
1 

Welcome to another meeting on Advanced Internet Applications! Today, you’ll finally 

get to know a server-side technology (if you haven’t noticed, so far we’ve been only 

dealing with front-end). We’ll start with Node and the main reason for that is that it is 

naturally low-level, i.e., you can work very closely to the HTTP protocol and I think it is 

appropriate for an advanced course. Also, in Node you write in JavaScript which is a 

language you should be pretty familiar with by now. Finally, it’s extremely popular right 

now, so I think it’ll equip you well for your future. Let’s dive in! 



I know you’ve already had a lecture on Node.js, so I’ll try to keep this short. 

Just a quick reminder. 

The event loop is single-threaded, so you shouldn’t block it or else the server will 

immediately choke and stop responding. In Node, you do any heavier lifting in terms of 

processing asynchronously and rely on callbacks (promises will come in handy). Just 

remember – the fact that the event loop is single threaded doesn’t mean that 

everything else is executed in a single thread! When you read something from a 

database (and do it in a non-blocking way) it will be executed in a separate thread. 

So, you can view the event loop as a dispatcher of stuff to do. 

2 



O yeah – it is popular! 

Now, let’s go and write our first app. 

3 



That’s right! Who said you have to write a server in Node. Here’s a simple app for you, 

which… well… I hope you can figure out what it’s doing… 

4 



… however, Node is most widely known for its server capabilities so we’ll focus on this 

part (+ this will be more appropriate for Advanced Internet Applications course…). 

To write a simple server you’ll need the http module (modules are packages in Node). 

The silde shows a „Hello, World!” application a bit more suited to the subject of this 

course. 

Congratulations! 

You now know how to create a simple server and write some response for the 

incoming requests. 

5 



This example shows a bit more complex request handling. As you can see, request 

allows you to access things like the request url, the headers sent with the request and 

the HTTP method used. We’re also using the url module, which allows us to 

conveniently access all parts of the url, like the protocol, host, pathname, and query. In 

this example, we are expecting an „id” query parameter in the request url. 

6 



Here, you can see how to process larger requests. Since, as we’ve already mentioned, 

the event loop is single threaded, if the data sent with the request is particularly large, 

we don’t want to choke our server on it, so it may be a good idea to spread this data 

into chunks and read them only once they are available. This way, the event loop stays 

nice and responsive while we handle this large request. 

7 



Often in web apps you’ll want some sort of routing, i.e., a mechanism which will direct 

the processing of the requests to various functions depending on the path in the 

request. In this slide you can see how you could achieve this effect by hand. As you 

see – it’s nothing fancy. Just a bunch of if statements depending on the path… In a 

larger project we would naturally tidy this example up and divide it into multiple 

functions and probably even files, but the mechanism would remain the same. 

 

As you can see, all of this is prettly low level stuff (at least by today’s standards). If you 

want routing, you have to create one on your own. You want to simply serve files from 

the server? Well – you have to write that on your own as well! And that’s great! 

Howerver, it’s not that often that you actually need to have a totally customized control 

over every aspect of your server and some of this stuff could be solved externally. 

Enter express… 

8 



Express is an awesome, lightweight module which takes care of most of the mundane 

stuff you usually have in a server anyway. In the example above you can see that you 

can conveniently write separate responses for different request methods and for 

different paths or even templates (notice the :id parameter in the get request and how 

simply you can access it). Sending a standard response is easier as well! 

As you can see, this mechanism is much cleaner out of the box compared to the one 

we created on the previous slide. 

However, we can still clean it up even further… 

9 



In order to clean the routing of your app it is a good idea to create separate routing 

files, just like the one in this example. 

Notice the additional step of creating a router in the second line and later exporting it 

out. 

After you’re done, all you have to do is… 

10 



…import the created routing and attach it to your app. 

That’s it! 

And look how clean it looks right now – mmmmm:-) 

Express makes other things easier too. 

11 



Serving static files is a breeze! Just add this line and you’re good to go. Now all the 

files in the public folder will be sent upon request. 

12 



When writing a server you’ll often want some sort of pre- and post- request filters 

which should execute something before or after each request. Express has that 

covered for you in a form of middleware, which is… well… exactly that – a way of 

injecting some actions before or after the actual request processing. A good example 

which should probably appear on any web server is logging. Here’s a very simple 

example that should get you started with this. 

13 



As you have hopefully seen so far, Node makes it very easy to write back-end for you 

web applications. You can than proceed with using it as a REST API and build a React 

front-end app on top of it. However, more ofte than not we will just want to make a 

regular web application, not a single-page one. In such cases, we’ll just need an easy 

way to dynamically generate html documents or – even more conveniently – 

dynamically fill pre-defined html templates with data. This too you can do by hand, but 

it is far easier to use one of many templating engines (https://colorlib.com/wp/top-

templating-engines-for-javascript/). The one I find the easiest to use is EJS 

(Embedded JavaScript) and you can find it in the example on this slide. As you can 

see, it works by allowing you to embed JavaScript into your html template – just like 

the name suggests:-) 

14 

https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/
https://colorlib.com/wp/top-templating-engines-for-javascript/


In order to start writing apps in Node you obviously need to install it first, but 

afterwarts, creating a new project is very easy. Just follow these three commands, 

replace „myapp” with whatever you want your app to be called, and that’s it! 

I also recommend using nodemon which makes running and updating the app much 

easier. 

The –g switch installs nodemon globally, so you won’t have to install it separately in 

every project. 

nodemon myapp starts the app and listens to any changes you make to it. Once any 

file is changed, the browser will immediately refresh, so you’ve got that covered for 

you. 

And that’s it! 

You’ve made it to the top of Node-mountain. 

15 slides up, 15 slides down. 

Now there’s nothing left to do but roll out the red carpet for you my friend! 

15 


