix. 

In the family of genetic material, RNA has long been the poor cousin of DNA. DNA 

makes up the genes, the master instructions of life, while RNA merely conveys those 

instructions to other parts of the cell. But surprising new discoveries (Gilbert, 1986; Cech, 

1990; Cech, 1993; Stryer, 2000) have shown that cells contain an army of RNA snippets 

that do much more that just act as DNA’s messenger. The discoveries have turned 

scientists’ attention to more detailed examination of RNA roles and structure. 

Structurally, RNA is similar to DNA, except for the critical presence of 

an additional hydroxyl group attached to each pentose ring at 2’ position (i.e. replacing 

deoxyribose with ribose), as well as by the use of uracil instead of thymine. The other 

major difference between RNA and DNA is that RNA often posseses single-stranded 

fragments (Neidle, 1999; Stryer, 2000). However, RNA molecules often fold into more 

complex structures by making use of complementary internal sequences so that if one part 

of a single strand is complementary to another part of the same strand, these two parts 

bind together. This allows for the formation of hairpin loops, coils, etc., which then direct 

the formation of higher-order structures.  

RNA can assume a wide variety of conformations in the execution of its biological 

roles. Moreover, its importance as a therapeutic target is widely recognized. Biological 

roles of RNA respond to its three types (Popenda, 1998; Neidle, 1999; Stryer, 2000; 

Neidle, 2002):  

− rRNA – ribosomal RNA is a component of the ribosomes, the protein synthetic 

factories in the cell, and makes about 80% of all RNA in the cell; 

− mRNA – messenger RNA is transcribed directly from DNA of a gene, next 

exported from the nucleus, carrying instructions to the cytoplasm, finally, bound to 

ribosomes and translated into the encoded protein;  
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− tRNA – transfer RNA is a short chain (74−93 nucleotides), that attaches the 

correct amino acid to the protein chain being synthesized at the ribosome of the 

cell, according to directions coded in the mRNA; 

 

Ribosomal and transfer RNAs are examples of RNA genes (sometimes referred to as  

non-coding RNA), which encode functional RNA molecules and, in contrast to messenger 

RNA, do not code for proteins. Both forms participate in the process of translation, called 

also protein biosynthesis (Stryer, 2000). Since the late 1990s, many new RNA genes have been 

found, which raised the speculation of their much more significant role than 

previously thought. 

Transcription, i.e. process of copying DNA to RNA by an enzyme called RNA 

polymerase, as well as translation participate in the processes of gene expression − the central 

dogma of molecular biology. In the process, enzymes scan down a messenger RNA copied 

from the DNA, and use ribosomes to build proteins based on the code that is read. 

In brief, DNA is transcribed into mRNA which is translated into proteins (Stryer, 2000). 

One of the most significant and promising discoveries in modern molecular 

biology has been gene silencing mechanism. Double-stranded RNA (dsRNA), an origin of 

the discovery, has become a subject of the interest. dsRNA is composed of two 

complementary strands, similar to the DNA. It forms the genetic material of some kinds 

of viruses (retroviruses, i.e. viruses, which has a genome consisting of RNA) and is involved 

in some cellular processes (Caplen et al., 2001). Scientists have found that tiny fragments 

of RNA with two strands instead of the usual one can be used to shut off specific genes. 

The technique, known as RNA interference (RNAi), is based on the ability of dsRNA to 

suppress the expression of a gene corresponding to its own sequence (Caplen et al., 2001). 

Over the last few years, RNAi techniques have been widely used to discover the functions 

of genes by turning them off and seeing what happens to the plant or animal. 

In the past two decades, the apparent monopoly of proteins as biological catalysts 

has been invalidated by the discovery that several RNA molecules can form active sites 

that catalyze chemical reactions. Since RNA also serves as a carrier of information, 

it seemed reasonable to suggest that ancient RNA molecules might have acted as starting 

point for the origin of life.  

For many years there has been a general dissatisfaction with the protein hypothesis 

of the origin of life. Proteins cannot replicate themselves, which makes them unsuitable as 

a starting point for the development of life. However, there seemed to be no alternative 
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available until the discovery of RNA catalytic capability (Cech, 1993). The newer 

hypothesis, stating that RNA was, before the emergence of the first cell, the dominant, and 

probably the only form of life, has been dubbed the RNA World (Gilbert 1986). The 

general idea that evolution based on replication preceded protein synthesis was first 

proposed in late 1960s, following the elucidation of the genetic code. Next, it was 

reinitiated after the discovery of ribozymes and culminated after finding RNA catalytic 

capability, but yet it remains just the hypothesis. 

 The above paragraphs describe the variety of RNA roles and their importance in 

many biological processes. These processes can be traced on the basis of the data obtained 

from structural analysis, one of the most crucial sources of such knowledge acquisition. 

The following section is devoted to an introduction of the main currents of structural 

analysis of RNA, as well as DNA and proteins, as the general aspects are the same for the 

whole group of biopolymers. 

IIII..22  SSTTRRUUCCTTUURRAALL  AANNAALLYYSSIISS  OOFF  BBIIOOPPOOLLYYMMEERRSS    

This section contains an introduction to an extensive theme of structural analysis of RNA, 

DNA and proteins. Structural studies of proteins and nucleic acids are critical for 

understanding biological processes at the molecular level. They are a subject of structural 

biology, which aims to determine the structure of biological macromolecules, in particular 

proteins and nucleic acids, and explore what causes them to assume the specific 

conformations. Macromolecules carry out most of the functions of a cell. Moreover, it is 

the structure of molecules, especially their folding into a specific three-dimensional shape, 

which determines the molecule ability to perform most of its functions. This spatial shape, 

called the tertiary structure of a molecule, depends in a complicated way on the molecule’s 

basic composition, i.e. its primary structure. Some aspects of the tertiary structure 

recognition are considered in the thesis. However, knowing the primary structure 

of a polymer often does not help either to deduce its spatial shape or to predict localized 

structuring, such as, for example, the formation of loops or helices in nucleic acids, 

or alpha helices and beta sheets in proteins, called secondary structure. In general, the 

subject of the structural analysis of biopolymers are primary, secondary, tertiary and 

quaternary structures and these four levels of structural organization are explained in the 

following paragraphs.  

The exact chemical composition of a polymer and the sequence in which its units 

are arranged are called the primary structure, which is the first level of a polymer architecture. 
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Specification of the primary structure of a single-stranded biopolymer, such as a molecule 

of DNA, RNA or protein, means naming the species of every subunit in order from the 

beginning to the end of the strand. Thus, the convention for a protein is to list its 

constituent amino acid residues as they occur from the amino terminus (N-end) to the 

carboxylic acid terminus (C-end). The three-letter or single abbreviations code the amino 

acid residues: Ala (A), Cys (C), Asp (D), Glu (E), Phe (F), Gly (G), His (H), Ile (I), Lys (K), 

Leu (L), Met (M), Asn (N), Pro (P), Gln (Q), Arg (R), Ser (S), Thr (T), Val (V), Trp (W), 

Tyr (Y) (Stryer, 2000). The convention for a nucleic acid sequence is to list the nucleotides 

as they occur from the 5’ end to the 3’ end of the polymer chain. The 5’ and 3’ refer to the 

numbering of carbons around the ribose, which have the terminal hydroxyl groups 

attached. The three-letters or single abbreviations are used to code nucleotide residues: 

ADE (A), CYT (C), GUA (G), URI (U), THY (T) (Kanehisa, 2000; Stryer, 2000).  

Figure 2.2.1 shows RNA nucleotides (A, C, G, U) with standard numbering 

convention. All of the nucleotides are shown in the anti conformation, which is typical for 

nucleotides with standard Watson-Crick base pairing. In more unusual cases, the 

nucleotides occur in the syn conformation, which is energetically less privileged. 

Conformations syn and anti determine a position of heterocyclic base with a relation to the 

sugar ring (Hilbers and Wijmenga, 1996; Popenda, 1998). 

 
Figure 2.2.1. Standard numbering convention in RNA nucleotides. 

Primary structure of a single-stranded polymer is determined in the process of sequencing 

(Kanehisa, 2000; Lesk, 2002). There are many various biophysical techniques for 

determining sequence information (Williams and Fleming, 1996; Blazewicz et al., 1997; 

Blazewicz et al., 1999; Kanehisa, 2000; Blazewicz et al., 2004c). Sequencing procedure 

results in a symbolic linear depiction known as a sequence which succinctly summarizes 

much of the atomic-level structure of the sequenced molecule. 

The secondary structure generally reflects how individual residues in a biopolymer are 

connected to each other. It does not, however, refer to their current position in three-

dimensional space, as the current positions are considered to be tertiary structure. 
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Secondary structure of a protein includes such structural motifs as alpha helices, beta 

sheets, and turns, or segments that completely lack secondary structure called random coils 

(Stryer, 2000). RNA secondary structure is generally divided into helices and various kinds 

of loops, and defines which nucleotides form hydrogen bonds. RNA secondary structure 

can also include pseudoknots and base triples (Tabaska et al., 1998; Ieong et al., 2003; 

Ruan et al., 2004). For many RNA molecules, the secondary structure is highly important 

to the correct functioning of the RNA, often, more important than the current sequence, 

since it defines active places within the chain (Dandekar, 2002). RNA secondary structure 

can be predicted with some accuracy by computer procedures. Various methods of 

secondary structure analysis exist and are applied to protein and nucleic acids structure 

detection and prediction (Jacobson and Zuker, 1993; Gulko and Haussler, 1996; Juan and 

Wilson, 1999; Luck et al., 1999; Akmaev et al., 2000; Ieong et al., 2003; Ruan et al., 2004). 

Figure 2.2.2 illustrates some motifs appearing as the RNA secondary structures. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 2.2.2. Selected motifs of RNA secondary structure: duplex (a), hairpin loop 
(b), internal loop (c), bulge loops (d), (e), junction (f) and pseudoknot (g). 

Many biopolymers spontaneously fold into characteristic shapes, which determine their 

biological functions and depend in a complicated way on their primary structures. These 

three-dimensional shapes molecules assume, are called tertiary structures. By folding into 

a specific three-dimensional shape, molecules are able to carry out their physiological roles 

inside a cell. Folding is a spontaneous process, mainly guided by Van der Waals forces and 

entropic contributions to the Gibbs free energy (Westhof and Auffinger, 2000; Neidle, 

2002). The determination of the folded structure is a lengthy and complicated process. 

The methods include X−ray crystallography, as well as spectral methods: nuclear magnetic 

resonance (NMR), Raman spectroscopy, fluorescence, ultraviolet/visible luminescence 

(UV−VIS), infrared (IR), electron paramagnetic resonance (EPR), mass spectrometry (MS) 

(Williams and Fleming, 1996). One of the major areas of interest in protein tertiary 

structure elucidation is the prediction of the native structure, i.e. operative or functional 
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form, from the sequences. The other approach, strictly bioinformatic, is looking for 

patterns among the diverse sequences that are known to give rise to particular shapes.  

Tertiary structure is stabilized by hydrogen bonding, hydrophobic interactions, 

ionic bonds, as well as primary and secondary elements (Stryer, 2000; Westhof and 

Auffinger, 2000). However, tertiary structure determination is usually complicated because 

of structure dynamics and flexibility. Especially RNA changes its conformations often and 

quickly, thus, its structure is often hard to be determined (Westhof and Auffinger, 2000). 

Tertiary structure can be represented by Cartesian coordinates given for all 

molecule atoms (algebraic representation), inter-atomic and inter-residue distances 

(geometric representation), dihedral angles (trigonometric representation) and electron 

density distribution (probabilistic representation) (Williams and Fleming, 1996; Westhof 

and Auffinger, 2000). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.2.3. Examples of tertiary structures: RNA duplex with mismatches 
r(GGACUUCGGUCC) (a), A-RNA duplex (b), hammerhead ribozyme (c) and tRNA 

(d) (Bourne and Weissig, 2003). 

Quaternary structure is the last level of structural organization being considered during 

proteins analysis. The study of nucleic acids typically stops after tertiary structure 

determination (Garrett and Grisham, 1995; Stryer, 2000). Quaternary structure refers to 

the spatial arrangement of identical or non-identical subunits within the polymer (Garrett 

and Grisham, 1995; Neidle, 1999). The subunits form complexes held together by non-

covalent forces. Single subunit is called a monomer, two subunits – a dimmer, three – 
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a trimer etc. The forces that stabilize a quaternary structure are much the same as those 

that stabilize the secondary and tertiary structure, i.e. the non-covalent interactions 

(Garrett and Grisham, 1995), but they occur between molecules, not in their interiors. 

The number of interactions plays an important role in stabilization, i.e. the more contacts 

the more stable a structure is. A considerable range of quaternary structure is found 

in proteins: from dimeric creatine kinase to octomeric tryptophanase and ribulose 

diphosphate carboxylase, which assemble sixteen subunits. 

In the section, the main aspects of structural analysis of biopolymers have been 

discussed. Analytical problems considered in the thesis are connected with a determination 

of RNA tertiary structure on the basis of spectral data. The considered method of 

structural data acquisition is nuclear magnetic resonance (NMR) spectroscopy, which will 

be described in the next section. 

IIII..33  NNUUCCLLEEAARR  MMAAGGNNEETTIICC  RREESSOONNAANNCCEE  ((NNMMRR))  SSPPEECCTTRROOSSCCOOPPYY    

A set of information given in this section aims to explain some basic facts of nuclear 

magnetic resonance spectroscopy, which is considered now to be one of the best methods 

of the biomolecule structure determination in solution. This is a method supplying 

structural information processed by the algorithms presented in the thesis. The subject 

of NMR spectroscopy is very complex and only the general information is included: 

a short historical introduction, NMR phenomenon discussion, NMR roles and 

applications, spectrometer’s architecture and performance, types of NMR experiments and 

spectra. A detailed description of NMR structural analysis of RNA molecules will be given 

in Chapter 3. 

Nuclear magnetic resonance spectroscopy (or NMR spectroscopy) is a powerful 

technique for obtaining structural and dynamic information on molecules at the atomic 

level. NMR phenomenon itself serves observing physical, chemical, and electronic 

properties of molecules, allows to determine spatial structure of chemical compounds, and 

it is also the underlying principle of magnetic resonance imaging and a technique used to 

build quantum computers. 

Phenomenon of nuclear magnetic resonance has been discovered by F. Bloch and 

E. Purcell, in 1945, who were awarded a Nobel prize seven years later. At the beginning 

of 1960s, the first protein NMR spectra were acquired, and so NMR spectroscopy was 

involved in biological sciences. Ten years later, a true revolution in medicine was induced 

by the discovery of NMR tomography possibility to obtain a view of the living organism 
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interior. The method of creating images, known as magnetic resonance imaging (MRI), 

has started to develop (Nobel prize for P.C. Lauterbur and Sir P. Mansfield in 2003). With 

an invention of two− and d−dimensional (d>2) NMR pulse techniques (Nobel prize for 

R.R. Ernst in 1991) structural study of biomolecules has started to develop rapidly (Nobel 

prize for K. Wuthrich in 2002). At present, NMR spectroscopy is widely used in 

determination of biomolecular spatial structure, analysis of response mechanisms and their 

speed, describing biopolymer conformational changes, analysis of intermolecular effects, 

preparing three-dimensional representations of DNA and RNA molecules, modeling their 

interactions with other biologically active substances etc. (Hausser and Kalbitzer, 1993; 

Gunther, 1996; Williams and Fleming, 1996). In the past ten years, nuclear magnetic 

resonance spectroscopy has proved itself as a potentially powerful alternative to X−ray 

crystallography for the determination of macromolecular three-dimensional structure. 

NMR has the advantage over crystallographic techniques in the fact that experiments are 

performed in aqueous solution as opposed to a crystal lattice. The physical principles that 

make NMR possible, limit the application of this technique to macromolecules of less than 

35−40 kD1. At present however, computer analysis and extracting structural information 

from NMR spectra, as well as three-dimensional computer modeling of analyzed 

molecules belong to the main directions of molecular biology. 

NMR spectroscopy uses a common property of most atomic nuclei, i.e., the fact 

that they are magnetic and therefore their magnetic moments tend to align either in 

a parallel or in an anti-parallel manner with respect to an external magnetic field. From 

quantum mechanics, each particle has a spin value of ½. The combination of multiple 

particles in the nucleus results in an overall spin quantum number. Some isotopes posses 

zero magnetic spin (e.g. 12C, 16O), thus they do not exist in spin states and are transparent 

to NMR spectroscopy. However, each of the four most abundant elements in biological 

material, i.e. H (hydrogen), C (carbon), N (nitrogen) and O (oxygen), has at least one 

naturally occurring isotope with non-zero nuclear spin and is in principle observable in an 

NMR experiment (Gunther, 1996). The most interesting in NMR study are isotopes 1H, 
15N, 19F and 13C giving narrow resonance signals in the spectra. These isotopes have an odd 

number of protons and even number of neutrons, which results in spin quantum number 

equal to ½. 

                                                 
1 kiloDalton (kD) is a unit for expressing a size of a polymer. One kD is equal to the weight of one thousand 

hydrogen atoms. 
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In the presence of an external magnetic field of the NMR instrument, the spin 

angular momentum of nuclei with isotopes of overall non-zero spin undergo a cone-

shaped rotation motion called precession tending to align itself with two energy states: with 

or against the magnetic field. Electromagnetic radiation with an energy that matches 

exactly the energy difference of the two states is absorbed. The corresponding frequency 

(i.e. rate of precession) is determined by the nucleus under investigation as well as by the 

chemical environment. Each atom in a given molecule provides a signal with a slightly 

different frequency, dependent on the strength of the external field and is unique for the 

isotope. The exact frequency of the spin flips identifies the type of an atom that is 

involved and is due to the atoms to which the proton is bound (e.g. C, N, O, S) and the 

local chemical environment. Thus, each proton should, in principle, be characterized 

by a unique frequency value. 

NMR experiment starts with a preparation of the sample. Most NMR spectra are 

recorded for compounds dissolved in a solvent. Therefore, signals can be observed for the 

solvent as well as for the compound and this must be accounted for in solving spectral 

problems. To avoid spectra dominated by the solvent signal, most spectra are recorded in 

a deuterated solvent like chloroform (CDCl3), acetone-d6, D2O, or benzene-d6. Most 

spectra shown in the following chapters of the thesis have been recorded for RNA 

molecules dissolved in deuterated water (D2O). 

Prepared sample is held by an NMR probe. This device is placed into the bore 

of the magnet. The probe contains also the coil for irradiating the sample with radio 

frequency energy and for receiving the very weak radio frequency resonance back from 

the sample.  
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Figure 2.3.1. NMR spectrometer schema (Perkel, 2004). 

In general, an NMR spectrometer (Figure 2.3.1) consists of a superconducting magnet, 

NMR console and a computer workstation with the control software. Thus, the 

spectrometer provides a uniform, stable magnetic field generated by the magnet 

(commonly a superconducting solenoid), creates radiofrequency (RF) pulses at the proper 

frequency (NMR console generates them), collects and processes the data (computer’s part 

of the job).  

The NMR magnet provides magnetic field with the strength depending on the 

magnet type. Typically, it is specified in terms of the resonance frequency for the hydrogen 

atom expressed in MHz. Standard spectrometers used today produce magnetic field with 

strength 4,7 T to 21,1 T corresponding to 200-900 MHz resonance frequency of hydrogen 

nuclei. The magnetic field is steady. NMR console generates and controls short bursts or 

pulses of high-power RF energy used to excite the sample in the probe. The NMR console 

also receives and detects the very weak signals coming back from the probe. Powerful 

radio frequency pulse is applied to the sample. Because this sharp-edged pulse can be 

looked at as the combination of a number of different frequencies, it can excite all of the 

nuclei in a sample at once (Ejchart and Kozerski, 1981). The data from all of these nuclei 

is collected simultaneously in the form of superimposed, exponentially decreasing sine 

waves whose frequencies reflect the position of the resonance lines relative to the 

transmitter. When the experiment is complete the free induction decay (FID) data can be 

Fourier transformed to provide the more familiar frequency-domain NMR spectrum. For 

organic structure determination, the two most important types of NMR spectra are proton 
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(1H NMR) and carbon (13C NMR) spectra (Gunther, 1996; Jardetzky, 1996b). They give 

information about the number of hydrogens and carbons in a molecule, their connections, 

and the information about functional groups. Generally, structure can be determined on 

the basis of structural constraints, like distances between protons, dihedral angles, mutual 

ties orientation, inter-nuclei vectors orientation, obtained from NMR experiments 

(Jardetzky, 1996b). All of the constraints can be measured or calculated out of the spectral 

data.  

An NMR spectrum is typically presented as intensity against applied radio 

frequency chart. A signal in the spectrum is referred to as a resonance. The relative 

frequency of a signal is known as its chemical shift. Signal frequency is dependent on the 

strength of the magnetic field. Every magnet’s field is a little different, thus, using an 

instrument-independent way to measure the position of resonance lines in the spectrum 

seems a natural procedure. The chemical shift (δ) is defined by the frequency of the 

resonance (νsig) expressed with reference to a standard compound (νref) which is defined to 

be at 0 ppm. The scale is made more manageable by expressing it in parts per million (ppm) 

and is independent of the spectrometer frequency (νsp): 

ppm
v

vv

sp

refsig 610×
−

=δ . 
(2.3.1)

As the reference compound, usually TMS, i.e. tetramethysilane (Si(CH3)4) is used 

(Jardetzky, 1996a). 

It is often convenient to describe the relative positions of the resonances in 

an NMR spectrum. For example, a peak at a chemical shift of 10 ppm is said to be 

downfield or deshielded with respect to peak at 5 ppm, while the peak at 5 ppm is upfield 

or shielded with respect to the peak at 10 ppm.  

