Tutorial: Xilinx ISE 14.4 and Digilent Nexys 3

This tutorial will show you how to:
e Part I: Set up a new project in ISE 14.4
Part Il: Implement a function using Schematics
Part I11: Implement a function using Verilog HDL
Part IV: Simulate the schematic/Verilog circuit using the 1Sim + Verilog test fixture
Part V: Constraint, Synthesize, Implement, Generate, and Program for Nexys 3 FPGA board

I assume that you’re using a DSL lab machine, or that you’ve installed Xilinx ISE 14.4 on your own
machine as some of the following procedures may be different depending on the version of ISE.

Part I: Set up a new project in ISE 14.4

Attention: Make sure to use the appropriate version of the ISE, 64 bit navigator for a 64 bit
OS, and 32 bit for 32 bit. If you don’t pay attention to this, there will be
unexpected behavior in the ISE software and thing may not work properly!

1. Open the Xilinx ISE Design Suit 14.4. You can click on the ISE icon on the desktop, or search

Start — All Programs — Xilinx ISE Design Suite 14.4 — ISE Design Tools — Project
Navigator

The screen should look something like the following, the ISE always defaults to the last open
project unless none where open before just like the following:

Fle Eit Vew Prjed Souce Puces Took Vindow Laeut Hep

D2HGL Xo0X/0e| 88 2B == /R PELY

[start “O08X

Welcome to the ISEQ Design Suite
Proect cmnards

ol
‘Recent projects

Double dick on 2 project n the st below to open

@
sdtonairesources

Tutorils on the Vieb

«08X

[coroe |© Eros |) o | @0 Frdmrisesds

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

2. Now either press the New Project tab or select File — New Project... and change the Name
and Location to whatever you like.

Attention: Xilinx does not allow spaces in path or file names! For example “C:\ECE 3700
will not work, same for the file name! Use the under_score for spaces if you need to.

The selected Top Level Source Type is Schematic because that’s what we’re planning on
using first. This is not critical, as you can always add a new source file of any type later. The
dialog box for the project wizard looks like:

r B

& New Project Wizard

Create New Project

Specify project location and type.

Enter a name, locations, and comment for the project

Name: Exampl_Project]
Location: C:Wilinx\Exampl_Project |7‘
Working Directory: | C:\Xilinx\Exampl_Project [:J

Description:

Select the type of top-evel source for the project

Top-evel source type:

Schematic E]
L] p
0 More Info ‘ | Next | I Cancel l

.

3. Click NEXT and in the next dialog box you should fill in the fields as shown here. You can
do this in two ways, one is to select an “Evaluation Development Board” from the drop
down list, and in our case you should select “Nexys 3”. This will automatically fill out the
board information in the next five sections. If the board does not exist in the list then you can
set correct choices according to the following image.

We are using a General Purpose product in the Xilinx Spartan6 family. The specific chip
on the Nexys 3 board is an XC6SLX16 in a CSG324 package and the —3 speed grade.

Attention: If you fail to set the correct options in this part, you will not be able to
implement your design and program it on the Nexys 3 board!

Please make sure that the Synthesis Tool is XST, the Simulator is the 1Sim, and the Preferred
Language is Verilog. This is very important for proper operation.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

‘New Project Wizard

Project Settings

Specify device and project properties.

Select the device and design flow for the project

]

[Property Name

Product Category
Family

Device

Package

Speed

Top-Level Source Type

- Board v
All -
Spartanb ~
XC6SLX16 -
CSG324 -

m

Synthesis Tool XST (VHDL/Verilog) ™\, v
Simulator ISim (VHDL/Verilog)) -
Preferred Lanquage Verilog / v
Property Specification in Project File Store all values -
Manual Compile Order
VHDL Source Analysis Standard IVHDL-93 E |
|Enahle Mecsane Filterinn [[|
[mex][conel |

4. Click NEXT and review the project summary page and then click FINISH, it is always good
to double-check the summary to prevent headaches due to the problems you can face while
implementing your design if the information is incorrect.

@ & New Project Wizard
e i ———

Project Summary

Project Navigator will create a new project with the following specifications. l

Project:

Project Name: Example Project
Project Path: C:\Xilinx\Example_Projecc
Working Directory: C:\Xilinx\Example Project

Evaluation Development Board: Nexys 3 Board

Description:

Top Level Source Type:
Device:

Device Family: Spartané

Device: XCc631x16

Package: csg324

Speed: -3

Top-Level Source Type:

Simulator:

Property Specification in

Manual Compile Order: false
VHDL Source Analysis Standard: VHDL-93

Message Filtering: disabled

Schematic

Schematic
Synthesis Tool: XST (VHDL/Verilog)
ISim (VHDL/Verilog)
Preferred Language: Verilog

Project File: Store all values

J [cancel

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part I1: Implement a function using Schematics

. Now you should have a new project that targets the correct Xilinx part and other features of
the ISE system. Notice the window to the left, and also notice the four tabs Start, Design,
Files, ..., and in the case of an open schematic a Symbols tab will appear. Ensure that the
“Implementation” choice is selected on the design pane.

| C———
[come [@ 6ron [Wi [e

Now you can create a new schematic in your project. Choose Project — New Source or
right click on the Hierarchy section of the design windows to get the dialog box that adds a
new source file to your project (or use the New Source widget on the left vertical tool bar).
Source files can be of many types. Add a Schematic and name it simple_logic for
example. Make sure to both fill in the File Name and select the Schematic type from the
list on the left. I’ve filled in my dialog box as shown below. Now click NEXT and after
observing the summary page click FINISH.