 

(a) 

 

(b) 

Figure 2.3.2. One- (a) and two-dimensional (b) 1H NMR spectrum  
for 2’-OMe(CGCGCG)2 (Popenda, 1998). 
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Figure 2.3.2 shows an example of an NMR spectrum. When NMR was first thought about, 

it was assumed that every hydrogen atom in a sample would have the same resonance 

frequency. However, NMR experiments showed multiple lines in the spectrum of the 

same sample. It has been eventually determined that lines appear with different frequencies 

(ppm) depending on the electronic environment around the nucleus (Ejchart and 

Kozerski, 1981). The electrons around the nucleus shield it from the magnetic field, so 

each type of nucleus seems to be in a different field, and therefore it has a different 

resonance frequency. If the electron density around one nucleus is higher than the other, 

the electrons provide a different amount of shielding from the full magnetic field. This 

results in the two nuclei having different resonance frequencies. 

The same spectrum can be presented in a couple of different ways (Figure 2.3.3):  

linear charts (one per each dimension), a contour diagram, or a spatial chart (after 

optimization with Lorentz function). 

(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 2.3.3. NMR spectrum of r(CGCGCG)2: line charts (a), (b), contour diagram (c), 
spatial chart (d) (Popenda, 1998). 
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NMR spectroscopy provides possibility of trying one− and d−dimensional techniques. 

The d−dimensional experiment (for d>1) is simply a set of (d−1)−dimensional experiments 

performed for the same sample with one NMR parameter being variable. The more 

dimensions an experimenter tries, the more detailed information about the sample he 

acquires. These experiments, however, are expensive and time consuming. Thus, 

at present, one− (1D) and two−dimensional (2D) techniques are most commonly used, 

three− (3D) and four−dimensional (4D) experiments are performed as well. 

All NMR experiments are carried out using pulse sequences. The single pulse, 

which is the basic 1D NMR experiment, is the simplest form of pulse sequence. It is 

convenient to visualize the effect of the pulse with reference to the rotating frame; i.e., the 

x and y-axes rotate about the z-axis at the observation frequency. This way, the radio 

frequency pulse becomes a stationary electric field vector in the xy plane. The direction of 

the vector is governed by the RF phase. The main types of one-dimensional experiments 

are: basic 1D NMR, decoupled 1D NMR, gated decoupled 1D NMR, inverse gated 

decoupled 1D NMR, Nuclear Overhauser Effect 1D NMR (NOE), distortionless 

enhancement of NMR signals by polarization transfer (DEPT) and insensitive nuclei 

enhanced by polarization transfer (INEPT) (Gunther, 1996; Hilbers and Wijmenga, 1996). 

They differ by a pulse sequence, which determines the experiment and gives different 

information about the sample. 

The construction of NMR two-dimensional experiment, in addition to preparation 

and detection steps, which define 1D experiments, is expanded by an indirect evolution 

time t1 and a mixing sequence (Jardetzky, 1996b; Ejchart and Kozerski, 1981). Thus, the 

basic 2D NMR experiment consists of exciting the nuclei with two pulses or groups of 

pulses, then receiving the free induction decay. The acquisition is carried out many times, 

incrementing the delay (i.e. evolution time t1) between the two pulse groups. The FID is 

then Fourier transformed in both directions to yield the spectrum. The spectrum is 

conventionally displayed as a contour diagram. 2D NMR spectroscopy includes 

homonuclear and heteronuclear correlation experiments. In homonuclear experiments, 

signals generated by the same isotope (usually 1H) are detected. These signals can be 

produced by the atoms being in close relation through bond or through space. The first 

group of signals (through bond) can be detected in the following experiments: COSY 

(Correlated Spectroscopy –  correlates scalarly coupled protons), TOCSY (Total 

Correlation Spectroscopy – identifies protons belonging to the same scalar coupling 

network), INADEQUATE (Incredible Natural Abundance Double Quantum Transfer 
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Experiment), ISIPID (Inadequate Sensivity Improvement by Proton Indirect Detection). 

The interactions occurring between atoms lying closely in space or in chemical exchange 

are pictured in the spectra resulting from NOESY (Nuclear Overhauser Effect 

Spectroscopy) and ROESY (Rotational Nuclear Overhauser Effect Spectroscopy) 

experiments (Hilbers and Wijmenga, 1996). Heteronuclear experiments serve the detection 

of signals generated by different isotopes. Standard heteronuclear experiments are: 

HETCOR (Heteronuclear Correlation), HSQC (Heteronuclear Single Quantum 

Correlation), HMQC (Heteronuclear Multiple Quantum Correlation) and HMBC 

(Heteronuclear Multiple Bond Correlation) (Wuthrich, 1986; Hilbers and Wijmenga, 1996).  

The two-dimensional spectra obtained from the above experiments map out 

the atoms, which interact. The diagonal as well as the projection on each axis 

of the spectrum is the 1D spectrum. The off-diagonal peaks indicate the presence 

of coupling between pairs of atoms. 2D experiments differ mainly by a pulse sequence, 

which determines the experiment and results in giving different information about the 

analyzed sample. 

 The main subject of the thesis is concerned with the two-dimensional NOESY 

spectrum, which is a 2D version of NOE experiment and yields a display of atoms that are 

close in space. In 1D NOE experiment, irradiation at specific frequencies before signal 

acquisition enhances the intensities of nearby nuclei. These nuclei induce relaxation, which 

leads to signal enhancement through dipole-dipole interactions. The presence of 

Overhauser enhancements between pairs of protons is indicated by off-diagonal peaks in 

the spectrum. The cross-peaks, lying in aromatic/anomeric region of the 2D−NOESY 

spectrum, can be sequenced due to a specific order and form the path, called NOE 

pathway. Existing methods of NOE pathway construction have been manual and very 

labor-consuming. A great necessity of proposing automatic methods has been, thus, 

a contribution and a main goal of the thesis. Therefore, the problem of NOE pathway 

analysis has been formulated in the category of combinatorial problems, which has 

facilitated a construction of the appropriate algorithms. The main aspects of combinatorial 

problems and computational complexity theory are, thus, introduced in the next section. 

IIII..44  CCOOMMPPUUTTAATTIIOONNAALL  CCOOMMPPLLEEXXIITTYY  OOFF  CCOOMMBBIINNAATTOORRIIAALL  PPRROOBBLLEEMMSS  

Since the basic problem of finding NOE pathway will be modeled as a combinatorial 

problem, several basic issues from the latter field, including complexity issues and 

algorithm design, are recalled in this section. The combinatorial model as well as a proof of 
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problem NP–hardness will be based on graph theory notions. Thus, the chapter begins 

with the recollection of graph theory fundamentals. Next, definitions of combinatorial 

problems are given, followed by the description of complexity classes of the problems and 

application of the exact as well as approximation algorithms. 

 An undirected graph G is a finite nonempty set of objects called vertices together 

with a, possibly empty, set of unordered pairs of distinct vertices of G called edges. 

The vertex set of G is denoted by V, while the edge set is denoted by E. Thus, graph G 

may be also defined as a pair of objects G=(V,E) (Chartrand and Lesniak, 1986; Gross 

and Yellen, 2004).  

 A directed graph or digraph D is a finite nonempty set of objects called vertices 

together with a, possibly empty, set of ordered pairs of distinct vertices of D called arcs or 

directed edges. As with graphs, the vertex set of D is denoted by V and the arc set of D is 

denoted by E. Digraphs are more natural than graphs for representing situations in which 

order or direction is involved in the relationships between pairs of objects. Thus, one may 

also define digraph D as a set of vertices V and a relation E defined on V×V (Chartrand 

and Lesniak, 1986). 

The problems considered in the thesis, are more suitable to be represented 

as undirected graphs. Thus, definitions recalled in the following paragraphs are connected 

with graphs (the terminology used in discussing digraphs is quite similar to that used for 

graphs, although not always the same). 

 The edge e={u,v} is said to join the vertices u and v. If edge e={u,u} of graph G 

connects vertex u to itself, then e is called a loop. If e={u,v} is an edge of graph G, then u 

and v are adjacent vertices, while u and e are incident, as are v and e. Furthermore, if e1 and e2 are 

distinct edges of G incident with a common vertex, then e1 and e2 are adjacent edges.  

 The cardinality of the vertex set of graph G is called the order of G and is denoted 

by p, while the cardinality of its edge set is the size of G and is denoted by q. A graph 

having p<2 is a trivial graph, while a nontrivial graph has p≥2. 

A number of edges of G incident with vertex v in graph G is a degree of vertex v. 

The degree of a vertex v is denoted deg(v). A vertex of degree 0 in G is called an isolated 

vertex. A graph is connected if it does not contain isolated vertices. 

Many graph problems are devoted to traversing vertices and edges of a given 

graph. Any traversal of consecutive elements of graph G can be written as a finite 

alternating sequence of its vertices and edges, e.g. u=u0, e1, u1, e2, …, un−1, en, un=v, where u is 

an initial vertex, v is a terminal vertex, and ei={ui-1,ui} for i=1, 2, …, n. Often only the 
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vertices of a walk are indicated since the edges presence is then evident, e.g. u=u0,u1,…,un-1, 

un=v. Such a sequence is called a walk of G, and number n (i.e. number of occurrences of 

edges) is called the length of the walk (Chartrand and Lesniak, 1986). It is important to note 

that there may be repetition of vertices and edges in a walk. A walk can be closed or open 

depending on whether u=v or u≠v. A trail is a walk in which no edge is repeated, while 

a path is walk in which no vertex is repeated. By definition, every path is a walk and it 

is also true that every path is a trail. However, the converse of this statement is not 

true in general. 

A nontrivial (i.e. of length>1) closed trail of graph G is referred to as a circuit of G, 

and a circuit v1, v2, …, vn, v1 (for n≥3) whose n vertices vi are distinct, is called a cycle. 

An acyclic graph has no cycles. 

Historically most famous trail and circuit are Eulerian trail and Eulerian circuit, 

which have originated from the problem of Koenigsberg bridges considered by L. Euler in 

the XVIII century. An Eulerian trail of a connected graph G is an open trail of G 

containing all the edges of G. An Eulerian circuit of G is a circuit containing all the edges of 

G. A graph possessing an Eulerian circuit is called an Eulerian graph. 

Another important property defines a Hamiltonian graph. A path in graph G 

traversing all the vertices of G is called a Hamiltonian path of G. A cycle of graph G 

containing every vertex of G is a Hamiltonian cycle. Thus, a Hamiltonian graph is one that 

posseses a Hamiltonian cycle. 

Looking for Eulerian trail or Hamiltonian path in a given graph is a good example 

of a search problem – one of basic notions of computational complexity theory which will 

be discussed here. Let us begin with the notion of a problem Π which can be defined 

as a general question to be answered, usually possessing several parameters, or free 

variables, whose values are left unspecified. A problem is described by giving a general 

description of all its parameters and a statement of what properties the answer or solution 

is required to satisfy.  

An instance I of a problem Π is obtained by specifying particular values for all the 

problem parameters (Garey and Johnson, 1979; Blazewicz, 1988; Drozdowski, 1997; 

Janiak, 1999). Each instance is associated with a fixed encoding scheme, which maps 

particular input values into the string describing them. Number of symbols in the string 

is an input length for an instance I of a problem Π and is usually used as a measure 

of instance size.  
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Problem Π can be solved by applying a step-by-step procedure, called an algorithm 

which produces a solution to any instance of Π. In algorithms development the focus is 

set to efficiency, which is usually determined by time requirements of an algorithm to 

generate a solution. These requirements are expressed by a time complexity function, which 

gives, for each possible input length, the largest amount of time needed by the algorithm 

to solve a problem instance of a given size. Depending on the time complexity, algorithm 

can belong to a group of polynomial, pseudo-polynomial or exponential time algorithms 

(Garey and Johnson, 1979; Blazewicz et al., 1983). 

Let us say that a function f(x) is O(g(x)) whenever there exists a constant c such that 

|f(x)|≤c⋅|g(x)| for all values of x≥0 (Garey and Johnson, 1979). A polynomial time algorithm 

has its time complexity function estimated by O(p(x)), where p is some polynomial 

function and x denotes the instance size. Any algorithm whose time complexity function 

cannot be so bounded is called an exponential time algorithm. Finally, an algorithm is pseudo-

polynomial if time of its execution can be bounded by a polynomial function dependent on 

instance size and the maximum value of any problem parameter. A problem which cannot 

be possibly solved by any polynomial time algorithm is referred to as intractable problem and 

is hard to be solved. Thus, it is often important to determine whether a given problem is 

intractable or not and then develop an appropriate (e.g. exact or approximate) algorithm to 

solve it. However, the time of algorithm execution cannot be reliably measured without 

establishing a model of the computer system. Two models will be used in the following 

paragraphs: Deterministic Turing Machine (DTM), being an example of realistic computer 

system model, and Nondeterministic Turing Machine (NDTM) – an unrealistic model. 

Any algorithm performed in a polynomial time on DTM is also polynomial when executed 

on any other realistic machine. Whereas, NDTM is capable of performing computations 

nondeterministically, which can be interpreted as ability of executing unbounded number 

of computations in time unit (Drozdowski, 1999). 

At the beginning of the discussion on problem different types, let us recall that 

only combinatorial problems are considered in the thesis. A combinatorial problem is the one 

that concerns finite (or at least enumerable) collection of objects and parameters having 

integer values. In general, combinatorial problems belong to the domain of discrete 

mathematics. Three main kinds of combinatorial problems can be distinguished: the 

decision problems, the search problems and the optimization problems. A notion of 

decision problem refers to the problems stated as a question having only two possible 

solutions, either the answer “yes” or the answer “no” (e.g. Does a given graph posses 
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a Hamiltonian cycle?). A set of all the instances of a decision problem Π is denoted by DΠ, 

where yes-instances (i.e. instances with the answer being “yes”) form subset YΠ⊆DΠ and 

a subset NΠ⊆DΠ contains all no-instances (i.e. instances with the answer being “no”) of Π. 

Defining a search problem one states an instance of a problem and asks an algorithm to find 

any feasible solution for it (e.g. Find a Hamiltonian cycle for a given graph.). An algorithm, 

designed to solve a given search problem, results in either giving a feasible solution or the 

statement that no feasible solution exists. Finally, an optimization problem is stated 

as a command to find the best solution for a given problem (e.g. Find a minimum cost 

Hamiltonian cycle for a given graph.). The final result of an algorithm, which solves an 

optimization problem is either the optimal solution or the statement that no feasible 

solution exists. In many combinatorial problems the search and optimization versions are 

equivalent, since the only one feasible solution, being an optimum automatically, 

exists for them. 

Each optimization problem Π has its decision version as well as its search version 

(but not vice versa). In the sense of computational complexity both, the decision and the 

search versions of problem Π, are not computationally harder than the optimization 

version of the same problem. Moreover, the optimization version of problem Π is at least 

as complex as the search version of Π, while the search version of Π is at least as complex 

as its decision version (Garey and Johnson, 1979; Blazewicz et al., 1983; Blazewicz, 1988; 

Drozdowski, 1999). Hence, it is possible to analyze optimization problems computational 

hardness by considering their decision counterparts. By showing that the decision version 

of problem Π is hard, one automatically proves that the optimization and search versions 

of the same problem must be hard as well. Note, however, that an “easiness” of the 

decision version does not imply an “easiness” of the search and optimization versions 

of the same problem. 

Decision problems fall into sets of comparable complexity, called complexity 

classes. By definition, the complexity class NP (Non-deterministic Polynomial) is the set of 

all decision problems that can be solved in polynomial time by NDTM (a non-

deterministic Turing machine), which is an unrealistic model of computer-like machine. 

Solution correctness of every problem in NP can be verified effectively in time bounded 

by a polynomial dependent only on the instance size. NP class contains both – “easy” and 

“hard” problems. The first subset (“easy”) of NP is P (Polynomial) complexity class, being 

the set of all decision problems that can be solved in polynomial time by DTM 

(deterministic Turing machine), which is equivalent to all realistic computing models. 
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Problems in P are easy also in common sense, i.e. they can be solved by polynomial time 

algorithms on any computer. The relationship between the classes P and NP, P⊆NP, 

is fundamental for the theory of NP–completeness. There is a widespread belief that 

P≠NP, although no proof of this conjecture has been done. The hardest problems in NP 

are counted into NP–complete complexity class, NP–complete⊆NP. These problems are 

solved by pseudo-polynomial or exponential algorithms, although a possibility of applying 

polynomial time algorithms for them is not excluded. A construction of a polynomial 

algorithm for NP–complete problem would prove that P=NP, and vice versa.  

NP–complete complexity class includes strongly NP–complete problems, for which no 

pseudo-polynomial time algorithms exist. 

The notion of NP–completeness is crucial in the combinatorial model of NOE 

pathways problem considered in the thesis. Thus, the following paragraphs provide more 

details on this notion.  

By definition, decision problem Π is NP–complete if and only if it is in NP and 

every other problem from NP class polynomially transforms to Π. A polynomial 

transformation of problem Π1 to problem Π2 is a transformation performed in a polynomial 

time with preserving the equivalence of both problems. The equivalence means, that the 

solution for an instance of problem Π1 belongs to YΠ1
 if and only if the solution for 

an instance of Π2 (being the polynomial transformation of Π1) belongs to YΠ2
. 

A polynomial transformation is denoted by ∝. Thus, Π1∝Π2 means that decision problem 

Π1 is polynomially transformed to decision problem Π2. 

Proving that given problem Π1 is NP–complete involves the following steps. First, 

it should be shown that Π1 belongs to the NP class of problems. Next, known NP–

complete problem Π2 must be selected and polynomially transformed to Π1 (Garey and 

Johnson, 1979; Blazewicz, 1988). To prove that problem Π1 is in NP one should generate 

an algorithm solving Π1 on a NDTM in polynomial time. NDTM is a computer-like 

machine consisting of guessing and checking modules. The first module guesses a solution 

(or – in fact – all finite solutions at the same time), while the second – checks whether the 

solution is correct. Thus, a program for NDTM should describe, in terms of NDTM 

symbols and states, what does each module exactly do to solve a given problem.  

To each strongly NP–complete problem any other problem of this complexity 

class can be pseudo-polynomially transformed. Again, proving that given problem Π1 

is strongly NP–complete one should show that Π1 is in NP and construct a pseudo-

polynomial transformation of a known strongly NP–complete problem Π2 to Π1. Pseudo-
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polynomial transformation is a pseudo-polynomial procedure (i.e. time of its execution 

depends on instance size and maximum value of any problem parameter) preserving 

an equivalence of problem before and after transformation. Additionally, it is said, that the 

maximum value cannot exponentially grow after the transformation and instance size 

cannot exponentially shrink. 

Search problem Π is said to be NP–hard if any other NP–hard (or NP–complete) 

problem is T–transformable to Π. T–transformation, called also a polynomial Turing transformation 

of problem Π2 to Π1, is an algorithm solving problem Π2 on DTM in polynomial time by 

the use of some hypothetical polynomial-time procedure solving problem Π1 (on DTM). 

T–transformation is denoted by ∝T, thus, Π2∝TΠ1 means that decision problem Π2 is 

polynomially transformed to search problem Π1. When some search or optimization 

problem appears NP–hard, it means that no polynomial time algorithm exists (unless 

P=NP) for the problem and heuristic algorithms must be used to solve it. 

It is important to know, that there exist NP–hard search problems, which have 

their decision versions computationally easy (c.f. Johnson, 1985). In the thesis a problem 

of this kind is considered. Each instance of such a problem in its decision version can be 

answered “yes”, i.e. a solution exists, but a construction of the solution is hard, what 

makes a search version of the problem computationally intractable. A good example of 

such a problem has been analyzed in (Johnson, 1985), where it has been proved, that 

finding a Hamiltonian cycle in given graph G in a polynomial time is hard, even though we 

know, G is a Hamiltonian graph. Unless P=NP, there simply cannot be constructed 

an algorithm, that, given a graph containing a Hamiltonian cycle, is guaranteed to find the 

one in polynomial time. The reasoning is as follows. If we had such an algorithm A, 

we could use it to tell in polynomial time whether an arbitrary graph G has a Hamiltonian 

cycle. Let p be the polynomial that bounds A’s running time on graphs with Hamiltonian 

cycles. Apply A to G. If G has a Hamiltonian cycle, A will find one in time p(|G|). If G 

does not have such a cycle, then after p(|G|) steps A cannot have found one, and we will 

know that none exists. 

The above problem is an example of a promise problem (Johnson, 1985). Promise 

problem consists of an instance domain (e.g. Given graph G.), a goal (e.g. Find 

a Hamiltonian cycle in G.) or question (e.g. Does Hamiltonian cycle exist in G?) and 

a promise concerning problem solution. Particularly, promise can determine that at least 

one solution exists and, in such case, the decision version of the promise problem is 

trivially easy (the answer is always “yes”). Search version of the latter can be easy or hard. 
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Let us consider promise problems having easy decision versions. We say that these 

problems belong to PROMISE-P complexity class. However, finding the solution to the 

promise problem can be hard, even for problems with a promise of solution existence 

(i.e. at least one solution is promised to exist). Thus, there exists a class of promise 

problems with easy decision versions and computationally intractable search versions. 

Such a problem is considered in the thesis. On the other hand, in order to prove that 

a given decision promise problem is hard, one should demonstrate a parsimonious 

transformation. A parsimonious transformation from problem Π2 to problem Π1 is 

a polynomial transformation that keeps a number of solutions for instances of Π1 equal to 

a number of solutions for equivalent instances of Π2 (Garey and Johnson, 1979). Proving 

that a decision promise problem Π1 is hard one should execute a parsimonious 

transformation of decision promise problem Π2 not belonging to PROMISE–P, 

to problem Π1. 