T o |

& New Source Wizard

Select Source Type

Select source type, file name and its location.

o IP (CORE Generator & Architecture Wizard)

By Schematic

=] User Document
Verilog Module

W] Verilog Test Fixture
g VHDL Module

[VHDL Library

[P] VHDL Package

] VHDL Test Bench

% Embedded Processor

File name:

! simple_logic

Location:

‘ C:\Xilinx\Example_Project

Add to project

)

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

3. Now you have a blank schematic view, and also a Design Summary view in the main pane of
the ISE window. You can switch between windows in the main pane with the tabs along the
bottom. The (empty) schematic looks like below. Also note the Hierarchy created and the
number of processes such as “Synthesis”, “Implement”, “Generate”, etc. you can run on it.

8 corade |© Erors | L Warios | B FrdnesRess

4. 1If you don’t see this exact view, you may be looking at a different tab in a window. Each
pane has tabs at the bottom that let you switch to look at different things. For example, for
the left pane in the image above there are multiple tabs to allow different things, “Files”,
“Snapshot”, “Libraries”, and “Symbols” tabs that you can click on and get different
information about the project. The lower left pane is the Processes tab and Options tab that
show different tools and steps. The main window in the figure above has a
“simple logic.sch” tab for the new schematic, and a “Design Summary” tab. If you open
more schematics, or other types of files (like Verilog files) the main pane will have
additional tabs.

Now you can select components from the Symbols tab of the upper left pane and
drag them to your schematic. You can narrow down your choices using the
Categories, or by typing the first few characters of the symbol you’re looking for in
the Symbol Name Filter, or just scroll through the lists and see what’s there. The
important category for now is Logic: General logic gates. See the Lab handouts for
restrictions on which logic gates you should use!

I’ll grab some components from those Categories to make a very simple schematic to
implement (A & (!B)) | (B & C) and drop them into the schematic page. Now we need to
add wires and 1/O markers by using the tools on the vertical bar between the schematic
page and the side pane. Also pay attention to the “Options™ tab at the bottom of the left
pane. This section gives you some options on the schematic such as “selecting the entire
wire branch” or “selecting line segments”. This is good to know if you wanted to only
remove a piece of wire and not everything that it is attached to.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

L I5E Project Navigator (PAS4) - Al cec 2
B} fle Edit View Poject Source Process Add Tools Window Layout Help =
DEFI L& X|wo| » 2288 2RI =51 FRipcL @

Sk ~oexfR) 7
E
= il
| =
=
=
=
]2 Mo :
Rl il
e}
= (M3 ANDZ
a S anini :
A =
= : e
e oRe
A el wes et
Ll
L) L3
e ANDZ
LYo 2
| -
\J
Orentaton |
Rote =
SymbolInfo = S|
| &
Q] 2 symbos [F o 4]0 B simpie_ogcsch® 1k Desgn Summary x

Corsoe “08 X

ing Schematic".

esch -intstyle ise —family spartané C:/Xilinx/Example Project/simple logic.sch

Process "Creating S

eted successfully

Starcea g S
Launching Design Summary/!

to edit simple logic.sch®.

ever

[E consoe @ Erors [1) wamings [FrdinFlesResis

ls.4721]

Use the wiring tool 5 to wire up the components. It is in the tool bar and looks like a red
line and a pencil. You could also use Add —Wire from the menu. I’'m using the following
components (from the Logic category) in this example:

a. and2: a two-input AND gate
b. or2: atwo-input OR gate
c. inv:aninverter

i ISE Project Navigator (P.43d) - E z
[File Edit View Project Source Process Add Jools Window Layout Help

D2E@L %DbX[wa| [A2BR RN BE 0 LR P L ?

|Options “08 X [E
[E—r—]

=]

[When you diick on a branch: =

@ Select the entire branch
) Select the ine segment

When you move an object:
(@ Keep the connectons to other
s
-, Break the connections to other & 2
O objects DC
NV

When you use the area select too), select
the objects that:
© Ace enclosed by the area

Intersect the area

When you use the area select tool, select:
© Objects induding attribute windows.
(©) Objects exduding attribute windows
(© Attributes windows only

OlEpemdpdz>O0NO J|EB|OT

5| B torares| 2 symbois | 29 optons [4]] B simple_logic.sch™ gz Design Summary

Console

Started : "Creating Schematic"”.
Running createsch...
Command Line: createsch -intstyle ise -family sparcan6 Ci/Xilinx/Example_Project/simple_logic.sch

Process g Schematich 11

Started : "Launching Schematic Editor to edit simple logic.sch".
Launching Design Summary/Report Viewer...

il

Ll ——]
[E] Console |@ Erors | 1 Wemings | 128 Frdin Fies Results

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Now place I/0O Markers to the inputs and outputs. I’ve used the 1/0 Marker widget =
that looks like two little labels. You can also use the Add — I/O Marker command from the
menu. Click on the endpoints of the wire to add the marker.