One more group can be distinguished within the class of promise problems. 

Uniquely promised problem consists of an instance domain, a goal or question and a promise 

that at most one solution to the problem exists. Solution uniqueness assumption does not 

necessarily influence problem computational complexity. Thus, the decision version of 

uniquely promised problem can be easy (polynomial) or hard (NP−complete) and its 

search version can be easy or hard (NP–hard) as well. A good example of NP–hard 

uniquely promised problem, i.e. uniquely promised Hamiltonian cycle, has been discussed 

in details in (Johnson, 1985). 

Finally, let us discuss NP–hard optimization problems. Any problem from this 

class can be solved by an exponential algorithm giving an exact solution or by a heuristic 

algorithm generating a suboptimal solution in a polynomial time. The most common exact 

method applied for NP–hard optimization problems is branch and bound algorithm, 

whereas, tabu search, genetic algorithm and simulated annealing algorithm belong to a set 

of most popular heuristics used for obtaining suboptimal solutions. Two of these 

heuristics are considered in the thesis, tabu search and genetic method. 

Branch and Bound (B&B) algorithm is a general search method dealing with 

optimization problems over a search space that can be presented as a directed, rooted tree 

structure, called a search tree (Papadimitriou and Steiglitz, 1982). Each node of the tree 

responds to one step of the algorithm, while leaves represent potential solutions to the 

considered problem. The method starts by analyzing the original problem with the 

complete feasible region, which is called the root problem and becomes the root of the 
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search tree. In each step current node is scored by the bounding procedure applied to it. 

If there is a chance for solution enhancement, the current node is divided into subnodes, 

which together cover the whole of their ancestor (ideally they partition the parent node). 

Next, the procedure steps into one subnode and is applied recursively, generating a tree of 

subproblems. The score of the best leaf found so far is kept as a bound. Whenever a node 

is reached whose score is worse, the search tree is pruned at that node, i.e. its subtree will 

not be searched, since it is guaranteed not to contain a leaf with better score. The search 

proceeds until all nodes have been solved or pruned, or until some specified threshold is 

met between the best solution found and the lower bounds on all unsolved subproblems. 

Branch and Bound is guaranteed to find the optimal solution, but its complexity in the 

worst case is as high as that of exhaustive search (exponential). 

The basic concept of tabu search is a meta-heuristic superimposed on another 

heuristic (Glover and Laguna, 1997). It executes heuristic local search but also steps 

outside the local optimum area. The search begins by marching to a local optimum in 

a search space X, which, usually, contains only acceptable solutions. Each solution is 

valued by a goal function, which is optimized during the search. Solution x∈X has 

a neighborhood N(x)⊂X. Every neighboring solution x’∈N(x) can be achieved from x by 

one move. Usually, the step improves goal function value by choosing better solution, 

however, if the improvement is not possible other moves are accepted. To avoid retracing 

the steps used, the method records recent moves in one or more tabu lists and verifies 

each move with the lists. The lists are historical in nature and form the tabu search 

memory. The role of the memory can change as the algorithm proceeds. At initialization 

the goal is to make a coarse examination of the solution space. This procedure is known as 

diversification strategy (algorithm jumps between different search areas). Once candidate 

locations are identified, the search is more focused to produce local optimum solutions in 

a process of intensification. Differences between the various implementations of the tabu 

method have to do with the size, variability and adaptability of the tabu memory to 

a particular domain. 

Genetic (or evolutionary) algorithm (GA, EA) is adaptive heuristic search method 

premised on the evolutionary ideas of natural selection and genetics. The basic concept of 

genetic algorithm is designed to simulate processes in natural system necessary for 

evolution, specifically those that follow the principles first laid down by Darwin of survival 

of the fittest. As such it represents an intelligent exploitation of a random search within 

a defined search space to solve a problem. GA is modeled loosely on the principles of the 
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evolution via natural selection, employing a population of individuals (solutions) that 

undergo selection in the presence of variation-inducing operators such as mutation and 

recombination (crossover). A fitness function is used to evaluate individuals, and 

reproductive success varies with fitness. The algorithm begins with a random generation of 

an initial population M(0). Next it computes and saves the fitness u(x) for each individual 

x∈M(t), where M(t) is the current population. Afterwards, GA defines selection 

probabilities p(x) for each individual x∈M(t) so that p(x) is proportional to the fitness u(x) 

of x. The next population M(t+1) is generated by probabilistic selection of individuals 

from M(t) and producing offspring via genetic operators. The whole process, starting from 

evaluation of individuals in current population and finishing in generation of the new 

population, is repeated until a satisfying solution is obtained (Holland, 1975). 
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IIIIII..  BBAASSIICC  CCOONNCCEEPPTTSS  OOFF  RRNNAA  
SSTTRRUUCCTTUURRAALL  AANNAALLYYSSIISS  IINN  SSOOLLUUTTIIOONN  
WWIITTHH  TTHHEE  UUSSEE  OOFF  22DD  NNMMRR  
TTEECCHHNNIIQQUUEESS  

Liquid state NMR has emerged as a structure determination technique for macromolecules 

in the mid 1980s (Case, 1998). Previously, X−ray diffractometry had been the most 

powerful method of tertiary structure elucidation. However, the latter technique is 

effective for the compounds forming single crystals after crystallization. Since single 

crystals are rare in natural substances and RNA is rather insusceptible for crystallization, 

NMR has taken X−ray place in an analysis of RNA and other compounds. On the other 

hand, there is a long way to pass from NMR experiment, through data extraction to 

a presentation of a suggested structure. A collection of different NMR experiments should 

be run and a set of parameters, later used in the final structure modeling, gathered. 

A sequence of steps executed during NMR structure analysis is described in the first of the 

following sections. One of the first analytical steps, i.e. resonance signal identification, was not 

fully solved, and this one defines the thesis subject. Thus, the second section characterizes 

the background of this step. Finally, the other existing methods of solving the problem of 

resonance signals identification are summarized in the last section of this chapter. 

IIIIII..11  SSTTRRAATTEEGGYY  OOFF  RRNNAA  SSTTRRUUCCTTUURREE  DDEETTEERRMMIINNAATTIIOONN  WWIITTHH  NNMMRR  

In this section the process of structural analysis with NMR techniques is explained. It is 

similar for different biomolecules; nevertheless, the description is focused just on RNA, 

which is considered in the thesis. 

 Let us start with the general description of RNA tertiary structure elucidation with 

NMR, presented from a point of view of structural biology. The process is composed of 

several stages. At the beginning NOE (Nuclear Overhauser Effect) signals are identified 

and assigned to appropriate protons of the molecule being analyzed. Next, ribose possible 

conformation, i.e. its spatial structure, is examined. The following step is dedicated to 

a description of a phosphate group alignment in a relation to ribose. Afterwards, the whole 

polynucleotide chain conformation is suggested and duplexes geometry is described. The 

information content available from NMR measurements after these steps is not sufficient 

to completely determine the structure. It allows for a generation of a set of possible 



Page 39 

structures, that respond to a collection of parameters acquired. The cardinality of this set 

can be reduced during structure refinement step. NMR refinement usually involves 

simulated annealing procedure for optimizing functions that consider additional 

constraints and describe the molecular structure of the compound. 

 In the detailed chemical view, NMR fundamental structure determination explores 

techniques that correlate carbon atoms to directly attached protons (CH, CH2, CH3), 

assign proton-proton (1H−1H) spin couplings and determine coupling networks, assign 

long-range proton-carbon (1H−13C) connectivity and determine 3D structure by  

through-space proton-proton interactions (Wuthrich, 1986; Varani and Tinoco Jr., 1991; 

Williams and Fleming, 1996; Wijmenga and van Buuren, 1998; Nilges, 1999; Zidek et al., 

2001). An experimental plan involves: 

1. preparation of RNA sample,  

2. carrying out a range of one- and multidimensional NMR experiments for 

the sample, 

3. identification of resonance signals, 

4. calculation of structural restraints, 

5. generating a family of structures and their analysis. 

 

RNA sample is prepared by a chemical synthesis or enzymatic methods. For a liquid state 

NMR, the compound is dissolved in a solvent. To avoid spectra dominated by solvent 

signals the solvent is deuterated, which means that some hydrogen protons are replaced by 

deuter (D or 2
1H) – heavier hydrogen isotope, transparent to NMR. Most commonly used 

solvents are acetic acid, acetone, acetonitrile, benzene, chloroform, dimethyl sulfoxide, 

methanol, methylene chloride, pyridine or deuterated water (D2O). Chemical solution 

prepared in this way is then placed in a probe and situated in NMR spectrometer. Next 

NMR experiments are executed. Their variety depends on the information a spectroscopist 

wants to acquire. The whole set of possible one- and two-dimensional spectra has been 

described in Chapter 2. 

The next step in the process is a signal identification, which determines execution 

of the following calculations. On the basis of spectral data, number of protons is verified 

and information about proton-proton resonance signals is obtained. These signals, called 

correlation signals or NOE signals are detected during NOESY (Nuclear Overhauser Effect 

Spectroscopy) experiment and displayed in a 2D−NOESY spectrum. NOE correlation 

signal appears when two protons, close in space, resonate. Usually, the resonance appears 
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between hydrogen protons, for which mutual distance is at most 6 Å2 (Nilges, 1999). 

Cross-peaks in the spectrum represent the signals. Each cross-peak is characterized by its 

ordinary number, two coordinates of its center, given in ppms (see Section 2.3 for ppm 

definition), widths of the cross-peak and a volume corresponding to signal intensity 

(see Section 3.2 for spectrum detailed description). However, the information about 

protons, that generated the signal is unknown and should be guessed. In other words, 

appropriate protons must be assigned to each signal and so the signal is identified. 

This identification proceeds in two steps. First a specific NOE connectivity pathway (see 

Section 3.2 for pathway detailed description) is found and drafted in the spectrum. Next, 

the pathway is mapped onto primary sequence of the molecule. For example, if RNA 

molecule r(CGUA)2 is analyzed and NOE pathway found is s4-s1-s2-s8-s7-s6-s5-s9-s3, where si 

denotes i-th cross-peak in the spectrum, then mapping the pathway onto the sequence 

results in the following assignment: s4 is a signal generated by H1’ and H6 protons of C1 

(denoted C1:H1’−C1:H6), s1 is generated by H1’ proton of C1 and H8 proton of G2 

(C1:H1’−G2:H8), s2 is generated by H8 and H1’ protons of G2 (G2:H8−G2:H1’), s8 is 

generated by H1’ proton of G2 and H6 proton of U3 (G2:H1’−U3:H6), etc. (see Section 

3.2 for assignment detailed description). After an assignment an experimenter knows what 

signal (how intensive, how positioned etc.) is generated by any chosen pair of hydrogen 

protons and what chemical shift each proton has. This information is sufficient to generate 

a draft of a structure, although in order to obtain more precise view other parameters must 

be calculated. These parameters, calculated with the use of information derived from 

assignments, are called structural restraints (e.g. NOE distances, torsion angles etc.). 

Without signal identification no structural restraints calculation can be performed. Finding 

NOE pathway in the spectrum, however, is a hard problem. Thus, this step is a bottleneck 

of the whole process of biomolecule structure determination and, since the last decade 

of 20th century, it has been one of the top problems in structural biology and 

bioinformatics (Kraulis, 1989; Roggenbuck et al., 1990; Bartels et al., 1997; Croft et al., 

1997; Mumenthaler et al., 1997; Zimmerman et al., 1997; Guntert, 1998; Moseley and 

Montelione, 1999; Atreya et al., 2000; Linge et al., 2003; Adamiak et al., 2004; Balley-

Kellog et al., 2004). In the thesis, several algorithms for NOE pathway reconstruction are 

                                                 
2 Angstrom (Å) is a unit of length, used commonly in measuring atoms sizes or intermolecular distances. 

One angstrom equals 10-10 meters, 0.1 nanometers or 100 picometers. 
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proposed (see Chapter 6), which eliminate the difficulties on this stage of structure 

elucidation. 

Having resonance signals identified, one can calculate structural restraints, basing 

primarily on chemical shifts obtained through the sequence-specific assignments. 

Traditionally, structure determination relies on the measurement of a maximum possible 

number of local restraints. The more restraints are calculated the more precise a final 

structure is obtained. A set of possible restraints includes: NOE distances, homo- and 

heteronuclear scalar couplings, chemical shifts, torsion angles, dipolar couplings, etc. 

(Wuthrich, 1986; Nauhaus and Williamson, 1989; Hilbers and Wijmenga, 1996; Jardetzky 

and Schmitt, 1996a; Varani et al., 1996; Guntert, 1998; Mollova and Pardi, 2000). 

Their calculation is beyond a scope of the thesis, thus just general information is given in 

the following paragraphs.  

 The most important of local restraints is the 1H−1H nuclear Overhauser effect, which 

provides distance information for pairs of protons separated by less than 5 Å. The 

accuracy of the NOE-derived distance usually decreases with the actual value of the 

distance because the effect of indirect NOE magnetization transfer tends to be worse for 

protons further apart (Wuthrich, 1986; Bax et al., 2001). NOE distance distNOE between 

two hydrogen protons h1, h2 is calculated according to the following formula: 
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(3.1.1)

where ins(h1,h2) is an intensity of the signal generated by protons h1 and h2, and ins(href) is 

an intensity of a reference point. 

 The second commonly used restraint is three-bond J coupling (scalar coupling), 

either homonuclear 1H−1H, 13C−13C, or heteronuclear 13C−1H, 13C−15N, or 15N−1H, which 

are related to the intervening dihedral angles via empirically parameterized Karplus 

relationships, which can be approximated in the form (Wuthrich, 1986; Jardetzky and 

Schmitt, 1996a; Bax et al., 2001): 

θθ 2coscos ⋅+⋅+= CBAJ , (3.1.2)

where A, B, C are coefficients that depend upon the electronegativity of the surrounding 

atoms and θ is a dihedral angle about the central bonds. Other scalar couplings, through 

one- or two-bond interactions are also measured. J values measure the influence of 

a magnetic nucleus on a neighboring magnetic nucleus. The influence is determined by the 

chemical structure of a compound.  
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 Twelve torsion angles determining molecule tertiary structure, are measured for 

nucleic acids: α, β, γ, δ, ε, ζ, χ, ν0, ν1, ν2, ν3, ν4. Each torsion angle is defined by four 

atoms. Atom sequences defining sugar-phosphate backbone torsion angles are as follows: 

α: O3’−P−O5’−C5’, β: P−O5’−C5’−C4’, γ: O5’−C5’−C4’−C3’, δ: C5’−C4’−C3’−O3’, 

ε: C4’−C3’−O3’−P, ζ: C3’−O3’−P−O5’, χ (pyrimidines): O4’−C1’−N1−C2,  

χ (purines): O4’−C1’−N9−C4.  

Endocyclic sugar torsion angles are defined by sequences: 

ν0: C4’−O4’−C1’−C2’, ν1: O4’−C1’−C2’−C3’, ν2: C1’−C2’−C3’−C4’, ν3: C2’−C3’−C4’−O4’, 

ν4: C3’−C4’−O4’−C1’ (Hilbers and Wijmenga, 1996). Torsion angles can be calculated 

from a formula: 

) ( )(( )( )32432312
1cos eeeesign ×⋅×−= −θ  (3.1.3)

for −π≤θ≤π, where sign is a sign of the following formulation: 

( ) ( )( ) 2332432312 eeeee ⋅×××−  (3.1.4)

and eij denote atoms electronegativity.  

 Another relatively recent addition to the arsenal of experimental restraints includes 

cross-correlated relaxation. In contrast to the other parameters, cross-correlated relaxation 

can, at least in principle, report on the relative orientation of dipolar on chemical shift 

anisotropy tensors anywhere in the molecule.  

 A family of structural restraints determines tertiary structure of the molecule. 

Obtaining structure of high accuracy and precision is clearly of great importance 

if maximal insight is to be obtained into the relationships between three-dimensional 

structure and biological function, including the identification of subtle structural 

differences between similar RNA chains or the conformational changes that accompany 

polymer folding. This in turn requires careful consideration of the way in which spectral 

simulations are carried out and of the sampling and optimization procedures used. The 

final step of structure determination is then connected to structure refinement, which 

basically uses optimization procedures. The first, initial set of structures, generated 

e.g. with the use of distance geometry methods (most popular), approximately satisfies the 

covalent and experimental constraints. These structures are refined against the 

experimental data in various ways. Coupling constants data are commonly used in the 

refinement process. They are often converted to dihedral angle constraints and used in 

a manner similar to the distance constraints derived from NOE information. Because of 

the complexity of the interactions that influence the chemical shift, this information is 
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more useful at the final structure refinement stage, where the overall structure has already 

been determined. There exist several structure refinement methods (Case, 1998; Clore and 

Gronenborn, 1998; Chen et al., 1999; Nilges, 1999). 

IIIIII..22  NNOOEE  AASSSSIIGGNNMMEENNTT  IINN  SSTTRRUUCCTTUURREE  DDEETTEERRMMIINNAATTIIOONN  

This section is devoted to an explanation of NOE assignment problem. The assignment, 

being the first computational step in elucidation of RNA tertiary structure (see Section 

3.1), remains a bottleneck of the whole procedure. In brief, the assignment is based on the 

2D−NOESY spectrum, where NOE connectivity pathway should be sketched. 

NOE pathway can be also called a magnetization transfer pathway or H6/H8−H1’ 

connectivity pathway. Completing information about assigned protons can result in the 

calculation of NOE distances and other restraints derived from them. The following 

paragraphs contain a detailed description of the NOESY spectrum and characterize the 

properties of NOE pathway. Finally, the last part of the assignment, structure mapping 

onto the pathway, is explained. 

 Two-dimensional NOESY spectrum displays information obtained during NMR 

NOESY experiment, which detects interactions appearing between pairs of protons being 

close in space but not closely connected by chemical bonds. These interactions, called 

NOE signals, are through-space correlations via the Nuclear Overhauser Effect (NOE). 

NOE is very sensitive to the distance and may therefore be used to estimate it. Interaction 

strength is proportional to (distNOE)−6, where distNOE is the distance between interacting 

protons. The spectrum contains the diagonal and the off-diagonal cross-peaks. The diagonal, 

as well as a projection of the spectrum on each axis, is the 1D spectrum. The cross-peaks 

indicate NOE signals between two protons. Since signal position is measured 

as a chemical shift, thus, both dimensions (D1, D2) of the spectrum are expressed in ppm 

units and range from 4 to 8 ppm. Each nucleotide contains about 10 hydrogen protons, 

but only some (H1’, H2’, H5, H6, H8) are analyzed during NOE pathway construction. 

Typical chemical shift ranges of the protons are displayed in Table 3.2.1.  
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Table 3.2.1. Typical chemical shifts of the selected protons. 

Proton Residues including proton  Chemical shift range 

H1’ C, U, A, G 5 – 6 ppm 

H2’  C, U, A, G 4 – 5 ppm 

H3’ C, U, A, G 4 – 5 ppm 

H4’ C, U, A, G 4 – 5 ppm 

H5’ C, U, A, G 4 – 5 ppm 

H5’’ C, U, A, G 4 – 5 ppm 

H5 C, U 5 – 6 ppm 

H6 C, U 7 – 8 ppm 

H8 A, G 7 – 8 ppm 

 

A typical 2D−NOESY spectrum contains nine characteristic regions of the correlated 

signals (Figure 3.2.1). Since the spectrum is symmetric with respect to the diagonal, 

the appropriate regions can respond to each other. However, vertical spectrum resolution 

differs from the horizontal one; thus, the symmetric regions do not necessarily 

look the same. 
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Figure 3.2.1. An exemplary 2D−−−−NOESY spectrum r(CGCGCG)2 
in D2O with bounded regions (Popenda, 1998). 

Each spectral region displays interactions between other pairs of protons, due to the 

chemical shift range the region covers (Table 3.2.2). 



Page 45 

Table 3.2.2. Interactions displayed in different spectral regions. 

Region [ppm] Interactions pictured in the region 

[4−5]×[4−5] inter- and intranucleotide correlations between H2’, H3’, H4’, H5’, 
H5’’ 

[4−5]×[5−6] 

[5−6]×[4−5] 

inter- and intranucleotide correlations between H2’, H3’, H4’, H5’, 
H5’’ interacting with H1’ or H5 

[4−5]×[7−8] 

[7−8]×[4−5] 

inter- and intranucleotide correlations between H2’ and H6, or H2’ 
and H8 

[5−6]×[5−6] inter- and intranucleotide correlations between H1’ and H5 

[5−6]×[7−8] 

[7−8]×[5−6] 

inter- and intranucleotide correlations between H1’ and H6 or H1’ 
and H8, intranucleotide correlations between H5 and H6 in 
pyrimidine nucleotides (these regions are distinguished by a bold 
frame in Figure 3.2.1) 

[7−8]×[7−8] internucleotide correlations between H6 and H6, H6 and H8, H8 
and H8  

 

Each hydrogen proton can interact with a proton belonging to the same nucleotide, and 

such an interaction is called the intranucleotide NOE signal, as well as with a proton 

positioned in the neighboring nucleotide generating internucleotide signal. Usually, 

intranucleotide signals are more intensive than internucleotide ones, what results from the 

distance between them. Thus, volumes of intra cross-peaks should be bigger than volumes 

of inter cross-peaks. However, this is not a principle. 