B Hle Edt View Project Source

O2EHPIL % Xwa| » 2L2BR2RA RET LR PEL T
ootens ~D8x &
‘Add 1/0 Merker Opbions b
U
When you dick near the end of a branch, =
st yau w12 da: p
o Addan sutomatc masker =
Add an input marker
P &
Add a bidrectonal marker = 2 < < s 4 3 2 a : 7 : s 4
Renove " XLXN_10) R
S S e T T T SR
When you acd an 1O marker, set s [XEXN_12 /\<
orentation 5o that ts drecteon from its o Liv ANDZ
Cormecaon poet 5: 7 v e R R I e
o | o =
A . . S . XLXN_4) -
In sdton to cicking on 2 ranch end / / /
rou can 293 ound e [F) LIRS
‘branch end ponts to add or to remor OR2
t thoee ® BT iy e R
2 D e
A A L :
XLXN BAREN
s ANDZ
2 iy oD
=
o)

conoe [@ Eroes [1) Waminos | Fren e Rests

1808,1596]

You should always change the name of the marker to whatever you want but choose a good
identifier. You should double click the marker, or select the marker and right click to get a
menu and choose Edit — Properties. Then click on “Nets” and then edit the “Name”, also
observe the Port Polarity, then click OK. I’'m calling the inputs A, B and C and the output F.
An 1/0 Marker dialog box looks like:

[[2) Object Properties - Net Attributes] < F’ -— ﬂ
Category View and edit the attributes of the selected nets
= 1/O Markers
&N Eti(LXN_IO Name Value Visible New
LXIXNLI0 Name [4 I Add i
2 ‘ Edit Traits
PortPolarity | Input E[Add J
' Delete
|
Lok || concel || ey [[Heb]'J

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

B3 Desgn Fies |) Lorares| 2 4501 B €\ Example_Project mmple_ogcsch Qe Design Summary

5] Consoe | @ Erors | L Viwrros | FrdinFlamealts

8. Now the resulting schematic looks like the following and it is ready for simulation or
synthesis. Once your schematic is saved it should show up in the Sources pane in the upper
left of the ISE screen.

When you are happy with your schematic (and your schematic will likely include other logic
gates from the Logic category that I haven’t used in this example!), save it. Hopefully you
don’t have any errors or warnings. If you do, you need to fix them.

Part I11: Implement a function using Verilog

This schematic representation of the function F = (A & (!B)) | (B & C) is now ready for
further processing either for simulation or implementation on the Nexys 3 board. Now we
will explore the implementation of the same circuit using a “Verilog” module instead of a
schematic, and both with have the same functionality.

1. Just like step 2 of the schematic capture, we need to first add a new source. So again choose
Project — New Source or right click on the Hierarchy section of the design windows to get
the dialog box that adds a new source file to your project (or use the New Source widget on
the left vertical tool bar). This time choose “Verilog Module” and give it a file name.

Attention: it is important that you create the correct form of Verilog file for the specific use.
Remember to ONLY use “Verilog Module” for Implementation and “Verilog
Test Fixture” for simulation purposes. Do not do this the other way or things will
not wok right

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

> New Source Wizard

Select Source Type

Select source type, file name and its location.

[BMM File
€* ChipScope Definition and Connection File
"] Implementation Constraints File
IP (CORE Generator & Architecture Wizard)
MEM File
1] Schematic
=] User Document
By Verilog Module
W] Verilog Test Fixture
g VHDL Module
VHDL Library
|P] VHDL Package
5 VHDL Test Bench
Embedded Processor

File name:

| simple_verilog

Location:

{ C:Wilinx\Example_Project

Add to project

l'

[Next

][CN'“J

2. Click NEXT and you should see the module definition box. Here you can setup I/O names
with correct polarity and a choice for buses and the width which we will be using in the
future labs. Note that you do not have to add anything here right away and you can always
add the I/O definitions to the module’s header when it is created. After you’re done click
NEXT and then observe the summary page for a quick review of your 1/O list.

“ -
@ New Source Wizard
- . -
i
Define Module
Specify ports for module.
Module name | simple_verilog
Port Name Direction Bus MSB LSB ok
A input x| [
B input =
2 input x| [
F_structural output A
F_functional {output v [l =
I F_behavioral ,M I
input -
input b
input ~| [
input - i
input v|[] v
[t][concel |

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Now you should have a tab for the Verilog file opened in the ISE main pane. There is a line
reading “*timescale 1ns / 1ps”. Please leave line alone and never delete it. It just lets the ISE
know that each unit of time should be 1ns and have the resolution up to 1ps for any timing
purposes (more on this later).

Next is the module header that contains the module name and the list of 1/O as its parameters.
If you notice | have declared multiple outputs to implement the same circuit using different
HDL forms when writing in Verilog. These will all implement the same function F
represented by the schematic in Part I.

Also you should notice that the Verilog file is added to the Hierarchy next to the schematic as
a part of this project. Now we’re ready to implement the Verilog description of the function
F in the three intended forms.

L ISE Project Navigator (P49d
[2) File Edit View Project Sou
D3EF | & G
Desion 08X §
w: © {8} implementation O fffl Smuation 5=

139398 v

$ Co et Device
@ Analyze Design Using ChipScope

[#3 esion [Fies [R tbrares| = 4} (& C:\Wiinx|Example_Project\smple_ogic.sch T Design Summary E] simple_veriog.v* [x]

|« i
[] consdle |@ Ermors | 1\ Wamings [12§ Findin Fies Resuits |

For the implementation the three forms we have different formats. Sometimes we want to
declare internal wires to connect things easily and in a more organized fashion, but if you
didn’t declare these wires, ISE will assume a single bit wire for the use.

The Structural version: This is done using gate primitives that are automatically taken from
the Xilinx libraries (just as you would with a schematic) by calling their name and passing
parameters, so for a two input gate we have the format “gate (output, inputl, input2)” and
this is just like doing a schematic in words.

The Functional version: Using the “assign” keyword to assign the results of the function
expression to the output. The expression of the function looks a lot like how you would write
it down on paper.