Region [5−6]×[7−8] ppm (or symmetric [7−8]×[5−6] ppm), called 

an aromatic/anomeric region of the spectrum, is fundamental in signal assignment process 

(Wuthrich, 1986). This region should contain P+2N−1 cross-peaks, where N denotes the 

number of all nucleotides in analyzed RNA chain and P denotes the number of pyrimidine 

nucleotides in this chain. The number of interactions is given approximately, 

as unsuspected or noised interactions can occasionally appear. A major task of the 

assignment procedure is to find a sequence-specific connectivity pathway 

H8/H6(i)−H1'(i)−H8/H6(i+1) (i≤2N−1, where N denotes number of nucleotides), 

called NOE pathway. Formation of such a path is possible because each aromatic H6/H8 

proton of nucleotide residue (H6 in C and U, H8 in A and G) is in close proximity to two 

anomeric protons: its own and the preceding (from 5’ side) H1’ proton. Figure 3.2.2 shows 

a short exemplary NOE pathway going through the four-nucleotide strand r(CGUA), 

where the main NOE interactions between protons of our interest are marked 

with arrows. 
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Figure 3.2.2. Main NOE interactions in r(CGUA) (Popenda, 1998). 

The pathway is composed of intranucleotide and internucleotide interactions, which give 

rise to the alternately appearing cross-peaks. In case of ideal A-RNA duplexes, the NOE 

pathway starts with the intranucleotide interaction at 5’ end of the strand and its length 

equals 2N−1, where N denotes a number of residues (nucleotides) in the RNA chain. Each 

proton, except for the starting and terminal ones, gives cross-peaks with two other 

protons. If the fine structure of a cross-peak is not considered, the cross-peak can be 

defined as the point with two coordinates specified by the values of chemical shifts of the 

corresponding protons. In fact, every cross-peak is characterized by the two coordinates of 

its centre, widths in both dimensions and the value of signal intensity. All of these data, 

obtained from NMR experiment are taken into account during NOE pathway 

construction. Since each of the considered protons participates in (at most) two 

interactions forming connectivity in the NOE pathway, every two consecutive points in 

the pathway have exactly one coordinate in common (i.e. chemical shift of the common 

proton). This results in consecutive connections within the pathway laying vertically or 

horizontally. Moreover, for this reason every two neighboring connections are 

perpendicular. Summing up, the NOE pathway can be defined in the following way: 
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Definition 3.2.1 (NOE pathway) 

Let PS=s1, s2, …, sl be a sequence of cross-peaks placed in the aromatic/anomeric region 

of 2D−NOESY spectrum S, representing NOE correlation signals occurring between 

protons of a RNA molecule. We will call PS the NOE pathway in S, if the following 

conditions are satisfied (Szachniuk et al., 2003; Adamiak et al., 2004; Blazewicz et al., 

2004a): 

1. the path starts from a cross-peak representing an intranucleotide signal, 

2. every cross-peak si∈S, occurs in path PS at most once, 

3. intra- and internucleotide signals appear alternately in PS, 

4. only cross-peaks having exactly one common coordinate are connected, 

5. every two neighboring connections of PS are perpendicular, 

6. PS does not contain collinear connections, 

7. a length of PS equals l=2N−1, where N denotes a number of nucleotides. 

 

Figure 3.2.3 demonstrates an exemplary NOE pathway found in the aromatic/anomeric 

region of the 2D−NOESY spectrum generated for r(CGCGCG)2. 

 

Figure 3.2.3. NOE pathway drafted in region [5−−−−6]××××[7−−−−8] of 2D−−−−NOESY 
spectrum of r(CGCGCG)2 (Popenda et al., 1997). 

Generally, NOE pathway can be constructed only on the basis of the information 

generated during NMR experiment for each registered NOE interaction: two coordinates 

of cross-peak centre given in ppm, widths in both dimensions and the value of signal 

intensity. Let us call them the spectral data. However, in practice, a collection of additional 
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information is used. In the thesis, they will be called the supplemental data. The supplemental 

data concern the analyzed structure and the obtained spectral information, some of them 

come from the other NMR experiments. The first group includes molecule sequence 

(i.e. its primary structure, which is known) and NOE pathway length (i.e. a number of 

cross-peaks in the pathway). Usually, the length is calculated on the basis of the sequence 

and equals 2N−1, where N is a number of nucleotides in the chain (i.e. number of one-

letter abbreviations used to code the sequence). However, RNA chain may be disjunctive 

and then the shorter pathway is looked for. The second group of supplemental 

information helps in an interpretation of the spectral data and concerns: volume intervals, 

spectrum resolution, overlapping signals, doublets, additional signal rejection, pathway 

potential starting points, known signal positions in the pathway, H5−H6 interactions. 

The meaning of several of these data is in some cases crucial for a correct NOE pathway 

construction, while sometimes it only reduces the search space and advances the 

construction process.  

In many cases there is no difference between volume ranges of intra and inter 

cross-peaks or these ranges are not separable. However, if they do not overlap, it is useful 

to define them, which automatically differentiates the cross-peaks and divides their set into 

the subsets of inter and intranucleotide signals.  

It may be also useful to define the divergence value, which depends on the digital 

resolution of a spectrum in both dimensions. This parameter is involved in the deviation 

of cross-peaks coordinates within the specified range, if there are problems with 

connecting the appropriate peaks because of some errors in the spectrum.  

One of the hardest spectral problems is signal overlapping, i.e. positioning of many 

signals on the same line, while only two cross-peaks with the same coordinate are accepted 

to form a connectivity within the pathway. The problem appears when long RNA chains 

are studied (the longer is a chain the more crowded is a spectrum and more signals 

overlap). Thus, condition 6 from Definition 3.2.1 should be omitted during pathway 

construction. Usually, the fragment with overlapping signals can be specified by giving 

chemical shift range. 

Nonequivalent nuclei with non-zero spins can sometimes generate signals, which 

split into doublet, triplet, quartet etc. This means, that one signal is represented by two 

(in case of a doublet), three (in case of a triplet) or more cross-peaks in the spectrum. 

These cross-peaks are positioned very close to one another and should be interpreted as 

one. Thus, in such cases it is necessary to define a distance between cross-peaks, which 
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should be treated as a multiple representation of one signal. Consequently, their 

coordinates, widths and volumes are used to calculate average values which are next 

assigned to a single representation of the signal. 

In some cases, basing on the spectrum examination, one can distinguish cross-

peaks representing signals discriminated during NOE pathway construction (i.e. not 

generated by H1’, H6, H8 protons). If these cross-peaks can be determined they are next 

rejected during traversing the search space. 

Sometimes, it is easy to point out a priori the expected positions of some cross-

peaks within the NOE pathway. This concerns especially the starting and the ending point 

in the pathway arrangement.  

The last supplemental information concerns H5−H6 signals, which are placed in 

the analyzed region of the NOESY spectrum. These interactions are not involved in 

forming the NOE pathway and must be discriminated by the pathway construction 

procedure. However, their placement can determine positioning of some other cross-peaks 

within the pathway. For the molecules including citidine and/or uridine, every cross-peak 

representing intranucleotide signal generated by citidine/uridine protons has one 

coordinate equal to one cross-peak representing H5−H6 interaction. Thus, on the basis 

of molecule sequence and the determined H5−H6 signals one can verify the correctness of 

a constructed NOE pathway. 

For each RNA simplex and self-complementary RNA duplex one NOE pathway 

only exists in the spectrum. For noncomplementary duplexes two NOE pathways exist. 

They will be called the original pathways. Constructing an original pathway is the main goal of the 

discussed problem. 

When the pathway is found, it should be compared with the sequence 

of an analyzed molecule. Upon this, each cross-peak of a pathway should be assigned to 

a pair of protons, that generated it. Thus, the exact chemical shifts of the protons involved 

in the pathway are recognized. This last step of sequence-specific assignment procedure 

proceeds in the following way. In an ideal case, each i−th odd cross-peak of the pathway 

sequence represents intranucleotide interaction between protons of i−th nucleotide 

(for i=1,2,…,N). Each i−th even cross-peak represents internucleotide interaction between 

a proton of i−th nucleotide and a proton of (i+1)−th nucleotide in the chain 

(for i=1,2,…,N). Thus, for example, having ACU chain analyzed and a pathway s1-s2-s3-s4-s5 

found we assign: s1 is generated by A1:H1’ (meaning H1’ proton of A nucleotide, being 

first nucleotide in a sequence) and A1:H8, s2 is generated by A1:H1’ and C2:H6, s3 is 
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generated by C2:H1’ and C2:H6, s4 is generated by C2:H1’ and U3:H6, s5 is generated by 

U3:H1’ and U3:H6. Next, signal coordinates are taken and chemical shifts of the protons 

can be appointed. For example, if s1 coordinates are (5.09,7.6) then it is obvious that H1’ 

proton of A has a chemical shift of 5.09 ppm and H8 proton of A has a chemical shift of 

7.6 ppm (see Table 3.2.1 for information of chemical shifts ranges for different hydrogen 

protons). In such a way, chemical shifts of all the analyzed protons are appointed and the 

first draft of molecule tertiary structure can be suggested (Case, 1998). 

IIIIII..33  EEXXIISSTTIINNGG  MMEETTHHOODDSS  OOFF  NNOOEE  AASSSSIIGGNNMMEENNTT  

 At present, automatization of NMR spectra analysis makes the strong impact on 

protein structures determination (Moseley and Montelione, 1999). This concerns also 

assignment step, which has been performed manually for a long time. Recent years have 

brought a development of different programs for automatic assignments of protein spectra 

(Bartels et al., 1997; Croft et al., 1997; Lukin et al., 1997; Mumenthaler et al., 1997; 

Zimmerman et al., 1997; Leutner et al., 1998; Atreya et al., 2000; Moseley et al., 2001; 

Linge et al., 2003; Balley-Kellog et al., 2004; Langmead et al., 2004). Some of these 

programs aim at nucleic acids assignment. However, in practice, they are not useful in 

RNA structural study at this stage. Thus, for short DNA and RNA duplexes the 

assignment is still performed manually in accordance with the experimenter’s knowledge 

and intuition. Graphic interactive methods have slightly eased this manual procedure 

(Kraulis, 1989). However, no longer than ca 15-nucleotide chains can be analyzed and 

assigned in this way. For longer oligonucleotides, the spectra become overcrowded and 

cross-peaks often cover up the others. Thus, due to a considerable large number of signals 

and their overlapping, the manual assignment step becomes very troublesome.  

 To the author’s knowledge one proposition of automatic procedure dedicated to 

RNA assignments has appeared (Roggenbuck et al., 1990). The proposed algorithm was 

based on backtracking (BT) and reduced adjacency matrix (RAM) procedures. However, 

no experimental results, except for one self-complementary octamer duplex, were 

reported. A number of alternative paths generated was high and the algorithm has not 

been practically developed.  
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 Thus, since introducing automatic procedures for RNA assignments remains 

a crucial necessity, the new methods are proposed in the thesis. They are based on a graph 

model of an assignment problem that is described in Chapter 4. The first algorithm 

enumerates all feasible paths found in the graph that represents NOESY spectrum. 

The next heuristics optimize solution parameters and try to generate the most valuable 

solution. All the algorithms are presented in Chapter 6. 
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IIVV..  NNEEWW  MMOODDEELL  OOFF  TTHHEE  NNOOEE  PPAATTHH  
CCOONNSSTTRRUUCCTTIIOONN  PPRROOBBLLEEMM  

Respecting the biochemical description of the assignment problem, presented in Section 

3.2, a graph model of the problem is proposed in this chapter. It reduces the NOE 

pathway (Definition 3.2.1) reconstruction to a variant of the Hamiltonian path problem. 

The model formulates a background for the complexity analysis and for the construction 

of algorithms for automatic assignment of resonance signals. It takes into account the 

specificity of the required connectivity between consecutive proton signals in the NMR 

spectrum. The model corresponds to the basic problem of NOE pathway defined by the 

spectral data (see Section 3.2). Since the complete set of the supplemental data is not 

always needed it will not be considered in model construction.  

 The process of sequential assignments of H6/H8−H1’ corresponds 

to a construction of a path between vertices of a graph. Thus, converting 2D−NOESY 

spectrum to a certain graph structure seems to be an attractive idea. Since NOE pathway 

is drafted in aromatic/anomeric region of the spectrum, this region is considered during 

graph construction. Cross-peaks are obvious candidates for graph vertices. Possible 

connections, that can be suggested during NOE pathway reconstruction define edges 

of the graph. These connections must satisfy all the conditions described in Section 3.2. 

The following definition (Szachniuk et al., 2003; Adamiak et al., 2004; Blazewicz et al., 

2004a; Blazewicz et al., 2005) characterizes a new type of a graph, which can be used to 

represent the selected region of NOESY spectra and NOE sequence properties (see 

Section 3.2 for NOESY spectrum and NOE pathway descriptions): 

 

Definition 4.1 (NOESY graph) 

Let G=(V,E), where V is a set of vertices, E is a set of edges, be an undirected graph 

situated on a plane. We will call G a NOESY graph, if the following conditions are satisfied: 

1. Every vertex v∈V represents one cross-peak from a hypothetical NOESY 

spectrum and hast the following properties of the corresponding cross-peak: the 

number, two coordinates and widths in two dimensions. 

2. A number |V| of vertices in graph G equals a number n of cross-peaks. 
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3. Every vertex vi∈V, i=1..n, is weighted and has a weight wi∈{0,1}; wi =0 if the i−th 

cross-peak represents internucleotide signal, wi =1 if the i−th cross-peak represents 

intranucleotide signal; thus, V=V0∪V1, where V0={vi: wi=0, i∈{0,1,...,n}} and 

V1={vi: wi=1, i∈{0,1,...,n}}. 

4. Every edge e∈E represents a potential connection between two vertices of V 

having different weights and exactly one common coordinate. 

5. A number |E| of edges in graph G equals a number of all possible connections 

(i.e. lines between two cross-peaks of different volumes having exactly one 

common coordinate) that can be drafted in the spectrum. 

 

Let us stress that, in general, NOESY graph G may not correspond to any particular 

NOESY spectrum S, and thus, NOE path may not exist in it. We will call this case 

a theoretical one (theoretical model of the problem). It will be showed that both, decision 

and search versions of this problem are computationally hard. On the other hand, if the 

NOESY graph G corresponds to a given spectrum S (in this case we will talk about 

experimental or real model), then in the ideal case (no errors) its decision version is trivial, 

i.e. NOE path (or better NOE pathway) must always exist. However, finding one is still 

a computationally hard problem. 

For a given 2D−NOESY spectrum, one can construct a NOESY graph GS 

corresponding to the spectrum aromatic/anomeric region S. Figure 4.1 shows the 

relationship between the [5−6]×[7−8] region of a NOESY spectrum of r(CGCGCG)2 

(Figure 4.1.a) and the corresponding NOESY graph (Figure 4.1.b) obtained according 

to definition 4.1. 
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Figure 4.1. The relationship between aromatic/anomeric region of the NOESY 
spectrum of r(CGCGCG)2 (a) and the corresponding NOESY graph (b). 



Page 54 

In the example presented in Figure 4.1, spectrum S contains seventeen cross-peaks, and 

consequently, graph GS contains the same number of vertices. Some cross-peaks lay so 

close to one another (see 5−6, 11−12, 15−16−17) that, for an inexperienced observer, they 

seem to be the single peaks. However, they are registered as different proton signals by 

peak-picking procedure of NMR software. Thus, there are nine intranucleotide resonances 

corresponding to nine vertices with weight 1 (displayed as big circles), and eight 

internucleotide resonances represented by eight vertices with weight 0 (displayed as small 

circles) in graph GS. Edges of GS correspond to all possible proper connections that can 

be drawn in spectrum S. 

 After converting spectrum S to graph GS, an appropriate connectivity pathway can 

be looked for in GS. This, however, requires a formulation of the NOE pathway problem 

in terms of graph theory. In order to differentiate an experimental and a theoretical 

problem, a notion of NOE path will be used with the reference to the graph theoretical 

model (NOESY graph which does not correspond to any specific spectrum and, thus, not 

necessarily contains the path), while the NOE pathway notion will still define H6/H8−H1’ 

connectivity sequence in the spectrum, as well as in a graph representing the spectrum 

(i.e. an experimental model). 

 

Definition 4.2 (NOE path) 

Let PG=v1, v2, …, vl be a sequence of vertices of the NOESY graph G=(V,E). We will call 

PG the NOE path in G, if the following conditions are satisfied (Szachniuk et al., 2003; 

Adamiak et al., 2004; Blazewicz et al., 2004a): 

1. v1∈V1 

2. Every vertex vi∈V and every edge ej∈E of G occurs in path PG at most once. 

3. Vertices with different weights appear alternately in PG. 

4. Every two neighboring edges of PG are perpendicular. 

5. No two edges of PG are collinear. 

6. A length of PG equals l=2|V1|−1. 

 

NOE pathway PS constructed in the 2D−NOESY spectrum S of RNA molecule is the 

solution of the assignment problem in the real model. NOE path PG found in NOESY 

graph GS corresponding to spectrum S, is the appropriate solution of the same problem. 

Figure 4.2 shows the relationship between the NOE pathway (Figure 4.2.a) found 
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in aromatic/anomeric region of the NOESY spectrum of r(CGCGCG)2 and the 

corresponding path (Figure 4.2.b) in NOESY graph corresponding to this spectrum. 

 

(a) 

 

(b) 

Figure 4.2. Relationship between NOE pathway (a) in the spectrum of r(CGCGCG)2 
and the corresponding NOE path (b). 

There is conformity between the problems of the NOE path and the Hamiltonian path in 

a graph. However, the first problem assumes additional constraints on the search space of 

the algorithms solving this problem: an edge can join only vertices having exactly one 

common coordinate (thus only horizontal and vertical edges are correct) and different 

weights, horizontal and vertical edges occur alternately in the path. These constraints have 

been considered in the proposed model of the problem, containing definitions of 

a NOESY graph and a NOE path. For some instances, additional information, that 

reduces the search space, is available and this is considered by algorithms during path 

correctness verification (Adamiak et al., 2004; Blazewicz et al., 2004a).  

A problem of NOE path construction in the NOESY graph (a search problem), 

similarly to the corresponding spectral problem, is computationally hard. Its computational 

complexity is discussed in the next chapter.  
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VV..  CCOOMMPPUUTTAATTIIOONNAALL  CCOOMMPPLLEEXXIITTYY  
AANNAALLYYSSIISS  OOFF  TTHHEE  NNOOEE  AASSSSIIGGNNMMEENNTT  
PPRROOBBLLEEMM  

This chapter is devoted to a presentation of a computational complexity 

of H6/H8−H1’ (NOE) connectivity pathway construction in the theoretical as well as in 

the experimental model as discussed in Chapter 4. Classification of a problem into 

a proper complexity class helps in designing and verification of algorithms solving the 

problem. The basic question stated at the beginning of problem analysis is whether or not 

a problem is computationally intractable. This question will be answered in the following 

paragraphs of the chapter. 

Let us remind that a notion of NOE pathway concerns the experimental model of 

the problem (searching the spectrum, searching a graph representation of the spectrum), 

while NOE path denotes the corresponding problem in the theoretical model (searching 

any NOESY graph). It will be proved, that the theoretical problem of the NOE path 

construction in the NOESY graph in its search version is strongly NP–hard, while the 

decision version of the problem in question is strongly NP–complete. The appropriate 

proof is shown in Section 5.1. One can immediately try to classify decision and search 

versions of the corresponding real (experimental) problem of NOE pathway to the same 

complexity classes. However, a slight difference between theoretical and experimental 

models (in the latter NOESY graph GS corresponds to a given spectrum S) appears crucial 

to negate such a classification general correctness. It makes a decision version of NOE 

pathway problem trivially easy. A search version, however, remains NP–hard. These 

proofs are given in Section 5.2. 

VV..11  CCOOMMPPLLEEXXIITTYY  OOFF  TTHHEE  PPRROOBBLLEEMM  IINN  TTHHEE  TTHHEEOORREETTIICCAALL  MMOODDEELL  

In this section, the computational complexity of the NOE path problem is analyzed. 

The problem concerns a construction of the specific path, called NOE path (Definition 

4.2), in a NOESY graph (Definition 4.1). NOE path problem corresponds to the real 

problem of NOE pathway reconstruction in the two-dimensional NOESY spectrum being 

the thesis subject, however, in the theoretical model, NOESY graph does not represent 

any specific spectrum and NOE path may not exist. 
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The following theorem establishes the hardness of both decision and search versions 

of finding the NOE path in the theoretical model. 

 

Theorem 5.1.1 (NOE path complexity) 

The problem of finding NOE path in a NOESY graph is NP–hard. 

 

Proof 

Since each search problem has its decision version, which is not computationally harder, 

the decision version of the problem will be used in the proof of Theorem 5.1.1.  

Let us denote the search problem of finding NOE path by Πsearch, and its decision 

version − by Πdec. Formulations of both versions of the problem will be based on 

Definition 4.1 and Definition 4.2, respectively: 

 

Definition 5.1.1 (NOE path construction – search version: Πsearch) 

Instance: NOESY graph G=(V,E). 

Goal: Find (construct) NOE path in G. 

 

Definition 5.1.2 (NOE path construction – decision version: Πdec) 

Instance: NOESY graph G=(V,E). 

Question: Does G contain a NOE path?  

 

The proof of problem Πsearch strong NP–hardness will be based on demonstrating that its 

decision version Πdec is strongly NP–complete. A sketch of the standard proving procedure 

is composed of the following steps: 

1.  By showing an algorithm on NDTM solving Πdec  in a polynomial time 

one proves that Πdec ∈NP. 

2.  Select a known NP–complete problem Π’ dec  . 

3.  Transform the selected problem Π’ dec  to problem Πdec  . 

4.  Prove the transformation is a polynomial transforma tion. 

 

Let us start with the first step of the above sketch. A nondeterministic algorithm is simple. 

It only needs to guess an ordering of the vertices and check in polynomial time whether all 

the conditions from Definition 4.2 are satisfied. The guessing module of NDTM generates 

random sequences of the vertices, which are next verified (in parallel) in polynomial time 
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by a deterministic module. The latter module provides an answer “yes” or “no” depending 

on the sequence correctness. 

 Selecting a problem Π’dec transformable to Πdec seems obvious. In what follows, 

Π’dec will denote the Hamiltonian path problem, which is known to be strongly  

NP–complete (Karp, 1972; Garey and Johnson, 1979). It can be defined as follows. 

 

Definition 5.1.3 (Hamiltonian path construction – decision version: Π’dec) 

Instance: Graph GH=(VH,EH), |VH| = n. 

Question: Does GH contain a Hamiltonian path, that is an ordering <w1,w2, ..., wn> of the 

vertices of GH, such that {wi,wi+1}∈EH for all i =1, 2, …, n ? 

  

It may be assumed that graph GH=(VH,EH) has no self-loops and no vertex with degree 

exceeding three and the problem remains strongly NP–complete (Garey and Johnson, 

1979). 

 An arbitrary graph GH=(VH,EH), being an instance of the Hamiltonian path 

problem (restricted in the above sense), can be polynomially transformed to a NOESY 

graph G=(V,E). The reduction R:GH→G proceeds in the following way: 

1.  For every vertex wi ∈VH place the corresponding vertex v i ∈V on 

a plane at the point of coordinates ( i , i ) and assign to it the 

weight equal 1. Consequently, coordinates of vertex  v i ∈V satisfy 

the equation f(x)=x. 

2.  For every edge e j =( wp, wk) ∈EH, construct a square subgraph as 

shown in Figure 5.1.1 and place it in graph G between the 

appropriate vertices vp∈V and v k∈V (corresponding to wp, wk∈VH). 

3.  Assume the following coordinates of the vertices: v jt  = ( p, k ), 

v jd  = ( k , p). Let us observe that edges e jt
1 and e jt

2, as well as 

e jd
1 and e jd

2, respectively, are perpendicular to each other. 

4.  Assign weights equal 0 to vertices v jt  and v jd . 
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Figure 5.1.1. A square subgraph. 

As a result of the proposed reduction of graph GH=(VH,EH), a NOESY graph G=(V,E), 

consistent with Definition 4.1 is obtained. A set of vertices and a set of edges of the 

obtained graph G contain the following elements: 

{ }UU
||..1||..1

,
HH Ej

jdjt
Vi

i vvvV
==

∪= , (5.1.1)

{ }.,,,
||..1

2121
U

HEj
jdjdjtjt eeeeE

=

=  (5.1.2)

A cardinality of the vertex set and a cardinality of the edge set of G equal: 

|,|2|||| HH EVV +=  (5.1.3)

.||4|| HEE =  (5.1.4)

 

Figure 5.1.2 illustrates the following steps of the procedure transforming a simple graph 

GH (Figure 5.1.2.a) into a corresponding NOESY graph G (Figure 5.1.2.e). 
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Figure 5.1.2. Transformation procedure: (a) input graph, (b)-(e) succeeding 
steps of a transformation to a NOESY graph (e). 

To complete the proof of Theorem 5.1.1, it must be revealed that the proposed 

transformation procedure R is a polynomial time transformation, i.e. it is performed in 

a polynomial time and preserves the equivalence of the problem solutions before (Π’dec) 

and after (Πdec) the transformation.  

Since the time used for the transformation procedure is bounded from the above 

by the input length of problem Π’dec, it can be performed in time bounded by a polynomial 

function of the size of an input (i.e. number of vertices and edges of the transformed 

graph) and equals O(n2): for all n input vertices the same number of new vertices is created 

(complexity O(n)), and for every edge pair of vertices and edges is created (complexity 

O(n2) since in a complete graph number of edges equals ½ (n-1)n). 

To prove problem solutions equivalence, it should be demonstrated that the 

solution for an instance of problem Π’dec belongs to YΠdec’ (the answer is “yes”) if and only 

if the solution for an instance of Πdec also belongs to YΠdec. Thus, the following proposition 

truthfulness must be revealed:  
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Proposition 5.1.2 (Hamiltonian and NOE paths equivalence) 

Graph GH=(VH,EH) contains a Hamiltonian path if and only if the corresponding 

NOESY graph G=(V,E) contains a NOE path. 

 

At the beginning, let us assume that graph GH=(VH,EH) contains a Hamiltonian path 

PH=w[1],w[2],…,w[n], n=|VH|. For this path, we construct the corresponding path 

P=v[1],v[2],…,v[m] (m=|V|) in graph G=(V,E) resulted from the transformation procedure 

R:GH→G. Let us prove, that path P satisfies conditions 1−6 from Definition 4.2. From 

the transformation it has been known that for every vertex wi∈VH (for i∈〈1,n〉) in graph 

GH, there exists exactly one vertex vi∈V1 in graph G. Consequently, the first vertex in P is 

the one with weight equal to 1: v[1]∈V1 and condition 1 is satisfied. By definition, the 

Hamiltonian path PH satisfies condition 2 (i.e. it is a simple path), thus, the corresponding 

NOE path P in graph G also satisfies this condition. Let us now discuss condition 3. 

It can be observed that each vertex vi∈V1, i∈〈1,m〉 in graph G is adjacent to vertices from 

V0 subset only, and each vertex vi∈V0, i∈〈1,m〉 in graph G is adjacent to vertices from V1 

subset only. Therefore, vertices with weight 1 (belonging to V1 subset) and vertices with 

weight 0 (belonging to V0 subset) appear alternately in P and condition 3 is satisfied. Since 

graph G construction allows to choose one of two possible traversals between every two 

vertices of G and G structure contains only horizontal and vertical edges, it is always 

possible to construct NOE path P taking succeeding edges perpendicular. This makes 

condition 4 satisfied. From the procedure of transformation of graph GH to graph G it is 

evident that NOE path P with properties 2 and 4 will also satisfy condition 5. Finally, let 

us now consider condition 6. Assume that length of a path in a graph is measured as 

a number of graph vertices occurring in the path. Consequently, a length of the 

Hamiltonian path PH in graph GH=(VH,EH) equals |VH|. From the transformation 

procedure it is evident, that |V1|=|VH|, where V1 is a subset of vertices of G with 

weight equal to 1. It is also known, that each edge of Hamiltonian path PH corresponds to 

a structure containing two edges and one vertex with weight equal to 0 in an appropriate 

NOE path P. Hamiltonian path includes |VH|−1 edges and so, the corresponding NOE 

path will contain additional number |V1|−1 of vertices with weight 0. Thus, the length of 

NOE path P in graph G corresponding to Hamiltonian path PH in graph GH equals 

l=|V1|+|V1|−1=2|V1|−1. This way, satisfiability of the last condition (6) has been 
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proved and the first part of the proof has been completed. 

 In the above paragraph, it has been proved that if graph GH contains Hamiltonian 

path PH, then corresponding graph G contains NOE path P obeying properties 1−6 from 

Definition 4.2. Now, let us show, that the reversed statement is true as well.  

At this point, assume that graph G=(V,E) contains a NOE path satisfying 

conditions 1−6. For every vertex vi∈V1 in graph G, there exists exactly one vertex wi∈VH 

in graph GH. Additionally |VH|=|V1|. Thus, if graph G contains NOE path P which 

includes all the vertices vi∈V1, then in graph GH there exists a path covering all the 

vertices wi∈VH. Moreover, if NOE path in G satisfies condition 2 (the path is simple), 

then – following a procedure of G construction – one may say that the corresponding 

path in graph GH also satisfies this condition. Summing up, it may be claimed that the 

corresponding path in graph GH is a Hamiltonian path. 

In the above paragraph, it has been proved that if graph G contains NOE path P 

obeying properties 1−6 from Definition 4.2, then the corresponding graph GH contains 

Hamiltonian path PH. Consequently, we observe that NOESY graph G contains a NOE 

path if and only if the corresponding graph GH contains a Hamiltonian path. In this way, 

it has been proved that Proposition 5.1.2 of Hamiltonian and NOE paths 

equivalence is true.  

Since it has been proved, that problem of finding NOE path Πdec is in NP and Π’dec∝Πdec, 

where Π’dec is an NP–complete Hamiltonian path problem, it is obvious that Πdec is also 

NP–complete. In the sense of computational complexity, the decision version of any 

problem is known to be not computationally harder than the search (and optimization) 

version of the same problem. Thus, the search version of NOE path construction Πsearch is 

at least as hard as the decision problem of NOE path construction Πdec and it can be 

classified as an NP–hard problem. By proving this, the truthfulness of Theorem 5.1.1 has 

been shown. � 

 

We see that computational intractability of NOE path problem in the theoretical 

model has been proved. Usually, this finishes the discussion on computational complexity 

of the analyzed real problem, as the theoretical and experimental models have similar 

properties and complexity. However, it is not true in case of NOE path problem. 

A slight difference between the real and theoretical problems makes quite a big difference 

between computational complexity of their decision versions. Thus, the following section 

continues the discussion on computational complexity concentrating on the experimental 
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model.  

VV..22  CCOOMMPPLLEEXXIITTYY  OOFF  TTHHEE  PPRROOBBLLEEMM  IINN  TTHHEE  EEXXPPEERRIIMMEENNTTAALL  MMOODDEELL  

This section is devoted to complexity analysis of the NOE pathway construction being 

one of the first steps of RNA tertiary structure determination and the thesis subject. 

The problem concerns a construction of the specific path, called NOE pathway 

(Definition 3.2.1), in a NOESY spectrum (see Section 3.2 for a description). Complexity 

discussion is typically based on some theoretical model of the problem in question. 

The appropriate model for NOE pathway problem has been designed and introduced in 

Chapter 4. Section 5.1 has been centered on an examination of computational complexity 

of finding NOE path in a general NOESY graph, not necessarily corresponding to 

a spectrum. However, apart from the fact that both, theoretical and experimental problem, 

correspond to each other, they are not completely the same in the sense of computational 

complexity. The following paragraphs concentrate on the real problem of finding NOE 

pathway in a spectrum (or a NOESY graph corresponding to the spectrum). 

 Atoms of every RNA molecule placed in the strong magnetic field provided by 

NMR spectrometer, participate in inter- and intranucleotide interactions called NOE 

correlation signals. These signals are registered and pictured in a NOESY spectrum. 

Having such a spectrum one knows that it contains cross-peaks which –when identified 

and connected in a specific way – form a path, called NOE pathway. In non-ideal cases 

several cross-peaks may be missing for some reason and then a construction of the whole 

NOE pathway is not possible. Since such situations are quite rare and do not play crucial 

role in problem analysis, only ideal cases will be considered in this section. The question 

“whether or not NOESY spectrum S contains a NOE pathway?” will be always answered 

“yes”. The decision problem of NOE pathway is then trivial, while – as one can remember 

– its version in the theoretical model is NP–complete (see Section 5.1). 

Let us denote the experimental NOE pathway construction problem by ΠE, its 

search version – by ΠEsearch, and its decision version – by ΠEdec. A formulation of the latter 

version of the problem is based on the Definition 3.2.1 of NOE pathway. 

 

Definition 5.2.1 (NOE pathway construction – decision version: ΠEdec) 

Instance: Aromatic/anomeric region S of the 2D−NOESY spectrum. 

Question: Does S contain a NOE pathway? 
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We have the following theorem. 

 

Theorem 5.2.1 (NOE pathway existence complexity) 

The problem of NOE pathway existence in a NOESY spectrum is trivially easy. 

 

Proof 

To see this let us note that experimental NOE pathway construction problem ΠE belongs 

to a class of promise problems, i.e. it consists of an instance domain, a question and 

a promise of solution existence. According to this promise, each instance of the NOE 

pathway problem ΠE has at least one solution (since for an ideal spectrum coming from an 

experiment at least one NOE pathway must exist). In fact, DΠEdec
=YΠEdec

, where DΠEdec
 is 

a set of all instances of the decision problem ΠEdec and YΠEdec
 is a set of all instances of ΠEdec 

with a “yes” answer. Thus, the computational complexity of the above problem is 

polynomial and the Theorem 5.2.1 is true.� 

 

Promise of solution existence, however, does not necessarily influence the computational 

complexity of problem’s search version, which is defined below: 

 

Definition 5.2.2 (NOE pathway construction − search version: ΠEsearch) 

Instance: Aromatic/anomeric region S of 2D−NOESY spectrum. 

Goal: Find a NOE pathway in S. 

Promise: S contains at least one NOE pathway. 

 

Searching the NOESY spectrum in order to determine the NOE pathway seemed to be 

a hard problem and thus, the following theorem is proposed: 

 

Theorem 5.2.2 (NOE pathway construction complexity) 

The problem of finding NOE pathway in a NOESY spectrum is NP–hard. 

 

Proof 

It is evident, that DΠEsearch
= DΠEdec

. In order to prove that ΠEsearch is in NP–hard class 

of search problems, the general variant of NOE pathway will be introduced. This problem, 

called quasi-NOE pathway construction is defined as follows: 

 



Page 65 

Definition 5.2.3 (quasi-NOE pathway construction – decision version: ΠQdec) 

Instance: Any NOESY graph G=(V,E) such that |V|=m, YΠQdec
= YΠEdec

 and DΠEdec
⊂ DΠQdec

. 

Question: Does G contain a NOE pathway? 

  

Let us notice, that problem ΠQdec is more complicated that ΠEdec, since apart from the set of 

yes-instances, the same as for ΠEdec (YΠQdec
= YΠEdec

), it contains the instances with an answer 

“no” (i.e. DΠQdec
= YΠQdec

 + NΠQdec
). Thus, quasi-NOE pathway ΠQdec is not a promise 

problem. It is also true that ΠQdec belongs to NP–complete class. Its computational 

intractability results from the NP–completeness of the theoretical problem of NOE path 

Πdec (Definition 5.1.2) which has been proved in Section 5.1. NOESY graph can or cannot 

contain NOE path, thus, the domain of Πdec consists of both, yes-instances and no-

instances, similarly to problem ΠQdec. Therefore, NP–completeness of NOE path problem 

Πdec implicates the NP–completeness of quasi-NOE pathway problem ΠQdec.  

 From the computational complexity of ΠQdec it follows, that ΠEsearch is NP–hard 

search problem. Let us prove this implication analogously to (Johnson, 1985). Assume, 

there exists an algorithm A that, given a NOESY spectrum (a NOESY graph representing 

a spectrum) containing NOE pathway (problem ΠEsearch), guarantees to find one in 

polynomial time. Having such an algorithm we could use it to tell in polynomial time 

whether an arbitrary NOESY graph has NOE pathway (problem ΠQdec). Let p denote the 

polynomial that bounds A’s running time on graphs with NOE pathways. Apply algorithm 

A to an arbitrary NOESY graph G. If G contains NOE pathway, A will find one in time 

p(|G|). If G does not have such a pathway, then after p(|G|) steps A cannot have found 

one, and we will know that none exists. Thus, problem ΠQdec could be solved in polynomial 

time by algorithm A. Since, it has been proved that ΠQdec is NP–complete, such an 

algorithm A cannot exist. Thus, there is no algorithm solving problem ΠEsearch in 

polynomial time (unless P=NP) and, consequently, constructing NOE pathway in the 

graph representing NOESY spectrum, and the same – constructing NOE pathway in the 

spectrum (ΠEsearch) is the NP–hard problem.� 

  

At this point, the discussion on computational complexity of NOE pathway problem in 

experimental model is finished. It has been shown that the decision version of the 

problem is polynomially solvable but constructing a solution remains hard, thus, making 

a search variant computationally intractable. Hence, no polynomial time algorithm is likely 

to exist for the problem of NOE pathway construction in the spectrum. Consequently, 
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two approximate algorithms will be proposed in the next chapter solving an optimization 

variant ΠEopt of the problem in question. The latter is defined as follows: 

 

Definition 5.2.4 (NOE pathway construction − optimization version: ΠEopt) 

Instance: NOESY graph G representing an aromatic/anomeric region S of 2D−NOESY 

spectrum. 

Goal: In G find a NOE pathway, that is an ordering <v1,v2, ..., vn> of the vertices of G, such 

that {vi,vi+1}∈E for all i∈〈1,n) and: 

1. v1∈V1, 

2. every vertex vi∈V and every edge ej∈E of G occurs in the path at most once, 

3. vertices with different weights appear alternately in the path, 

4. every two neighboring edges of the path are perpendicular, 

5. no two edges of the path are collinear, 

6. length l of the path is maximum. 

 

Since the experimental (spectral) data prepared for the first tests has been generated for 

short RNA chains and constructed NOESY graphs have been sparse graphs (in a sparse 

graph the number of edges is much smaller than the number of vertices squared), an exact 

algorithm, enumerating all feasible solutions has been designed as well and will be used for 

test purposes. Chapter 6 will be devoted to a presentation of all the mentioned algorithms, 

while in Chapter 7 the results of computational experiments will be shown. 



Page 67 

VVII..  AALLGGOORRIITTHHMMSS  FFOORR  NNOOEE  PPAATTHHWWAAYY  
CCOONNSSTTRRUUCCTTIIOONN  

NOE pathway construction in the 2D−NOESY spectrum of RNA molecules has 

appeared to be NP–hard search problem (see Section 5.2). Even the promise of solution 

existence (as it is a priori known, that a spectrum contains NOE pathway) has not changed 

computational complexity of the problem search version. NP–hardness of the problem 

enforces a way of its algorithmic solution. In order to obtain an exact algorithm one 

should apply a branch and bound method running in time bounded by an exponential 

function. When an approximate solution of the problem is satisfactory, heuristics based on 

tabu or genetic search, performing in polynomial time, can be used. All of these 

approaches will be presented in the chapter, while the results of their application to the 

real NMR spectra will be given in Chapter 7.  

Due to the suggested theoretical model of the problem (see Chapter 4), all the 

presented algorithms will use a graph representation of the spectrum being the input data. 

A description of input files with spectral and supplemental data, used for graph 

construction, will be described in Section 6.1. Both proposed heuristics, tabu search and 

genetic algorithm, use the same optimization criteria in order to find optimal solution. 

These criteria, as well as a description of solution feasibility will be given in Section 6.2. 

Section 6.3 of the chapter will be devoted to an exact algorithm enumerating all feasible 

solutions of the problem. In Section 6.4 the tabu search method will be presented. Finally, 

the second heuristic, based on the genetic approach, will be introduced in Section 6.5. 

VVII..11  IINNPPUUTT  DDAATTAA  AANNDD  IITTSS  PPRREEPPRROOCCEESSSSIINNGG  

In this section the description of input data files, used by the algorithms, will be presented. 

The data are processed by procedures generating a search space for the NOE pathway 

reconstruction. Search space characteristics and construction process will be also described 

in the section. 

Let us recall, that the input data can be divided into two sets of, respectively, the 

spectral and the supplemental data (Section 3.2). The first set, which is defined for each 

instance of the problem, contains information about every cross–peak in the analyzed 

spectrum region. The supplemental data are not always demanded, but when defined, they 

must be considered. Giving supplemental data one can define: analyzed molecule 

sequence, NOE pathway expected length, inter and intra volume intervals, spectrum 
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resolution, region with overlapping signals, distance between cross-peaks of a doublet, 

additional signals rejection, pathway potential starting points, known signal positions in the 

pathway, H5−H6 interactions. A selection of these data is considered when the search space 

for the problem of NOE pathway construction is defined.  

Spectral data are included in a text file *.list generated by Accelrys FELIX software 

from the 2D−NOESY spectrum after peak-picking procedure. The file contains the 

following information about each cross-peak: its number (No), two coordinates of the 

cross-peak center (D1, D2) in ppm or Hz, its volume (Vol) and the widths in both 

dimensions (dD1, dD2) given in Hz. Additionally, the first line of *.list file includes 

spectrometer frequency, which is helpful in converting units (ppm to Hz). Figure 6.1.1 

illustrates an example of input *.list file. 

 

No D1 [ppm] D2 [ppm] Vol [W] dD1 [Hz] dD2 [Hz] 500  

1 6.00 8.03 1.054 16.0 16.0 

2 5.85 7.61 0.169 9.0 7.0 

3 5.80 7.82 0.094 9.0 7.0 

4 5.80 7.72 0.042 9.0 16.0 

5 5.73 7.56 0.100 9.0 7.0 

6 5.73 7.58 0.044 9.0 16.0 

7 5.55 7.72 0.092 9.0 16.0 

8 5.55 7.56 0.049 9.0 7.0 

9 5.53 8.03 0.145 9.0 16.0 

10 5.53 7.82 0.045 9.0 7.0 

11 5.50 7.58 0.117 9.0 16.0 

12 5.50 7.61 0.051 9.0 7.0 

13 5.31 7.72 0.905 16.0 16.0 

14 5.31 7.82 0.030 16.0 7.0 

15 5.25 7.58 1.041 16.0 16.0 

16 5.25 7.56 0.037 16.0 7.0 

17 5.25 7.61 0.025 16.0 7.0 

Figure 6.1.1. An exemplary input file rcgcgcg.list with spectral data. 