The Behavioral version: Using a synthesis directive called an “Always Block” we can
implement the same function. The difference is that it only wakes up and assign the output

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

when any of the inputs are changes, hence the (*) which means “any change”. We will be
using this format extensively in the future labs. One thing to notice is that any output being
assigned inside of an always block needs to be declared as a “reg” for synthesis purposes,
and that you cannot use the “assign” keyword inside of such block.

[A2PR,RAINBATSLR[IPEL)Q

1 timescale 1ns / 1ps
2 N S U 8 S S 0 P G 8 9 S 0 G S 8 S e
3 // Company
4 // E:g;:eer:
S i/
6 // Create Date: 09:41:57 01/29/2013
7 // Design Name:
8 // Module Name: simple verilog
9 // Project Name:
10 // Target Devices:
11 // Tool versions:
12 // Description:
I3 /7
14 // Dependencies:
i5 /7
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
SO PP LR P F LT L L R R LD L LR LR RS P R LT P LR R PR S TR R P AR R P PR
21 module simple verilog(input a, B8, C,
22 output F_structural, F_functional,
23 output reg F_behavioral):
24
25 // Structural implementation
26 wire B n;
27 wire A_and_s_n;
28 wire B and C;
29
30 not (B n, B):
31 and (A_and B n, A, B n);
32 and (B_and C, B, C):
33 or (F_structural, A and B n, B _and C);
34
35 // Functional implementation
36 assign F _functional = (A & (~B)) | (B & C):
37
38 // Behavioral implementation
39 always@(*)
40 F behavioral = (A & (~B)) | (B & C):
41
42 endmodule
43
< —T

simple_verilog.v J

5. You should always save your work multiple times as there always a slight chance that the
tool may crash and you will lose your work. It is important to understand that hardware CAD
tools are massive and complex so there is always a chance for unexpected or faulty behavior.

Now the circuit is ready for simulation or implementation on the board. It is important to
notice that most processes are the same for both the schematic and the Verilog version of
your design.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part IV: Simulate the schematic/Verilog circuit
using the ISIM and a Verilog test fixture

Now that you have a saved schematic, you need to simulate its behavior. The simulator
we’ll use is the ISE built in simulator, which is essentially a Verilog simulator. The
schematic that you just drew will be saved as a piece of Verilog behind your back if you
choose to simulate it. In order to simulate the circuit you need:

Testbench: is a file that becomes a top module to your design and applies inputs to your
circuit, and potentially checks that the outputs are correct. This will be another Verilog file
written slightly differently than circuit implementation. The testbench will instantiate one
copy of your circuit, and call it UUT for “Unit Under Test”. You will then write the
Verilog statements that set the inputs to your circuit (the UUT), and looks at the outputs
produced by your circuit. You need to know only very basic Verilog syntax to do this.

First you need to ensure that the ISE more is changed to “Simulation” from implementation.
Go to the top left pane and change the “View” field to simulation. The design window will
then change slightly with different options. Referring back to the same step in creating a
“New Source” create a “Verilog Test Fixture” to create a Verilog file that will contain the
test code.

3l Corsce @ Evors | 1\ Waminos | 88 Findin Fles Results

Click NEXT and choose which design you want to associate the test bench with. This is very
important as you will have multiple modules or schematics in the future and you need to be
sure which design will be going under test using the test bench. In this case | will just choose
the “simple_verilog” module to be tested. The procedure for testing the schematic version is
exactly the same, you just have to choose the appropriate source to be associated with the test
bench.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

S

New Source Wizard

Associate Source

Select a source with which to assodiate the new source.

simple_logic

simple_verilog

Click NEXT and after observing the summary click FINISH. Now you’ll get a new piece of
Verilog code generated for you. This Verilog code instantiates the “simple_verilog” module
as the UUT, and includes some other stuff related to how the UUT is connected to the
testbench. It looks like this:

|: #
>>.‘ >

PRRFRAIF BE TS

P X JER,

i9
20
21
22

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

LILLLLEILLELLLLLAL LIS LTI EEE i i i/

module test_bench;

// Inputs
reg A;
reg B;
reg C;

// Cutputs

wire F_structural;
wire F_functional;
wire F behavioral;

// Instantiate the Unit Under Test (UUT)
simple_verilog uut (
WA(R),
-B(B),
.c©, |
.F_structural (F_structural),
.F_functional (F_functional),
.F_behavioral (F_behavioral)
):

initial begin
// Initialize Inputs
A 0;
B 0;
c 0;

// Wait 100 ns for global reset to finish
#100;

// Add stimulus here

end

endmodule

m

simple_verilog.v xHIE]

test_bench.v

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

4. You can now write your test bench code as an initial block right before the endmodule.
Basically you set the values of your inputs, and tell the simulator how long to wait
between each change on the inputs. The results will eventually be plotted on a waveform
for you. Verilog syntax for setting a variable is very simple, and the #50 notation just
means for the simulation to wait for 50 ticks of the simulation clock before moving on to
the next statement. A very simple test bench for this circuit looks like the following. |
added the lines between initial and end to drive the inputs with different values so that we
can see what the circuit result is. Note that each statement in Verilog ends with a
semicolon, and you can put multiple statements on a line if you like.

Later in upcoming labs we will explore different options that we can write the sequencing
of the inputs to prevent having to hardcode lots of input changes, you can see that if we
had two more inputs then we had to write out 32 different possibilities for 5 inputs. We
will see how using a “For” loop in the test bench will make things a lot and shorter.