Supplemental data about the spectrum and NOE pathway that contain the domain expert 

knowledge and are consequently used to extract correct pathways, are placed in the second 

input file *.inf. This file is divided into several sections which may be empty or may contain 

the following information: 

− in section <VOLUMES>, a user can define intervals to differentiate inter– and 

intranucleotide cross-peaks volumes; 
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− section <RESOLUTION> may contain the value of divergence [ppm] which depends 

on the digital resolution of a spectrum in both dimensions. If this parameter is 

given, then the cross-peaks coordinates are deviated within the given range; 

− section <OVERLAPPING> is filled if the lower and upper limits of the interval with 

overlapping signals are given; 

− in section <DOUBLETS>, one can define the distance between cross-peaks which 

should be interpreted as doublets; 

− section <REJECT_SIGNALS> contains coordinates D1, D2 of the cross-peaks which 

should not be considered during pathway construction; 

− section <SEQUENCE> includes the sequence of RNA (both strands in case of non-

selfcomplementary duplexes);  

− in section <PATH_LENGTH>, a number of cross-peaks in the expected NOE 

pathway can be defined; 

− information about cross-peaks which might be treated as starting points in the 

path is  placed in section <START_POINTS>; 

− section <KNOWN_SIGNALS> includes additional information about the cross-peaks 

which might help in arranging of the pathway; 

− in section <H5−H6_SIGNALS>, a user can specify cross-peaks which can be easily 

identified as H5−H6 cross-peaks and, therefore, they are not taken to the final 

pathway. 

 

Information given in the sections <VOLUMES> through <SEQUENCE> helps in making 

more accurate interpretation of the cross-peaks described in *.list file, while this from 

sections <PATH_LENGTH> through <H5−H6_SIGNALS> allows to reduce the number 

of potential pathways in the solution set. An exemplary supplemental data file is listed 

in Figure 6.1.2. 
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<VOLUMES> 
INTER: 0.035 0.2 
INTRA: 0.035 0.2 
</VOLUMES> 
 
<RESOLUTION> 
</RESOLUTION> 
 
<OVERLAPPING> 
</OVERLAPPING> 
 
<SEQUENCE> 
CGCGCG 
</SEQUENCE> 
 
<PATH_LENGTH> 
11 
</PATH_LENGTH> 
 
<H5-H6_SIGNALS> 
1 13 15 
</H5-H6_SIGNALS> 

Figure 6.1.2. An exemplary input file 
rcgcgcg.inf with supplemental data. 

Before any of the presented algorithms starts computation all the available information is 

looked through to generate an appropriate graph representation (i.e. set of vertices V and 

set of edges E) of the problem. First set of vertices V is constructed. All the cross-peaks 

from the given spectrum are represented as vertices in the set. Each of these vertices is 

described by its number, two center coordinates, two widths and a volume, which are 

taken from a description of the corresponding cross-peak. Next, if some cross-peaks have 

been indicated for rejection (specified in section <REJECT_SIGNALS>), the corresponding 

vertices are removed from V. Finally, if the spectrum contains doublets and the distance 

between cross-peaks forming a doublet have been determined (in section <DOUBLETS>), 

all the doublets are identified in the spectrum. For each doublet in the spectrum, there 

exist two vertices in the vertex set V. Let us call them doublet vertices. These vertices are 

removed from the set and one vertex replaces them. The new vertex is assigned 

coordinates, widths and volume computed out of the appropriate parameters of the two 

doublet vertices: new coordinates as well as new volume are calculated as an average of the 

old ones, new widths are defined so that their range covers the whole of both doublet 

vertices. A number of the new vertex is usually not a number exactly, but a composition of 

two numbers of doublet vertices written as a pair. With these operations, creation of the 

vertex set V is completed. Next, an edge set E should be generated on the basis of V. 

Again, selected supplemental data as well as the definition of the NOE pathway 

(Definition 3.2.1) serve as an instruction for edges generation. The procedure takes every 



Page 71 

pair of vertices vi, vj from the vertex set V, i, j=1..n, and creates an edge (vi,vj) in E if the 

following conditions are satisfied: 

− vi and vj have exactly one coordinate in common (edge will be horizontal or 

vertical), 

− if spectrum resolution is defined, exactly one coordinate of vi is within the error 

range of one coordinate of vj,  

− if volume intervals are defined, vi and vj have volumes from different intervals (one 

is intra and one is inter). 

 

Consequently, the edge set for the given instance of the problem, as well as the vertex set 

are defined. An availability of the supplemental information on H5−H6 signals in the 

spectrum (section <H5−H6_SIGNALS>) raises a necessity of storing the information about 

these signals in a separate structure. Thus, let us define one more set of objects denoted by 

VH5−H6. All the H5−H6 cross-peaks from the given spectrum are represented as objects in 

VH5−H6. Each of these objects is described by its number, two center coordinates, two 

widths and a volume, which are taken from a description of the corresponding H5−H6 

cross-peak. With this, creation of the search space is completed and algorithms can start 

path construction process.  

In the section, all the aspects of generation of the search space for algorithms 

constructing NOE pathways has been presented. Solutions that are a subject of our 

interest should satisfy some predefined feasibility conditions. These conditions will be 

given in the following section of the chapter. This section will also contain a presentation 

of optimization criteria used by heuristic algorithms. Algorithms themselves will be 

described in sections 6.3 through 6.5. 

VVII..22  FFEEAASSIIBBIILLIITTYY  AANNDD  OOPPTTIIMMIIZZAATTIIOONN  CCRRIITTEERRIIAA  

In the chapter, automatic methods of NOE pathways construction in 2D−NOESY 

spectra generated for RNA molecules are discussed. The first proposed method, based on 

exact algorithm, enumerates all solutions being feasible paths. This feasibility property will 

be defined in the first part of this section. Since it has been proved (see Chapter 5), that 

NOE pathway construction is NP−hard problem, two heuristics solving it have been 

designed as well. Both use the same goal function, which serves evaluation of the 

generated solutions. The function will be also described in the section. 
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Let us start from the description of the feasible pathway notion, which will be used 

in the algorithms’ design. As it has been mentioned, exact algorithm (see Section 6.3) will 

be looking for all feasible pathways. The number of pathways consistent with the NOE 

pathway definition (Definition 3.2.1), that can be found in the spectrum as well as their 

lengths depend on RNA tertiary structure and some properties of the acquired NOESY 

spectrum (doublets, overlapping, missing signals influence this in a large degree). 

Computational analysis has shown that the number of all NOE pathways in the NOESY 

graph reaches 2−(n−3)⋅n! for n>2, where n denotes the number of graph vertices (Adamiak 

et al., 2004). These pathways will be called feasible solutions to the problem. Only one 

(or at most two) of them will correspond to the original pathway (see Section 3.2), which is 

correct from the biochemical point of view and is looked for in the spectrum. More 

formally, the feasible solution can be defined in the following way: 

 

Definition 6.2.1 (feasible NOE pathway) 

Let PF=v1, v2, …, vl be a sequence of vertices of the NOESY graph G=(V,E) representing 

spectrum S for RNA molecule M. We will call PF the feasible NOE pathway in G, if the 

following conditions are satisfied: 

1. every vertex and every edge of G occurs in pathway PF at most once, 

2. every two neighboring edges of PF are perpendicular, 

3. no two edges of PF are collinear, 

4. if some vertex positions within the pathway are predefined, PF contains these 

vertices as specified, 

5. if VH5−H6≠∅ (i.e. H5−H6 signals in S are specified) and M contains citidine 

and / or uridine, every object from VH5−H6 has exactly one coordinate in common 

with one vertex representing citidine / uridine intranucleotide signal in G. 

 

Each pathway generated by any of the proposed algorithms is tested according to 

feasibility conditions 1−5 from Definition 6.2.1. If the conditions are satisfied, the pathway 

is accepted as feasible solution. Such a solution is next returned by exact algorithm 

(Section 6.3). In heuristic procedures, feasible solution is evaluated by a goal (criterion) 

function f according to a set of criteria, like length of the pathway, edge deviations, 

alternative appearance of vertices with different weights, etc. Both heuristics tend to 

maximize a number of cross-peaks in the solution and minimize edge deviations, 

inconsistency in neighboring cross-peaks alternative appearances as well as cross-peaks 
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incompatibility with such predefined conditions like known positions within the pathway 

or H5−H6 signals. A random factor also slightly influences the evaluation of solutions. 

It has been introduced in order to increase the probability of leaving the local optimum 

and differentiate solutions with the same scores. A feasible solution with the best score is 

defined as the optimal solution. 

The global criterion function f  has been defined as a weighted sum combining a set of 

different criteria: 


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The components of the criterion function f are defined as follows: 

− l≥1, 

l denotes pathway length; if the length has not been predefined by the user then 

l=1; 

− r∈〈0, 0.0001〉, 

r denotes a random factor; 

− y1∈{0, 1}, 

y1=1 if the predefined starting cross-peak is not present on the first/last position 

of solution x, 

y1=0 if starting cross-peak is not predefined or the predefined starting cross-peak is 

present on the first/last position of x; 
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jjjby , where bj-1,j,j+1∈{0, 0.8, 1}, 

the value of bj-1,j,j+1 depends on deviation of edges between j–th and (j–1)–st as well 

as j–th and (j+1)–st cross-peaks from horizontal/vertical position: 

bj-1,j,j+1=1 if both (j–1)–st and j–th edges are horizontal or vertical, 

bj-1,j,j+1=0.8 in three cases: if both (j–1)–st and j–th edge are double edges (an edge is 

called double if its vertices are located so close to each other and they are so large 

that could be connected by both horizontal and vertical edge), if (j–1)–st edge is 

vertical, j–th is double edge and (j+1)–st is horizontal edge, or if (j–1)–st edge is 
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horizontal, j–th is double edge and (j+1)–st is vertical edge, 

bj-1,j,j+1=0 in the opposite cases; 

− ∑∑
−

=

−

=

=
1

1

1

1
4

l

j

l

i
jicy , where cji∈{0, 1}, 

cji=1 if the j–th and the i–th edges are collinear, 

cji=0 otherwise; 

− ∑
=

=
l

i
idy

1
5 , where di∈{0, 1}, 

di=1 if the i–th cross-peak does not correspond to any predefined H5−H6 cross-

peak,  

di=0 otherwise; 

− ∑
−

=
+=

1

1
1,6

l

i
iiey ,   

where ei,i+1 has a value corresponding to an acceptable horizontal/vertical deviation 

of an edge between the i–th and the (i+1)–st cross-peak in the solution; 

− y7=n−l. 

 

In the above formulas n denotes a total number of cross-peaks in the considered region of 

the spectrum, l stands for the length of the current solution x.  

Weighting factors in function f have been set to the following values: w1=100000, 

w2=10000, w3=10000, w4=10000, w5=1000, w6=1, w7=1.  

Optimization performed by heuristic algorithms, tabu search and genetic 

algorithm, means minimization of the global criterion function value. Thus, solution with 

minimum value of function f is returned as the optimal pathway, which, however, does not 

mean, that it is the original NOE pathway.  

In the section, feasible and optimal solutions have been defined. Finding them is 

the goal of procedures used by enumerative, tabu and genetic algorithms. All of these 

algorithms will be presented in the following sections of the chapter. 

VVII..33  EENNUUMMEERRAATTIIVVEE  AALLGGOORRIITTHHMM  

Since introducing automatic procedures for RNA assignments, which start the process of 

tertiary structure determination with NMR, remains a crucial necessity, a new method is 

proposed in this section. It performs a complete search on the search space of the 

problem and enumerates all feasible NOE pathways in the graph representing an input 
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NOESY spectrum (see Chapter 4). The method is based on a Hamiltonian path 

construction procedure. It uses domain expert knowledge to introduce additional 

constraints that limit the search space to the reasonable proportions. 

The algorithm starts computations from building a search space for the given 

instance. The detailed description of search space generation has been given in Section 6.1. 

Goal of the algorithm performance is listing of all the pathways, which satisfy feasibility 

conditions (Definition 6.2.1), i.e. all feasible pathways. A proposed enumerative algorithm 

builds NOE pathways from a chosen vertex vi∈V (i=1..|V|), adding one edge at a time. 

It looks through the search space adding edges recursively until there is no other edge that 

can be added. The current pathway is verified according to the feasibility conditions. If the 

conditions are satisfied and no more edges can be added, the pathway is remembered as 

a feasible solution in the solution set F. Afterwards, the algorithm goes back removing the 

edges from the current pathway and tries to add the other edges in place of the removed 

ones. An algorithm stops after looking through the whole search space. Finally, the 

solution set F is verified according to pathways inclusion. If one feasible pathway includes 

the whole of the other, shorter feasible pathway, the latter one is removed from F. 

The main procedure of the enumerative algorithm given in pseudo-code is as follows: 

Enumerative Algorithm 

1.  read input spectral and supplemental data; 

2.  construct a set of vertices V; 

3.  construct a set of edges E upon the set of vertices  V; 

4.  if (H5 −H6 signals are determined) then construct a set of 

objects V H5−H6; 

5.  for i:=0 to 〈number of edges 〉 do 

6.  begin 

7.  empty the stack storing current solution; 

8.  current pathway := the i–th edge; 

9.  if (current pathway satisfies condition 4 from Defi nition 

6.2.1) then  

10.  begin 

11.  stack ← current pathway;  //put  vertices of the i–th 

edge onto the stack 

12.  current vertex := current pathway.last vertex; 

13.  call procedure recursive search(current vertex);  

14.  end; 

15.  end; 
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16.  verify solution set and remove pathways included in  other 

solutions; 

17. return 〈set of solutions 〉.  

 

In step 13, Enumerative Algorithm executes the procedure recursive search finding a NOE 

pathway starting from the current vertex being the last vertex of current solution. At this 

step of the search process, current solution is a pathway composed of one edge only (the 

i–th edge), accepted as the first edge in the NOE pathway. Procedure recursive search, given 

in pseudo-code is presented below: 

procedure recursive search (current vertex) 

1.  for k :=0 to 〈number of edges 〉 do 

2.  begin 

3.  current edge := the k–th edge; 

4.  current solution := pathway stored in the stack; 

5.  if (current edge ∉ current solution) and (current edge.first 

vertex = current vertex) then 

6.  begin 

7.  current pathway ← current edge; // add current edge to 

the pathway  

8.  if (current pathway satisfies conditions 2 −5 from 

Definition 6.2.1) then 

9.  begin 

10.  current vertex := current pathway.last vertex; 

11.  stack ← current vertex; 

12.  call procedure recursive search (current vertex);

 // recursion  

13.  end; 

14.  remove current vertex from the stack; 

15.  end; 

16.  end; 

17.  set of solutions ← current solution from the stack; 

18. return.  

 

Enumerative algorithm starts from reading the input information, which is next used for 

generating basic data structures: a set of vertices V, a set of edges E and a set of H5−H6 

objects VH5−H6. The appropriate data are placed in two input files – one storing spectral 

data and the other with supplemental data. A process of pathways construction is mainly 
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based on the edge set, generated upon the set of vertices, while pathways correctness is 

verified with the use of VH5−H6 and a collection of rules defining NOE pathway feasibility. 

Taking each single edge ei∈E (i=1..|E|) algorithm begins a new route in the search tree, 

trying to build a pathway starting with ei. The following edges are added to the pathway 

with regard to feasibility conditions. If no more edges can be added in the route, it may be 

said that a leaf of the search tree has been achieved and the generated pathway is placed in 

the solution set. Then, algorithm traces back removing edges from the end of the pathway 

and trying to replace them with other unused edges. Thus, the new branches appear in the 

search tree. After tracing all the possible routes to the search tree leaves and back, the 

algorithm finishes the search. Finally, it verifies whether solution set includes pathways 

being parts of the other (longer) solutions and removes them. Solution set processed in 

this way is returned as an output of Enumerative Algorithm. 

 Let us now examine an example of algorithm performance for 2D−NOESY 

spectrum of r(CGCGCG)2 molecule. An aromatic/anomeric region of this spectrum has 

been displayed in Figure 3.2.3. 

NMR software (e.g. Accelrys Felix) produces a graphic (e.g. Figure 3.2.1) as well as 

a text version of spectral data. An appropriate text file rcgcgcg.list with spectral information 

for the considered example has been listed in Figure 6.1.1.  

Since some additional expert knowledge has been available, file rcgcgcg.inf containing 

these supplemental data has been generated for the analysed example (Figure 6.1.2). 

Both files, with spectral and supplemental data, are used by Enumerative Algorithm in 

steps 1 through 4 and in step 9, as well as by procedure recursive search in step 8. The detailed 

description of these files structure has been given in Section 6.1. Let us, now, say more 

about supplemental data provided for the considered instance of the problem, which have 

been placed in file rcgcgcg.inf. Volume intervals for inter– and intranucleotide signals have 

been defined as: 0.035 – 0.2. This will make Enumerative Algorithm reject four cross-peaks 

(with numbers: 1, 13, 15, 17) during construction of a vertex set. These cross-peaks do not 

represent the interactions of our interest (H6–H1', H8–H1') and so they should not be 

taken into the pathway. Additionally, these four cross-peaks may be also specified in 

section <REJECT_SIGNALS>. The difference between volumes of inter– and 

intranucleotide signals was hard to specify, thus, the intervals for both sets are equal. Since 

NOE pathway length is known for the instance (11 cross-peaks), it has been specified in 

section <PATH_LENGTH> of the file. Finally, H5−H6 signals have been enumerated in 

section <H5–H6_SIGNALS> and the RNA sequence has been given in section 
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<SEQUENCE>. The latter information instructs algorithm to accept the pathways 

consistent with the primary sequence, so that the peaks corresponding to citidine 

(these are: 1st, 5th and 9th signals in the pathway) should have the same value of D2 

coordinate as cross-peaks specified in section <H5−H6_SIGNALS>. The steps taken by the 

algorithm are as follows.  

Algorithm starts from constructing a set of vertices. Since four cross-peaks (1, 13, 

15, 17) have been enumerated in section <REJECT_SIGNALS> of the supplemental file, 

vertex set is constructed out of the remaining thirteen vertices V={2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 14, 16}. Next, all possible edges are created: E={(2,12), (12,2), (3,4), (4,3), (3,10), 

(10,3), (4,7), (7,4), (5,6), (6,5), (5,8), (8,5), (5,16), (16,5), (6,11), (11,6), (7,8), (8,7), (8,16), 

(16,8), (9,10), (10,9), (11,12), (12,11)}. It is important to remember that RNA chain has 

two different endings (3’, 5’), thus, every possible connection is treated as two edges with 

opposite senses. Consequently, for every edge in the created set there exists the opposite 

one and the number of edges is always even. Afterwards, the procedure starts searching 

for feasible pathways and finds six of them: 

 1: 2 12 11 6 5 8 7 4 3 10 9  

 2: 2 12 11 6 5 16  

 3: 9 10 3 4 7 8 5 6 11 12 2  

 4: 9 10 3 4 7 8 16  

 5: 16 5 6 11 12 2  

 6: 16 8 7 4 3 10 9  

Since NOE pathway length has been defined, verifying procedure rejects all pathways that 

consisted of less than 11 cross-peaks (the longer pathways could not be found because the 

algorithm stops searching in the current direction if the pathway achieved the defined 

length) and two NOE pathways are left: 

 1: 2 12 11 6 5 8 7 4 3 10 9  

 3: 9 10 3 4 7 8 5 6 11 12 2   

One can notice that the above pathways are symmetrical, so only one of them is correct 

from the biochemical point of view. The information about H5−H6 cross-peaks given in 

section <H5–H6_SIGNALS> of rcgcgcg.inf file can help to choose the right NOE pathway. 

Thus, Enumerative Algorithm verifies pathway consistency with RNA sequence and finds out 

whether citidine signals have the same D2 coordinate as cross-peaks specified in section 

<H5−H6_SIGNALS>. It appears that only the second pathway is consistent, so it is returned 

as the only solution of the considered instance: 



Page 79 

3: 9 10 3 4 7 8 5 6 11 12 2 

Figure 6.3.1 illustrates the above pathway drawn in region H5/H1’−H8/H6 of the 

2D NOESY spectrum for r(CGCGCG)2. The three biggest cross-peaks in this spectrum 

(with numbers: 1, 13, 15) are the ones enumerated in section <H5−H6_SIGNALS> of 

rcgcgcg.inf file and one can see that they have the same D2 coordinates as citidine signals, 

respectively: 9,7,11 within the NOE pathway.  
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Figure 6.3.1. NOE pathway found in the spectrum of r(CGCGCG)2. 

 

The solutions in the simple form, i.e. arrangement of the vertices (like in the above 

example) are written to file pathways.out. Additionally, the program creates detailed 

assignment files with solutions. Figure 6.3.2 shows such a file for the analysed example. 
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No D1 [ppm] D2 [ppm] Vol [W]  dD1 [Hz] dD2 [Hz]     500  

1 6.00 8.03 1.054 16.0 16.0 none none 

2 5.85 7.61 0.169 9.0 7.0 G_6:H1' G_6:H8  

3 5.80 7.82 0.094 9.0 7.0 G_2:H1' G_2:H8  

4 5.80 7.72 0.042 9.0 16.0 G_2:H1' C_3:H6  

5 5.73 7.56 0.100 9.0 7.0 G_4:H1 G_4:H8  

6 5.73 7.58 0.044 9.0 16.0 G_4:H1' C_5:H6  

7 5.55 7.72 0.092 9.0 16.0 C_3:H1' C_3:H6  

8 5.55 7.56 0.049 9.0 7.0 C_3:H1' G_4:H8  

9 5.53 8.03 0.145 9.0 16.0 C_1:H1' C_1:H6  

10 5.53 7.82 0.045 9.0 7.0 C_1:H1' G_2:H8  

11 5.50 7.58 0.117 9.0 16.0 C_5:H1' C_5:H6  

12 5.50 7.61 0.051 9.0 7.0 C_5:H1' G_6:H8  

13 5.31 7.72 0.905 16.0 16.0 none none 

14 5.31 7.82 0.030 16.0 7.0 none none 

15 5.25 7.58 1.041 16.0 16.0 none none 

16 5.25 7.56 0.037 16.0 7.0 none none 

17 5.25 7.61 0.025 16.0 7.0 none none 

Figure 6.3.2. Assignment file for r(CGCGCG)2. 