»i 0 2R X 5‘11@—:‘:——' PR L:Q
36
37 / Instantiate the Unit Under Test (UUT)
38 simple verilog uut (
39 WA(R),
40 -B(B),
41 .C(C),
42 .F_structural (F_structural),
43 .F_functional (F_functional),
44 .F_behavioral (F_behavioral)
45):
46
47 initial
48 begin
49 Initialize Inputs
50 A=0;
51 B =0;
52 c.= 03
53
54 / Wait 1 ns for global reset to finis
55 #100
56
57 ’/ BAdd stimulus here
se[> AR=0;B=0;C=1 1
59 #50
60
61 A=0; B=1;:C=0 1
62 #s50
63
64 s 0;: B=1; C=1 11
65 %50
66
67 A=1: B.=:0; C.=0 1
68 %50
69
70 A= B.=0; Ci=1 101
71 #s50
72
73 n i; B=1; C=0 11
74 %50
75
76 A=1; B=1; Ci=1 111
77 end
78
79 endmodule
an
< Ll

simple_verilog.v test_bench.v*

5. We usually want to test all possible inputs to be able to draw a better conclusion on
whether the circuit is functioning correctly. After you’re satisfied with the input setting of
your test bench make sure to save. Always observe the console window to look out for
errors after saving.

Now you are ready to simulate your Verilog circuit. Observe that the test bench Verilog
file is now the top module to your “simple verilog” module in the simulation design

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

view. It is very important to have the test bench file selected for simulation or things will
go wrong. After selecting and highlighting the test bench file in the design windows, you
can check your test bench for syntactic errors by clicking the “Behavioral Check
Syntax” in the processes windows right below. If your code is correct syntactically then
you’ll get a green check mark. This is not crucial as if you run the simulation without it
then the syntax will be automatically checked by the ISim and will not run if there are
errors in your test bench. Now you can double-click the “Simulate Behavioral Model”
to see the waveform generated by the ISim.

o 58 PrcjctNovigtor (494 - C\i\Ecample Prject ol Prectie - lestbenchy I
File Edit View Project Source Process Tools Window Layout Help
o2 RS X|oa| »ipp
Design +08& X ¢ 36
| |view: © {8 implementation © [Smulation 5= | 37 nder Test (UUT)
] [pehaviora [+] 38
39
\E‘EJ Hierarchy a0
== (8] fefple_Project 41 s .
it | B xcbshd6-3csg324 42 .F_structural (F_structural),
g [=) simple_logic.sch) 2 43 .F_functional (F_functional),
5 test_bench (test_bench.v) — 44 .F_behavioral (F_behavioral)
uut - simple_verilog (simple_ve A4 45 ¥
\ % 46
- 47 initial
— 48 begin
4 49 / D
—| so a=0
QO s 5=0
52 cC=0
53
54 /1 fo b £
55 $#100
56
< 57 // Add mulus here
se[> A=0;B=0;C=1
P | T2 No ProgeseesRIM: 59 $50;
7f | Prpeses: test bench :? i G Cm§
1 —0; 8= -
{5 Y 1SimSimulator s #3504
€)@ Behavioral Check Syntax 63
;
7% fl Simulate Behavioral Model = Fe oBs Pl §
— 65 #50;
66
67 A=1;:B=0;:C=0
68 #50
69
70 A=1;B=0:C=1
71 #50
72
73 A=1;B= C=0
74 $50;
75
76 Rom I Bm Q=X
77 end
78
79 endmodule
an
<
= Strt | B3 Design |3 Fies |) Lbraries| [F] simple_veriog.v E] test_bench.v [%]
Console

Running vlogcomp. ..
isim temp -intstyle ise -prj C:/Xilinx/Example Project/test_bench stx beh.prj
of HDL files

g - . Project/simple verilog.v" into library isim temp
Erilog file "C:/Xilinx/Example Proje st_bench.v" into library isim temp
g Verilog file "C:/Xilinx/14.4/ISE_DS/ISE//veT®™gg/src/glbl.v" into library isim temp

"Behavioral Check Syntax" completed successfully

q m
[E] Console | @ Errors | YT et o RESE |

Double-clicking the Simulate Behavioral Model will fire up the simulator on your testbench
file. Because your testbench includes an instance of your schematic (the UUT) and some
commands to drive signals into your schematic, this will result in simulating your schematic.
The output will be displayed as waveforms as shown. Note that the simulator is by default set
up to simulate for 1000ns, so all the stuff I did is bunched up at the beginning of the
simulation (the first Ons). | had to zoom out a little to see this view. The values reported for
A, B, S, and F are the values seen at the blue bar. You can pick up (with the mouse) and
move the blue bar to see the values at different points in the simulation.

By looking at the waveform we can see that all three different forms of expressing the
function in Verilog (structural, functional, and behavioral) are all holding the same behavior
throughout the simulation. You can click on the waveform in different places (the yellow line
is where in the range of time in the waveform it was clicked) and you can see values quickly
for all I/0O in the “Name” and “Value” sections to the left of the waveform.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

The simulation is now done. You can always go back to the test bench and make a more
complicated set of tests and re-simulate the circuit.

Ll ISim (P.494) - [Defauitweta T
T File Edit View Simulation Window Layot Help

024 £ ®|o JH=Es FRIAEB AR et (@ » X100 [7]6 |l |[@Redounch]
Simulation Objects for test_bench

EEEEED o e ——

Object Name Value Data Type »” s -

L F_structural
\@ F_functional
(& F_behavioral
D A

Logic
Logic
Logic
Logic
Logic
Logic

g c

1 F_structural

1
1
= 0

« :

be L

5 C 0

IT== B OO

15

Instances and Processes 08 x

Instance and Process Name Design Unit
4} test bench test_bench
{ gl qibl

| “ IiilIIlI

X1: 376.500 ns
b o4

pe oy B

Console

15im P.49d (signature 0x7708f090)

This is a Full version of ISim.

Time resolution is 1ps

Simulator is doing circuit initialization process.
Finished dircuit initialization process.

1Sim>

@ Console |[] Compiationlog | @ Breakpoints | (24 FindinFlesResults | gy SearchResults

It is good to observe the other capabilities of your simulation windows. The console is where
all of the simulator messages will be printed. Look for errors or warning about your design.

The left panes will allow you to dig into your design hierarchy to grab signals that are deep in
the design and may not be set in the top module, recall that the test bench is only created for
one module, so if you have a multiple level hierarchy then you need to use these windows to
navigate to the desired signal and drag-and-drop into the simulation windows.

Sometimes we want the values of the test bench results for the Verilog module’s output to be
printed into the console of the simulator windows. We can then add the Verilog print
statement called $display in between our test bench code. This will allow us to monitor
signals in large designs and long waveforms with many signals being looked at. We can also
format the printed statement to what we want it to show on the console for better readability
of the results. This is called a Self-Checking testbench.

Below are some $display statements added to the current test bench to show the effects it will
have. Never the less, you should always put a $display statement at the beginning and the end
of your test code to indicate the starting and actual finishing of the simulations.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

W prBR BRI BB LR PELQ
47 initial
48 begin
49 §display("The simple verilog module simulation is starting ...");
50
51 // Initialize Inputs
52 A=0;
53 B=0;
54 c.=0;
55
56 // Wait 100 ns for global reset to finish
57 #100;
58 §display("RABC = %bibib, F structural = %b, F functional = %b, F behavioral = %b", A, B, C, F_structural, F_functional, F_behavioral);
59
60 // Bdd stimulus here
61 A=0;B=0;C=1; //001
62 #50;
63 §display("ABC = %bib%b, F_structural = %b, F functional tb, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
64
65 A=0;B=1; C=0; //010
66 #50;
67 §display("ABC = %bib%b, F_structural = 3b, F functional tb, F_behavioral %b", A, B, C, F_structural, F_functional, F behavioral);
68
69 A=0;B=1; C=1; //011
70 #50;
71 §display("ABC = 3bibib, F structural = 3b, F functional %b, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
72
73 A=1; B=10; C=0; //100
74 #50;
75 §display("ABC = %btb%$b, F_structural = ib, F_behavioral = %b", A, B, C, F_structural, F_functional, F behavioral);
76
77 A=1;B=0; C=1; //101
78 £50;
79 §display("ABC = %bib%b, F_structural = %b, F functional %b, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
80
81 A=1;B=1; C=0; //110
82 #50;
83 §display("ABC = %bib%b, F structural = 3b, F functional %b", A, B, C, F_structural, F_functional, F behavioral);
84
85 A=y Bo=ily €507 //111
86 #50;
87 §display("ABC = 3bibib, F structural = 3b, F functional %b, F_behavioral %b", B, B, C, F_structural, F_functional, F behavioral);
88
89E> §display("The simple verilog module simulation has ended ...");
90 end
a1

< 11l
simple_verilog.v ¢ 1 B test_bench.v* B8 |
And the resulting console output for the above test bench code is the following:
4 > 4 »
< |, . @ Default.wi
| Console

L e L e g

This is a Full version of ISim.
Time resolution is 1 ps
Simulator is doing circuit initialization process.

The simple_verilog module simulation is starting ...
Finished circuit initialization process.

F_behavioral =0
F_behavioral =0
F_behavioral =0
F
F
F

ABC = 000, F_structural = 0, F_functional
ABC =001, F_structural = 0, F_functional =
ABC =010, F_structural = 0, F_functional
ABC =011, F_structural = 1, F_functional = 1, F_behavioral = 1
ABC = 100, F_structural = 1, F_functional = 1, F_behavioral = 1
ABC = 101, F_structural = 1, F_functional = 1, F_behavioral = 1
ABC = 110, F_structural = 0, F_functional = 0, F_behavioral = 0
ABC = 111, F_structural = 1, F_functional = 1, F_behavioral = 1
The simple_verilog module simulation has ended ...

1Sim> |

0,
0,
0,
1,
1,

Console |[~] Compiationlog | @ Breakpoints | @4 Findin Files Results | gy SearchResults

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Part V: Constraint, Synthesize, Implement, Generate
Bitstream, and Program the Nexys 3 FPGA board

Overview:. Now that you have a correctly simulating Verilog module, you will have the ISE tools
synthesize your Verilog or schematic to something that can be mapped to the Xilinx FPGA. That is,
the Verilog code will be converted by ISE to some gates that are on the FPGA. To be even more
specific, ISE will convert the Verilog description into a set of configuration bits that are used to
program the Xilinx part to behave just like the Verilog code. Those configuration bits are in a .bit
file and are downloaded to the Xilinx part in this next section of the tutorial.

For the purposes of this tutorial 1 will choose to put the Verilog version on the Nexys board, but the
process is exactly the same for any other design form i.e. schematics. | will use the first three toggle
switches on the board for A, B, and C, and the first three LEDs for F.