In the section, an enumerative algorithm constructing all the feasible NOE pathways in 

the graph representation of 2D−NOESY spectrum for RNA molecules has been 

presented. Since the algorithm performs a complete search through the search space of the 

NP–hard problem of NOE pathways, the algorithm complexity is exponential. However, 

in case of an analysis of short RNA chains, it appears very helpful for their tertiary 

structure determination. Appropriate computational tests measuring execution time of 

enumerative algorithm have been performed and their results will be presented in Chapter 

7. Since application of this algorithm for longer nucleic acid chains becomes less effective, 

two polynomial time heuristics dedicated to NOE pathways problem will be introduced in 

the following sections of this chapter. In Section 6.4, a tabu search approach will be 

presented, whereas Section 6.5 will be devoted to the presentation of a genetic algorithm. 

VVII..44  TTAABBUU  SSEEAARRCCHH  AALLGGOORRIITTHHMM  

This section introduces a tabu search algorithm designed to solve the problem of NOE 

pathways for RNA molecules. It has been proved, that this problem in its search version is 

strongly NP−hard and hence, no polynomial-time exact algorithm is likely to exist for it. 

However, since NOESY spectra are represented as sparse graphs, an exact algorithm 



Page 81 

enumerating all feasible solutions has been proposed (Section 6.3). This algorithm has 

appeared to perform quite fast for small RNA molecules (see Chapter 7 for the test 

results). Applied for the long nucleic chains, enumerative algorithm may construct too 

many feasible solutions, preventing from performance of the next steps in the 

determination process and its computation time grows exponentially. Because of these 

drawbacks of the exact method, a need has arisen to try another approach which could 

improve the process of NOE assignments in case of longer RNA chains and the noised 

spectra. Consequently, a new algorithm for solving the problem has been proposed. 

As it is crucial to generate the pathways as close as possible to the original one, 

an application of metaheuristics has been considered. 

The algorithm for NOE pathways construction presented in the section is based 

on tabu search method, being an extended version of a local search procedure (Glover and 

Laguna, 1997). In the tabu method, for every solution x in the search space X, 

a neighborhood N(x)∈X is defined in such a way that every neighboring solution x’∈N(x) 

can be reached from x in one move. A move is an elementary operation of the method. 

Usually, the search space X contains only feasible solutions for a considered problem. 

Since the tabu search method is used to solve optimization problems, every solution x∈X 

must be evaluated according to some criterion function f. Thus, the goal is to find an 

element x* in X having the optimal (i.e. minimal or maximal) value of the criterion 

function. At each iteration i, an algorithm chooses current solution xi and searches its 

neighborhood N(xi) to find a local optimum, i.e. solution )}'({max )('1 ixNxi xfx
ii ∈+ =  for 

maximization problems or solution )}'({min )('1 ixNxi xfx
ii ∈+ =  for minimization problems. 

Special mechanisms, like tabu list, prevent the algorithm from getting stuck in these local 

optima and from cycles in the searching procedure. A tabu list stores recent moves made 

by the algorithm and none of them, nor any of their reverses can be performed unless they 

lead to the solution better than the best one already found. Moreover, some specific 

situations allow for performing random or almost random moves, which cause the 

algorithm to jump to the other parts of the search space X. This general framework of the 

tabu search method can be enriched with some additional components due to the 

considered problem requirements. 

The proposed tabu search algorithm based on the above general tabu approach is 

extended by adding an elite structure that stores the most promising solutions. They are 

used as base solutions in the succeeding iterations of the search if the neighborhood of 
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a new solution appears to be worse. The elite structure stores whole solutions together 

with their versions of tabu list.  

Before an algorithm starts computation all the available information is looked 

through to generate an appropriate graph representation of the problem. Next, the search 

space X is constructed on the basis of spectral and supplemental input data (Section 6.1). 

Experimental (spectral) data come from 2D−NOESY experiment and describe cross-

peaks in the spectrum, i.e. cross-peak center coordinates, widths in two dimensions and 

NOE signal intensity. The supplemental data concern the analyzed structure and the 

obtained spectral information, and include analyzed molecule sequence, NOE pathway 

length, intensity intervals, spectrum resolution, overlapping signals, doublets, additional 

signal rejection, pathway potential starting points, known signal positions within the 

pathway, H5−H6 interactions. Every solution x∈X is a vector of at most l cross-peaks, 

where l=2N−1 and N is a number of residues in the analyzed RNA molecule. Solution x 

in X, being a NOE pathway, has the following properties: each cross-peak is unique within 

x, every two neighboring edges of x are perpendicular, no two edges of x lie on the same 

horizontal nor vertical line, solution satisfies some predefined conditions (Definition 

6.2.1). A move of tabu method is feasible if it constructs a solution obeying these 

constraints, i.e. feasible solution.  

The tabu list has been designed as a queue storing q last moves leading to the base 

solution considered in the current iteration. Its length, equal to 18+n/2, has been selected 

experimentally and defined as a linear function of the problem instance size n being 

a number of cross-peaks in an aromatic/anomeric region of the analyzed 2D−NOESY 

spectrum. 

Initial solution is generated by a random procedure limited by the general feasibility 

rules (Definition 6.2.1) or by a greedy algorithm constructing the solution by adding cross-

peaks one by one and starting from various cross-peaks of a NOESY spectrum 

aromatic/anomeric region. Finally, if the pathway we look for should have a maximum 

length (due to some predefined conditions) and the greedy procedure returns a solution 

shorter than 2M−1, then the vector is complemented with random cross-peaks. 

 Four different moves can be performed in order to generate the neighborhood N(x) 

of the base solution x: swapping two selected cross-peaks of the base solution, exchanging 

one cross-peak from x with an unused cross-peak from the spectrum, inserting an unused 

cross-peak on any position of the vector storing solution x or deleting a selected cross-

peak from x. 
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 Every solution is evaluated according to the global criterion function f (see Section 

6.2, formula 6.2.1). Solution with the best (minimum) value of function f is selected in the 

following step of the searching procedure. The algorithm tends to maximize a number of 

cross-peaks in the solution and minimize edge deviations, inconsistency in neighboring 

cross-peaks alternative appearances as well as cross-peaks incompatibility with such 

predefined conditions like known positions within the pathway or H5−H6 signals. 

Detailed description of criterion function has been presented in Section 6.2. 

The new base solution, being a starting point of the succeeding iteration of the 

tabu algorithm, is selected according to an aspiration criterion. The latter is constructed due 

to the following assumptions. Let us denote by '
Tx  the best neighboring solution of x 

obtained by a move deposited on tabu list T. Next, let us denote by 
'
nTx  the best 

neighboring solution of x obtained by a move, which is not deposited on tabu list T. 

The aspiration criterion says: 

IF )()()( '' bestfxfxf nTT <≤  OR )()()( ''
nTT xfxfbestf ≤<   

THEN new base solution = '
nTx  

ELSE IF )()()( ''
nTT xfbestfxf ≤<  

     THEN new base solution = '
Tx . 

In the above statement f denotes the global criterion function and f(best) stands for the 

value of the best solution found so far. The remaining cases for aspiration criterion are 

typical and the same as for a standard version of the tabu search algorithm. 

The method stops when a global optimum has been found or 500 iterations 

without an improvement of the criterion function value have been performed. 

The tabu search algorithm, based on the combinatorial model of the problem, has been 

proposed and applied to the collection of spectral data gathered from the NMR 

experiments for different RNA molecules (see Chapter 7). Its efficiency has been 

compared to the other heuristics based on evolutionary approach that will be presented 

in the next section. 

VVII..55  EEVVOOLLUUTTIIOONNAARRYY  AALLGGOORRIITTHHMM  

This section is devoted to an evolutionary algorithm which has been designed for the 

problem of NOE pathways construction. Since the problem in question in its search 

version is strongly NP−hard, no exact algorithm can solve it in time bounded by 
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a polynomial. However, since NOESY spectra are represented as sparse graphs, 

an enumerative algorithm based on exact search has been proposed (Section 6.3) 

and appeared to perform quite fast for small RNA molecules (tests results are given in 

Chapter 7). Exponential time of computations and an enormous number of feasible 

solutions enumerated make exact method ineffective in case of long nucleic chains. Thus, 

an application of metaheuristics has been considered. One heuristic, based on tabu search 

method has been presented in the previous section. For a purpose of comparison and – 

perhaps – improving some results of computation, the second metaheuristic, designed 

with the use of evolutionary procedure, has been also proposed. The latter will be 

presented in the section. 

The proposed evolutionary algorithm for NOE pathways construction is based on 

genetic method introduced by John Holland in 1975. Typical algorithm of this kind 

employs biologically derived techniques such as inheritance, mutation, natural selection 

and recombination to evolve solutions to the combinatorial problem. Basic components of 

the method are: population (set of solutions), chromosomes (individuals), fitness of the 

chromosomes, process of reproduction (selection of parents and children generation), 

replacement (death of the individuals) and generation completion. Usually, evolution starts 

from a population of completely random individuals (solutions), represented by 

chromosomes, and happens in generations. Each individual is characterized by its fitness. 

Each generation is defined by population size, as well as the birth and death processes. In 

every generation, multiple individuals are stochastically selected from the current 

population, and next – modified through mutation or recombination to form a new 

population, which becomes current in the following iteration of the algorithm. Solutions 

which form the offspring are selected according to their fitness – the more suitable they 

are the more chances they have to reproduce. This is motivated by the hope, that the new 

population will be better than the old one. In such a manner, an approximation algorithm 

evolves toward better solutions. The procedure stops when the desired stopping criterion, 

like number of populations or improvement of the best solution, is reached. As a result of 

this simulated evolution one obtains highly evolved solution to the original problem that is 

the best chromosome picked out of the final population.  

Computational efficiency of evolutionary algorithm depends on the values given to 

algorithm parameters (population size, initial population, genetic operators, fitness and 

stopping criteria, etc.). The proposed implementation of the method complies with the 

typical structure characteristics described above as well as the nature of the problem of the 
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NOE pathway reconstruction on the basis of 2D−NOESY spectra of RNA molecules. 

All components of the proposed algorithm are introduced in the following paragraphs. 

Search space of the problem is constructed on the basis of spectral and supplemental 

input data (Section 6.1), which describe an aromatic/anomeric region of 2D−NOESY 

spectrum resulting from the NMR experiment performed for RNA molecule. Main subject 

of interest are cross-peaks, which represent NOE interactions between protons H6, H8, 

H1’, H5. Every cross-peak is characterized by the two coordinates of its center, widths in 

two dimensions and the volume (intensity) of NOE signal (spectral data). Additionally, 

algorithm considers supplemental data which concern the analyzed structure and the 

obtained spectral information, that is analyzed molecule sequence, NOE pathway length, 

intensity intervals, spectrum resolution, overlapping signals, doublets, additional signal 

rejection, pathway potential starting points, known signal positions within the pathway, 

H5−H6 interactions. 

Population size p is kept constant through the generations. It is the parameter, which 

can be changed if necessary. Arbitrarily its value has been set between 250 and 1000 

individuals. 

The initial population P=0 partially consists of, respectively, the individuals generated 

randomly (but satisfying predefined conditions of feasible solution from Definition 6.2.1) 

and the solutions generated by the greedy algorithm starting the search from various 

starting points. 

One of characteristics dependent on the problem is individual encoding rule. In the 

presented evolutionary algorithm an individual is represented by a vector of size l, where l 

is a maximum length of the NOE pathway for a given molecule. The value of l can be 

derived from the molecule primary structure and equals 2N–1, where N denotes the 

number of nucleotides (residues) in the RNA chain. The vector is composed of the 

sequence of vertex numbers written in the order of their occurrence in the pathway. 

 During evolution process, each individual is evaluated and assigned a fitness value. 

Fitness of the individual is determined by the associated value of the goal function, being 

one of the most crucial components of the algorithm.  

Goal function f (formula 6.2.1) comprises the knowledge about desirable features of 

the problem solutions, thus assuring metaheuristic efficiency. It assembles the criteria, 

which serve the evaluation of individuals (pathways). Value of the goal function is to be 

minimized during the search process. In particular, the algorithm tends to maximize 

a number of cross-peaks in the solution and minimize edge deviations, inconsistency in 
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neighboring cross-peaks alternative appearances as well as cross-peaks incompatibility with 

such predefined conditions like known positions within the pathway or H5−H6 signals. 

Detailed description of the goal function has been presented in Section 6.2. 

Selection is the first step taken in the process of generating the new population. 

The aim of the selection step is to eliminate bad solutions and transfer the good ones from 

one generation to the other. Thus, basing on fitness values, the procedure picks individuals 

from the current population and builds from them the mating pool for the reproduction 

step. The roulette wheel selection strategy (RWS) has been adopted for selection. 

The strategy demands a calculation of a fitness of each individual, a total fitness of the 

whole population, a probability of each individual selection and a cumulative distribution 

of each solution. Afterwards, the algorithm draws p/2 (where p is population size) values 

out of the interval <0,1> and removes from the current population all individuals having 

cumulative distribution values corresponding to the fated ones. Thus, worse goal function 

values result in a greater probability of being removed from the population with no chance 

to get into the mating pool. 

 In the reproduction step new solutions (offspring) are generated with the use of 

crossover and mutation operators applied to the mating pool. All of these operators will be 

presented in the following paragraphs. 

Crossover phase in the presented algorithm is based on the two operators OX and 

merge applied to the individuals selected according to the roulette mechanism. Solutions 

having better values of the goal function are chosen for a reproduction with a higher 

likelihood. An offspring is added to the population of the next generation in place of the 

individuals removed in the selection step. Crossing operators are responsible for carrying 

valuable schemes to the next generations. Thus, their proper definitions provide the 

algorithm convergence to the optimum. The following operators have been introduced: 

− OX operator. In the problem of the NOE pathway reconstruction, like in the 

other problems of that kind (Homaifar and Guan, 1991), the quality of solutions 

depends mostly on the features of edges, which have to satisfy a number 

of particular conditions. The OX operator disrupts relatively small number 

of edges, thus, letting to preserve many features of the parents (Davis, 1985). It is 

used by the algorithm as the only operator in cases, where the length of the NOE 

pathway is known a priori. At the beginning, the OX operator qualifies a random 

sequence of vertices of one parent and places it adequately in the offspring 

sequence. Next, the empty places of the new solution are filled with the vertices 
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of the second parent according to their succession. No vertices reduplicate within 

the generated sequence.  

− Merge operator. If the length of the NOE pathway is not known a priori, two 

operators are proposed to be used: OX and merge. Merge operator improves the 

quality of solutions in the final population. It keeps valuable schemes of the short 

parent sequences and generates long, more desirable offspring solutions. 

The operator copies the whole sequence of one parent into the new solution. 

Subsequently, in the second parent sequence it finds a vertex, which has occupied 

the closing position of the first parent. Then, the operator copies the subsequent 

vertices of the second parent to the offspring sequence. Copying from the second 

parent stops, when the procedure finds a vertex which has been already put into 

the generated solution. 

 

The next technique used by the algorithm is mutation. During the mutation phase each 

solution can be a subject of up to five independent mutation operators. In practice, five 

operators are used if the pathway length is unknown. Otherwise, only three of them 

mutate. In theory, the probability of utilization equals 0.1 for each mutation operator and 

the probability of mutation equals 0.271-0.40951 for each solution. Practically, likelihood 

values are smaller. The following mutation operators have been defined: 

− Swap operator selects two random vertices and exchanges their positions within 

the sequence. 

− Replacement operator draws a random vertex from the sequence and replaces it 

with a random vertex from behind the sequence. 

− Inversion operator selects two positions in the solution sequence. Next, it 

rewrites the vertices positioned between the fated places in the reverse order. 

− Addition operator is used if the pathway length is unknown. The operator inserts 

an additional unused vertex into the random position of the sequence. 

− Deletion operator is used if the pathway length is unknown. The operator 

removes a randomly selected vertex from the sequence. 

 

The method used for creating the new generation is an important aspect of evolution. In the 

proposed algorithm, the next generation is formed out of the best parent solutions and all 

individuals from the offspring population. 
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 Algorithm stops when the stopping criterion has been satisfied. In the presented 

evolutionary algorithm stopping criterion has been defined as the number of succeeding 

generations without improvement of the best individuals. Its value has been set 

experimentally to 250 iterations. 

The proposed algorithm follows the steps of the typical evolutionary procedure and 

performs steps described below. 

 

Evolutionary Algorithm 

1.  generate initial population P=0: create p individuals, where 

each individual is a permutation of n signals given in the 

input; 

2.  calculate fitness F of each individual in population P; 

3.  find the best individual in population P; 

4.  repeat  

5.   basing on the fitness values of the individuals se lect 

parents for the new  population P+1 according to the roulette 

system; 

6.  for each pair of the selected parents apply crossov er 

operators OX and Merge ; 

7.  mutate individuals: considering offspring and paren ts 

populations pick an  individual and apply the chose n mutation 

operators; 

8.  evaluate fitness for each individual in the current  offspring 

and parent population; 

9.  create the new generation out of the best parents a nd all the 

offspring solutions; 

10. until the stopping criteria are not satisfied.  

 

Three algorithms for NOE pathways construction have been presented in the chapter: 

an exact algorithm enumerating all feasible solutions to the problem as well as a tabu 

search and evolutionary metaheuristics, both looking for optimal solutions. All of these 

methods have been applied for a set of spectral data gathered from NMR experiments for 

different RNA molecules. The results of computational tests performed with the use of 

the designed algorithms will be presented in Chapter 7. Also the input data including 

spectra, supplemental information and the details of NMR experiments from which the 

spectra have been obtained, will be described in the following chapter. 
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VVIIII..  CCOOMMPPUUTTAATTIIOONNAALL  EEXXPPEERRIIMMEENNTTSS  

An assignment of H6/H8−H1’ NOE connectivity has been one of the hardest steps in 

a process of RNA tertiary structure determination with NMR techniques. In the thesis, the 

problem has been modeled (Chapter 4) with the use of tools provided by graph as well as 

computational complexity theories. On the basis of the proposed model, three algorithms 

for an automatic assignment have been designed (Chapter 6): the exact enumerative 

algorithm, the tabu search and the evolutionary algorithm. All the methods have been 

implemented in ANSI C programming language and applied to a set of 2D−NOESY 

spectra. The detailed description of the spectral as well as the supplemental data used in 

tests will be given in Section 7.1. Results of computational experiments performed with all 

the algorithms will be presented in Section 7.2 of the chapter.  

VVIIII..11  OOVVEERRVVIIEEWW  OOFF  EEXXPPEERRIIMMEENNTTAALL  DDAATTAA  SSEETT  

The problem of NOE pathways assignment, being one of the first steps in the process of 

RNA tertiary structure determination with NMR techniques, has been considered in the 

previous chapters of the thesis. On the basis of the proposed theoretical model of the 

problem (Chapter 4), three methods for the automatic assignment have been designed 

(Chapter 6). Their efficiencies have been tested on the real data acquired from NMR 

experiments and will be discussed in the next section. This section is devoted to 

a presentation of testing data set which has been used for experimental NOE assignment 

performed with exact, tabu search and evolutionary algorithms. 

 The manual assignment of NOE resonances is very tedious and time-consuming 

due to a large number of cross-peaks and possible large number of existing alternative 

pathways. As a result, RNA chains analyzed in labs are generally rather small. Since 

author’s intension was to verify computational results according to the real solutions, small 

molecules, with already known assignments, have been selected for test purposes. 

 Experimental data set consisted of NMR spectra acquired for the following 

molecules: r(CGCGCG)2, 2’−OMe(CGCGCG)2, r(CGCGFCG)2, d(GACTAGTC)2. 

Spectra of r(CGCGCG)2, 2’−OMe(CGCGCG)2 and r(CGCGFCG)2 in D2O at 30oC were 

recorded on Varian Unity+ 500 MHz spectrometer. Standard pulse sequence (Jeener et al., 

1979) π/2−t1−π/2−τm−π/2−t2 was applied with mixing time τm=150 ms. Spectra were 

acquired with 1K complex data points in t2 and 1K real points in the t1 dimension, with 
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spectral width set to 3.7 kHz. After digital filtration by Gaussian functions, filling zero in t1 

dimension and base correction in t2, data were collected in 1K×1K matrixes with the final 

digital resolution of 3.5 Hz/point in both dimensions.  

 The 2D−NOESY spectrum of d(GACTAGTC)2 was acquired on Bruker 

AVANCE 600 MHz spectrometer. This spectrum was recorded with mixing time 

τm=400 ms, 1K real points in t1, 1K complex points in t2 and spectral width of 6.0 kHz in 

both dimensions. After processing, the final digital resolution was equal to 6 Hz/points 

in both dimensions.  

 Note that for r(CGCGCG)2 and 2’−OMe(CGCGCG)2 and d(GACTAGTC)2 

molecules, [5−6]×[7−8] region of the spectrum has been analyzed. In case of 

r(CGCGFCG)2 two regions, [5−6]×[7−8] and [7−8]×[5−6], respectively, have been 

considered, each storing the other information about correlation signals. 