F=1
plle

s

(eSS

el

e, . M@z . o
?'%:"?n‘ =] U_%ss]) 8 | 0| RIZpET el S5 (TR g
- USBl e f s S =Y sad
o L N R - T

st I DO

WSII0072 5 N p e

ml W

AR

UCF (User Constraints File): Because we’re headed towards putting this on the Xilinx FPGA on
the Nexys 3 board, we need to set some constraints. In particular, we need to tell ISE which pins on
the Xilinx chip we want A, B, C, and F assigned to so that we can access those from switches and
LEDs on the Nexys 3 board. For that we need a “User Constraints File”.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

First, you need to ensure that you’re in the Implementation view and that the module you’re
trying to implement on the board is set as the top module in the top left pane in order to get the
options to synthesize, implement, and generate the design. Now if you look at the bottom left
pane you can see a number of processes you can run on this Verilog top module.

& ISE Project Naviga'tor (P.49d) - CAX

w

% File Edit View Project Source Process Tools Windo
DPHP L 4DDX|wa| 22,88 ,RZE02LRIPEL)Q
Design, < 08 X| . | = Design Overview
R i — - A
o) ion @ B8 Simulati b L [Z] Summary
[E ‘ﬂew.) I(:i} Implementation (7) & Simulation @ [10B Properties Project File: P ——
‘EI ety __ @ = Module Name: simple_verilog
@ =) g Exmp]_Proect *) 5 P : Target Device: xc6slx16-3csg324
o 2] simple_logic (simple_logic.sch) < [Clock Report Product Version: ISE 14.4
=z V)% simple_verilog (simple_verilog.v) _\-_-’ G Static Tw.ml”EJ Design Goak: Balanced
é] - Errors and Warnings
= 8 B Parser Messages Design Strategy: iinx Defauit (unlocked
E I% Synthesis Messages Environment: System Settings
| e L] Transl Aessages
= [Map A
‘ : Device Ut
ges —
[Bitgen Messages | | Logic Utilization Used
[E) AllImplementation Messages | | Number of Slice LUTs
: € No Processes Running & Detaée dSF:'?:::ssis Report | | number of fully used LUT-FF pairs
1, | Processes: simple_verilog [} Translation Report ‘ Number of bonded I0Bs
iDesign Summary/Reports u Map Report
SRR § P T [Pla Route Report
0 Static Timing Report
i [} Power Repo |
= : onstraints) L Po 5 eport || Report Name Status Generated
| I/O Pin Planning (PlanAhead) - Pre-Synthesis [Bitgen Report | -
1 /O Pin Planning (PlanAhead) - Post-Synthesis = Secondary ReForts ; Synthesis Report Current Tue Jan 29 10:
w ogic (PlanAhead) [2) 1SIM Simulator Log | | Translation Report
e 3 | Map Report
'_: View Technology Schematic | |Place and Route Report
Check Syntax | y
8 S d A Design Properties Power Repart
[7] Enable Message Filtering Post-PAR Static Timing Report
Optional Design Summary Contents Bitgen Report
[7] Show Clock Report
e [] Show Failing Constraints
Generate Programming File Q Show Warnings
& Configure Target Device [Z] Show Errors
el Report Name Status
ISIM Simulator Log Current

l’ Start ‘ B Design |Uu Files l@ Libraries ‘

Design Summary

Constraint: Now it starts with creating a floor plan by setting the UCF file. To do this take a
look at the User Constraints drop down option in the bottom left pane. We can set the pins in
two different ways. Double click on the 1/0 Pin Planning (Planahead) — Pre-Synthesis since
we want to set our pins before the synthesis process so they are included in it. This should bring
up a message box for adding a new UCF file to your design, so click yes and this will kick start
another Xilinx tool called Plan Ahead. This program allows you to set all constraints on all 1/O
pins in the design. Please follow these steps carefully.

% ISE Project Navigator

)

time?

This process requires that an Implementation Constraint File (UCF) be added to
the project and associated with the selected design module. Would you like
Project Navigator to automatically create a UCF and add it to the project at this

If you select "No" you will need to create or add an existing UCF to the project

before running this process,

[Yes No

J |

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

Pin Assignment: We need to edit the initial UCF for the details of connections between the ports
and pins in the design, so as Plan Ahead opens (it looks a lot like ISE), take a look at the
horizontal bottom pane. After expanding the Scalar Ports drop-down you should see all of you
1/0 pins. The first thing to do is to set all of the pins to LVCMOS33 right away, if you don’t do
this, things might not work correctly on the board. Click on the name of the pin (A, B, C, ...) and
then look at the properties table line listed in front of it. The only two properties that we want to
change are the 1/0 Std and Site. Remember, the 1/0 standard is always and should be set to
LVCMOS33 (3.3 V Low-Voltage-Complimentary-Metal-Oxide-Semiconductor) for the Nexys 3
board. The Site is the Pin# (FPGA board Pin Identifier). You can find all sorts of the information
including the module schematics and the Pin #s for all of the Nexys 3 Peripherals by studying the
Nexys 3 manual found at http://www.digilentinc.com/Data/Products/NEXY S3/Nexys3_rm.pdf.

In order to change a property for any port, click on the rectangular space in the correct column
and the correct row for the respective port. This click causes a drop-down menu to appear and
then you can select the right choice. You can either type or select the correct choice. If there is a
choice already selected then clicking on the text will allow you to change it, the hit enter. I
looked up the three switches and the three LEDs, you can also look closely at the actual switch
or LED on the board and you will see an identifier in parentheses (i.e. T10 for SWO referring to
Pin #T10 connecting to Switch 0, the first toggle switch from the right). Set the correct identifier
to the correct port in your design in Plan Ahead as follows:

] ol Projct - (CXilmExample Projectplanvesd i barmple Pec o) - Panivesd 144 SN~
File Edit Tools Window Layout View Help

Bloo2h X # 5 Q X (@ [Syopanng HeN ®

Elaborated Design 3

RTL Netlist P s [T L 4 [Package X | Device X |#RTL Schematic X

= H|E { 2003 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!jﬁ simple_verilog
® Nets (7
0 Primitives (4

I/O Port Properties e] 1 2R
€« %R
A

Name: A

Direction: ~ Input

Site: V9 (V] Fixed

Site type: 10_L32N_GCLK28_2

Package pin:

Net:

-
e

Clock region:

General | Attributes | Configure

=) Properties | @ Clock Regions

Direction Neg Diff Pair 1/0 std Vref Drive Stre... Slew Type Pull Type Off-Chip T... IN_TERM OUT_TERM

2 LVCMOS33* NONE NONE NONE

Input

-
=
=

Eh,

o .