 Inaccessibility of a large number of NMR spectral data for RNA molecules led us 

to a back-track simulation of some spectra from structures solved with NMR spectroscopy 

methods. The spectra of r(GAGGUCUC)2, r(GGCAGGCC)2, r(GGAGUUCC)2 and 

r(GGCGAGCC)2 were simulated using Matrix Doubling method of Felix software based 

on published 1H chemical shifts (McDowell and Turner, 1996; Wu et al., 1997; McDowell 

et al., 1997; SantaLucia Jr. and Turner, 1993) and three dimensional structures from 

Protein Data Bank (http://www.rcsb.org/pdb). Volumes of NOE cross-peaks for 

τm=0.3 ms were calculated from the Full Relaxation Matrix, where a correlation time was 

set to 2 ns. The Lorentzian line shape functions were used for simulated NOE  

cross-peaks. The widths of these functions depended on the sums of coupling constants 

calculated from the duplex structures based on Karplus equation using Lankhorst and 

Haasnoot parameters (Lankhorst et al. 1984, Haasnoot et al. 1980). 

 In case of r(GGCAGGCC)2 and r(GAGGUCUC)2, [5−6]×[7−8] region of the 

spectrum has been analyzed. Two regions, [5−6]×[7−8] and [7−8]×[5−6], respectively, have 

been considered in the analysis of r(GGAGUUCC)2 and in case of r(GGCGAGCC)2, 

[7−8]×[5−6] region has been processed. 

 Since all the instances had been already solved manually, it was possible to verify 

whether or not each algorithm found an original or a feasible solution. It was also possible 

to examine the way supplementary expert knowledge influences qualifying solutions and 

building the final solution set.  
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All molecules formed self-complementary chains, thus, one biochemically correct 

pathway (an original path) existed for each of them. These original NOE paths drafted 

in the aromatic/anomeric region of the 2D−NOESY spectrum as well as the considered 

fragments of the spectrum for the selected cases are demonstrated in Figures 7.1.1 

through 7.1.7. 
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(b) 

Figure 7.1.1. [5−−−−6]××××[7−−−−8] region of 2D−−−−NOESY spectrum (a) for r(CGCGCG)2 and 
the NOE path (b). 

 

 

(a) 

 

(b) 

Figure 7.1.2. [5−−−−6]××××[7−−−−8] region of 2D−−−−NOESY spectrum (a) for 2’−−−−OMe(CGCGCG)2 
and the NOE path (b). 
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(a) 

 

(b) 

Figure 7.1.3. [5−−−−6]××××[7−−−−8] region of 2D−−−−NOESY spectrum (a) for d(GACTAGTC)2 
and the NOE path (b). 

 

 

 

(a) 

 

(b) 

Figure 7.1.4. [5−−−−6]××××[7−−−−8] region of 2D−−−−NOESY spectrum (a) for r(GGCAGGCC)2 
and the NOE path (b). 
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(a) 

 

(b) 

Figure 7.1.5. [5−−−−6]××××[7−−−−8] region of 2D−−−−NOESY spectrum (a) for r(GAGGUCUC)2 
and the NOE path (b). 

 

(a) 

 

(b) 

Figure 7.1.6. [7−−−−8]××××[5−−−−6] region of 2D−−−−NOESY spectrum (a) for r(GGCGAGCC)2 
and the NOE path (b). 
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(a) 

 

(b) 

Figure 7.1.7. [5−−−−6]××××[7−−−−8] region of 2D−−−−NOESY spectrum (a) for r(GGAGUUCC)2 
and the NOE path (b). 

The numerical data for computational experiments were obtained from experimental and 

simulated spectra (Figures 7.1.1 through 7.1.7) after peak-picking procedure of Felix 

Accelrys. These data are referred to as spectral data (see Chapter 3 and Chapter 5). 

Additionally, a set of supplemental data can be defined for each analyzed instance. Table 

7.1.1 shows a complete set of supplemental information that can be provided for each 

instance, basic information about instance and instance unique identifier. Identifiers will be 

used in Section 7.2 in the description of computational results. 

 

Table 7.1.1.Test instances description. 

Id Basic information Supplemental information 

I molecule: r(CGCGCG)2 
experimental spectrum 

spectral region [5−6]×[7−8] 

instance size: 17 cross-peaks 

5 signals rejected; 
path length; 

3 H5−H6 signals enumerated;   

II molecule: 2’−OMe(CGCGCG)2 

experimental spectrum 

spectral region [5−6]×[7−8] 

instance size: 17 cross-peaks 

volume intervals (inter/intra); 

interval with overlapping signals; 
path length; 

3 H5−H6 signals enumerated; 
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Id Basic information Supplemental information 

III molecule: r(CGCGFCG)2 

experimental spectrum 

spectral region [7−8]×[5−6] 

instance size: 15 cross-peaks 

2 signals rejected; 

resolution; 
path length; 

2 H5−H6 signals enumerated; 

IV molecule: r(CGCGFCG)2 
experimental spectrum 

spectral region [5−6]×[7−8] 
instance size: 22 cross-peaks 

volume intervals (inter/intra); 
distance between doublets; 

resolution; 
path length; 

V molecule: d(GACTAGTC)2 

experimental spectrum 

spectral region [5−6]×[7−8] 

instance size: 26 cross-peaks 

7 signals rejected; 

path length; 

4 H5−H6 signals enumerated; 

VI molecule: r(GGCAGGCC)2 
simulated spectrum (PDB ID: 1MWG) 

spectral region [5−6]×[7−8] 

instance size: 26 cross-peaks 

8 signals rejected; 
path length;   

5 H5−H6 signals enumerated; 

VII molecule: r(GAGGUCUC)2 

simulated spectrum (PDB ID: 1GUC) 

spectral region [5−6]×[7−8] 

instance size: 24 cross-peaks 

6 signals rejected; 

path length; 

4 H5−H6 signals enumerated; 

VIII molecule: r(GGCGAGCC)2 
simulated spectrum (PDB ID: 1YFV) 

spectral region [7−8]×[5−6] 

instance size: 20 cross-peaks 

5 signals rejected; 
path length (broken chain); 

IX molecule: r(GGAGUUCC)2 

simulated spectrum (PDB ID: 1QES) 

spectral region [5−6]×[7−8] 

instance size:  25 cross-peaks 

6 signals rejected; 

path length; 

4 H5−H6 signals enumerated; 

X molecule: r(GGAGUUCC)2 
simulated spectrum (PDB ID: 1QES) 

spectral region [7−8]×[5−6] 

instance size:  25 cross-peaks 

9 signals rejected; 
path length; 

4 H5−H6 signals enumerated; 

 

In computational experiments, supplemental data influence on the results has been tested. 

Thus, not all available data has been used in the tests. However, let us notice that in some 

cases supplemental knowledge is necessary for an appropriate interpretation of the input 

spectral data. For example, without additional information algorithms cannot find original 
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solution in the spectrum containing doublets or overlapping signals or in the case where 

spectrum resolution should be considered. All the results of computational experiments 

will be discussed in Section 7.2.  

VVIIII..22  EEXXPPEERRIIMMEENNTTAALL  RREESSUULLTTSS  

This section is devoted to a presentation of the results obtained from computational 

experiments dealing with automatic reconstruction of the NOE path in the 2D−NOESY 

spectra of RNA molecules. The set of spectral as well as expert supplemental data used 

in the experiments, has been described in Section 7.1.  

 Three methods, tabu search (TS), evolutionary algorithm (EA) and exact 

enumerative algorithm have been considered in the tests. All of them have been coded in 

ANSI C and tested on Indigo 2 Silicon Graphics workstation (1133 MHz, 64 MB) in IRIX 

6.5 environment. 

Two tests T1, T2 have been performed for every instance and each algorithm. 

In the first test (T1) algorithms used all available supplemental data. In the second case 

(T2) a minimum amount of expert supplemental information has been considered. First, 

numbers of feasible solutions found by enumerative algorithm for tests T1 and T2 have 

been computed (Table 7.2.1). Next, the time of computations by all the algorithms has 

been considered (Table 7.2.2). Finally, solutions generated by tabu search and evolutionary 

algorithm have been analyzed according to their quality (Table 7.2.3, Figures 7.2.1 through 

7.2.7). The value of a solution precision has been calculated as a percentage of the original 

path covered by the best solution generated by heuristic algorithm (TS or EA). Genetic 

algorithm has been tested for four population sizes: 250, 500, 750 and 1000. 

Table 7.2.1 shows numbers of feasible paths generated by enumerative algorithm 

for test T1 and T2. 

Table 7.2.1. Numbers of feasible solutions found by enumerative algorithm. 

Instance I II III IV V VI VII VIII IX X 

T1 1 2 3 2 4 2 1 4 1 1 feasible 
solutions 
number T2 140 776 72 63 240 3192 160 64 843 1134 

 

The tests have shown that exact enumerative algorithm is very useful in case of 

supplemental data availability. For all the instances a number of feasible solutions 

generated in test T1 has been small. Of course, in all the cases original solution has been 
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found. However, a number of feasible solutions generated in test T2 is huge, thus, making 

enumerative algorithm hardly efficient for these cases. Results of the latter test deserve 

a special attention. In T2, the algorithms have operated on the minimum amount of 

supplemental data, what means that the information required for a proper interpretation of 

the input spectral data only, has been supplied. Thus, the information about spectral 

resolution, doublets or overlapping has been given, while any additional information, like 

path length, volume intervals, H5−H6 signals, known signal positions within the path, 

signals rejections has not been provided. Additional information (not provided in T2) is 

easy to define for the spectra of short RNA chains, where the 2D−NOESY spectra are not 

overcrowded. Unfortunately, the longer chain is analyzed, the more packed the spectrum 

obtained in the NMR experiment is. This results in many overlapping signals. An extreme 

number of cross-peaks located within the same spectral region often causes problems in 

supplying additional information to the algorithms. Consequently, the experimenters try 

rather - the less risky - algorithms without the expert information. Unfortunately, 

computational analysis with the use of enumerative algorithm in such cases appears rather 

inefficient and disqualifies this method here. Of course, one may be sure that the 

enumerative algorithm finds the original solution, but looking through the generated set of 

thousands feasible paths in order to situate this original one is a hopeless job and harder 

than a manual reconstruction of the NOE path. It seems possible to analyze manually the 

set of up to 20 solutions in order to find the original one among them. But a greater 

number of paths discourages an ordinary researcher to look through them. Thus, it seems 

a good idea to apply a heuristic algorithm, generating one optimal solution, for solving 

such instances of the problem. Even if the heuristic method finds approximate solution 

covering only half of the original NOE path it facilitates the problem to a very large 

degree. Having the partial assignment an experimenter is able to complete the NOE 

pathway in a reasonable time without an extreme effort.  

 Let us then consider enumerative algorithm and two heuristic methods, tabu 

search and evolutionary algorithm, as applied to the problem of NOE paths construction. 

Table 7.2.2 presents time of computations (given in seconds) by all these algorithms for 

tests T1 and T2. The evolutionary algorithm has been tested with different values of 

population size parameter, p∈{250, 500, 750, 1000}. 
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Table 7.2.2. Time of computations [s]. 

Time of computations [s] 

EA 

Instance Test 

Enum. 

algorithm 

TS 

p=250 p=500 p=750 p=1000 

T1 1 0.5 1 3 8 11 I 

T2 5 1 3 10 21 48 

T1 1 0.7 1 3 5 13 II 

T2 60 1 2 12 38 63 

T1 2 0.6 2 4 16 17 III 

T2 4 1.1 4 6 17 45 

T1 1 0.5 1 4 5 19 IV 

T2 4 1 2 4 7 20 

T1 1 0.5 7 22 74 129 V 

T2 5 0.9 4 6 27 90 

T1 1 0.4 4 6 10 16 VI 

T2 2453 1 2 8 27 62 

T1 1 0.7 4 18 44 80 VII 

T2 30 1.3 4 17 73 132 

T1 1 0.4 1 2 4 12 VIII 

T2 5 0.8 2 5 21 24 

T1 1 0.6 5 18 44 80 IX 

T2 170 1 2 6 22 63 

T1 1 0.6 5 19 43 80 X 

T2 573 1 3 5 34 31 

 

Analyzing Table 7.2.2, we can observe that all the algorithms, work quite fast. In many 
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cases the results are obtained after 1−5 seconds (enumerative algorithm for T1, TS, EA for 

p=250). This is very important, especially when we recall that, the optimization version of 

the problem of the NOE pathways reconstruction is NP−hard. Fortunately, the NOESY 

graphs created upon the 2D−NOESY spectra belong to the class of sparse graphs, thus, 

the cardinality of their edge set is rather small, which considerably reduces the time of 

computations. Generally it can be said that tabu search is the fastest method. Enumerative 

algorithm for test T1 as well as evolutionary algorithm for small population size are also 

fast. Obviously, evolutionary algorithm performs slower for bigger populations. 

Computational time of enumerative algorithm for test T2 appears quite big for more 

problematic instances, i.e. when a number of feasible paths is also big (cf. Table 7.2.1). 

Since computational times are mostly short, it can be concluded that, so far, time of 

computations plays a peripheral role in solving the problem of NOE pathway assignments 

with automatic methods. 

 Finally let us analyze the quality of optimal solutions found by heuristic algorithms. 

The quality will be given as a precision, calculated as a percentage of an original path 

covered by the generated optimal solution. Let us show an example. Assume we have 

original NOE path that can be written as the following sequence of cross-peaks: 

1−2−3−4−5−6−7−8−9−10. Let us calculate precision of the near−optimal solution, found 

by the heuristic algorithm, given as a sequence 6−7−8−9−10−3−2−4−1−5. We see that the 

original path consists of 9 edges: 1−2, 2−3, 3−4, 4−5, 5−6, 6−7, 7−8, 8−9, 9−10. 5 of these 

edges are found in the optimal solution (2−3, 6−7, 7−8, 8−9, 9−10). Thus, the precision of 

the optimal solution equals c.a. 55 %. 

 Table 7.2.3 presents results of the precision calculation for optimal solutions 

generated by tabu search and evolutionary algorithm (for different population sizes), 

respectively, in both tests, T1 and T2. 
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Table 7.2.3. Precision of optimal solution found by heuristic algorithms. 

Optimal solution precision 

EA 

Instance Test 

TS 

p=250 p=500 p=750 p=1000 

T1 100 % 82 % 100 % 100 % 100 % I 

T2 91 % 36 % 91 % 91 % 91 % 

T1 100 % 100 % 100 % 100 % 100 % II 

T2 91 % 45 % 100 % 100 % 64 %  

T1 91 % 100 % 82 % 100 % 82 % III 

T2 100 % 82 % 82 % 64 % 64 % 

T1 91 % 82 % 82 % 82 % 82 % IV 

T2 73 % 82 % 82 % 55 % 73 % 

T1 73 % 47 % 80 % 53 % 40 % V 

T2 33 % 33 % 33 % 47 % 33 % 

T1 100 % 87 % 100 % 87 % 100 % VI 

T2 40 % 27 % 27 % 53 % 47 % 

T1 93 % 93 % 93 % 93 % 93 % VII 

T2 47 % 40 % 33 % 33 % 33 % 

T1 100 % 100 % 100 % 100 % 100 % VIII 

T2 100 % 60 % 100 % 80 % 80 % 

T1 93 % 93 % 100 % 93 % 100 % IX 

T2 46 % 33 % 80 % 87 % 40 % 

T1 93 % 93 % 93 % 93 % 100 % X 

T2 46 % 53 % 33 % 27 % 33 % 

 

The precisions of optimal solutions have been also displayed as charts. The first chart 
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(Figure 7.2.1) shows precisions of solutions generated by tabu search algorithm. Figure 

7.2.2 presents precisions of solutions found by evolutionary algorithm run for different 

sizes of population (p=250, 500, 750, 1000). 
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Figure 7.2.1. Precisions of optimal solutions found by tabu search. 
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(d) 

Figure 7.2.2. Precisions of optimal solutions found by evolutionary algorithm for 
p=250 (a), p=500 (b), p=750 (c), p=1000 (d). 

To compare the efficiency of heuristic algorithms, quality (precision) of optimal solution 

found by each algorithm has been displayed in additional charts. Thus, chart in Figure 
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7.2.3 compares precisions for tabu search and evolutionary algorithm, respectively, for test 

T1, while chart in Figure 7.2.4 shows the same comparison for test T2. 
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Figure 7.2.3. Precisions of optimal solutions found by TS and EA for test T1. 
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Figure 7.2.4. Precisions of optimal solutions found by TS and EA for test T2. 

Computational experiments show advantages and disadvantages of all the proposed 

algorithms. Exact enumerative algorithm has appeared successful for the instances with 

supplemental data provided. However, it is hard to estimate this algorithm efficiency for 

the longer nucleic chains, for which no algorithms have been tested yet. We can only 

expect problems in defining supplemental data and, thus, also less efficient performance of 
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the exact algorithm. We see that harder instances demand an application of heuristics 

rather than the exact approach. The proposed tabu search and evolutionary algorithms in 

most cases give very good results. Their times of computations are short and precision of 

these methods appears high enough to consider them as alternative algorithms in solving 

the problem of NOE pathway reconstruction. This is especially true for the instances, for 

which an enumerative algorithm is hardly effective because of a huge number of feasible 

solutions generated. The resulting qualities of optimal solutions found by both algorithms 

are similar for test T1. Test T2 shows many differences in the performance of both 

algorithms and it is rather hard to declare which algorithm is generally better here. 

The chapter has discussed all the aspects of computational experiments performed 

on the real data with the use of three algorithms for automatic NOE assignment. The data 

used in tests as well as the results of computation have been presented. Final discussion on 

the results and the proposed methods of solving the problem of NOE path reconstruction 

will be given in the following chapter. 
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VVIIIIII..  CCOONNCCLLUUSSIIOONNSS  

In the thesis, the problem of automatic resonance assignment in 2D−NOESY NMR 

spectra of RNA duplexes has been considered. The problem appears at the beginning 

of the process of molecule tertiary structure determination with NMR techniques. So far, 

no automatic method for resonance assignment has existed and the assignment of cross-

peaks in the 2D−NOESY spectra of nucleic acids was accomplished by hand with a help 

of interactive graphics. This manual assignment of NOE resonances is very tedious and 

time-consuming due to a large number of cross-peaks present in the NOESY spectra 

of biomolecules and a possible large number of existing alternative pathways. Thus, 

manual assignment limits structural studies to small molecules of nucleic acids. 

 To solve the problem the theoretical aspect of it has been first analyzed. 

An examination has resulted in constructing a graph-theoretic model representing 

2D−NOESY spectra of RNA (or DNA) molecules and NOE path being the principle of 

resonance assignment. The model has been presented in Chapter 4 of the thesis. 

 Formulation of the assignment problem on the basis of graph theory has been 

followed by an analysis of the computational complexity of the problem in question. It has been 

proved (Chapter 5) that the search version of NOE path assignment belongs to NP−hard class of 

problems. Thus, a branch-and-cut algorithm for automatic signal assignment, enumerating all 

feasible NOE paths, has been designed (Chapter 6), implemented and applied to a set of real data. 

Analyzing results of computational experiments performed with this algorithm (Chapter 

7), one can notice that it constructed surprisingly small number of alternative pathways in tests with 

supplemental data provided (see test T1, Table 7.2.1), thus, proving its high accuracy in these 

cases. However, supplemental knowledge deficiency causes a great increase of solution set 

generated by enumerative algorithm, disqualifying this method in such a situation (see test 

T2, Table 7.2.1). Since analysis of bigger molecules implies processing of more crowded 

spectra and problems with defining supplemental information, designing the other method 

that could deal with the problem of NOE assignment basing just on spectral data (like in 

test T1), seemed of a great importance. In consequence, two heuristics, tabu search and 

evolutionary algorithm, generating optimal solution (being an approximation of the original NOE 

path), have been proposed. Both appeared very useful in practice, when a number of feasible paths 

returned by enumerative algorithm for the instances without the additional knowledge was large. Even if 

the heuristic algorithm finds only half of the original path it facilitates the assignment 
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problem to a very large degree. Having the partial assignment, an experimenter is able to 

complete the NOE pathway in a reasonable time without an extreme effort. 

During computational experiments, quality of optimal solutions, generated by 

heuristic algorithms, has been also considered. One can see that both algorithms are quite 

precise for most instances. Especially tabu search seems to give superior results and for most 

instances the obtained solutions coincide with the majority of vertices in the original path.  

 Finally, let us notice that all the algorithms perform quite fast. Even enumerative 

algorithm does not drop behind, despite its computational complexity which equals O(mm), 

where m is the number of graph edges. Detailed analysis of the NOESY graphs makes one 

to observe that they belong to the class of sparse graphs. Thus, the cardinality of the edge 

set is rather small, which considerably reduces the time of computations. Computation 

time will be crucial in case of an analysis of longer nucleic chains, for which manual 

assignment is a hard and tiresome work, usually impossible to be done in a period of days 

or even weeks. 

Tabu search is the fastest of all the tested methods designed for an automatic 

assignment of NOE pathways. Thus, its application to more complicated cases and 

instances as well as to an analysis of long nucleic chains seems promising. However, any 

other tool (enumerative or evolutionary algorithm) that can facilitate this analysis is of 

great importance. The designed algorithms might be also useful when applied to 

a verification of the assignment correctness.  

As a continuation of the research reported in the thesis, one may consider the 

analysis of spectra which contain a lot of noise signals as well as three dimensional spectra 

of RNA molecules. Especially 3D NMR spectra deserve a special attention. These spectra 

represent a wider range of interactions than their 2D equivalents. Thus, they carry more 

information about the structure and help in more precise determination of input sample 

characteristics. Furthermore, it seems evident that 3D and finally d-dimensional (d>3) 

NMR spectra analysis will be considered in the continuation of this research. Solving the 

problem of finding NOE path on the basis of 2D−NOESY, NMR spectrum appears to be 

a good platform for this purpose. As it was demonstrated (Chapter 4), however, the 

problem of finding NOE paths in 2D spectra has been already troublesome. 

Consequently, we should expect that adding one or more dimensions into the search space 

will complicate the searching algorithms. 
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