H <4 F_behavioral Qutput

Input 2LvcMos33* NONE NONE NONE
Input 2LVeMos33* NONE NONE NONE
2LvcMos33® 3,300 125100 NONE FPVIT_S0 NONE
<3 F_functional Output 2 LvCMos33* 3,300 125,00 NONE FPVTT S0 NONE

|5 Td Console | 53 Package Pins | [I/0 Ports
1/0 Port: F_structural

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf

Attention: It is important that you never use Plan Ahead to edit an existing UCF file as it will not
override old values but concatenate the new values. Always go to the project folder and
edit the .UCF file with a text editor. You can also do this in ISE but don’t double click
on the UCF file that is now in the hierarchy of your design in the upper left pane of ISE,
single click it and then choose Edit Constraints (Text) from the User Constraints
expander in the lower left pane. Make sure to hit save after you’re done.

And your resulting UCF file should look something like the following:

| ISE Project Navig;t—or (P.49d) --E:&i%;;—{aéfnph_Prqed\Example_Project.xise - [simple_verilog.ucf] -__
D2 EHP S ® X|wa| » 2ALARFARIF BETI LR PLQ
Design «+08& X < 1 -

Ei View: @ ﬁl}lmplementaﬁon @Simulatjon = 2 7 Eggfiinead Generated IO constralX

T . == 3
. (& | Hierarchy . 4 #NET "5" IOSTANDERD = LVCMOS33;

& & Exampl “ NET "C" IOSTANDARD = LVCMOS33;

—| & x16-3csg324) NET "F behavioral” IOSTANDARD = LVCMOS33;
H simple_logic (simple_logic.sch) NET ' IOSTANDARD = LVCMOS33;
P = (V] simple_verilog (simple_verilog.v) NET "F structural” IOSTANDARD = LVCMOS33;
;J simple_verilog.ucf — NET "A" IOSTANDARD = LVCMOS33;

g,

L“ ‘l/.) allsalicaQ eelicIatlc

e %

/‘)

P | T No es Running —

?t Pygfcesses: simple_verilog.ucf \

=il 2 % User Constraints

— Edit Constraints (Text) ;

After you’re done changing every port to LVCMOS33 and putting the right Pin # for all the ports
in the design, click the SAVE button from the top menu in the page and close down Plan Ahead.

4. Synthesize: Now the design is ready for more processing and the next in line is to synthesize.
This process will create a structural representation of the design (similar to compiling C code
into assembly code). Do this by first ensuring that the top module is selected and highlighted in
the top left pane of ISE and then simply double clicking Synthesize — XST in the lower left
pane. After the process is done, you will either get a green check mark (everything is peachy), a
yellow attention mark (there are warnings!), or a red x mark (there are errors!), and orange
question mark just means “out of date”. In the case of errors you need to investigate them by
looking at the Errors tab on the bottom pane and fix, and then rerun synthesis. In the case or
warnings make sure to review them and validate they are safe, or in the case of green you’re
ready for the next step.

The synthesis process also creates a couple of more useful things that you should explore and
study. One is the synthesis report full of information about timing, resource usage details, and
etc. The other is generated RTL schematic; sometimes it is very useful to see what the XST made
out of your Verilog description, or even your version of schematic. You can view these (highly
recommended) by expanding Synthesize — XST for the schematic and the Design Summary
page in the main pane for the report.

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

S Projct Novigair (5 T e E P GReBaE DS Sirmar Syihesiced] B—— |
\g File Edit View Project Source Process Tools Window Layout Help
02 E&| X|©o o "R TE O LRI PELT
Design . +08 X 3 =] Desn (Z\l/:rr‘\rr;eavr«y Ry ject Status (02/05/2013 - 10:4
[|View: © {8} implementation ©) [Simulation 6 [Project File: Example_Project.xise Parser Errors:
& H'e’i]‘hy ® zation Module Name: simple_verilog Implementation State
GH 5] Example_Project et == T
&l - €1 xcbohlb 3cog32 o Target Device: Xc6slx 16-3cs9324 «Errors:
simple_logic (simple_logic.sch) Product Version: ISE 14.4 + Warnings:
| = [dk simple verilog (simple verilog.) @ ng Design Goak: Balanced « Routing Results
&l [simple_verilog.ucf = | & Errors and Warnings
i [B) Parser Messages Design Strategy: Xilinx Defauit (unlocked) + Timing Constra
= 04 @ Synthesis Messages Environment: System Settings * Final Timing Sct
@ o) [n Messages
values)
[Logic Utilization Used Available
[Alllmplementation Messages Number of Slice LUTs 1
P | €2 NoProcesses Running - Detailed Reports
> B Syrahes Regit Number of fully used LUT-FF pairs 0
P | Processes: simple_verilog oT R Number of bonded I0Bs 6
9¢| L Design Summary/Reports
—| @ Design Utilities t
Ao User Constraints S Detailed Reports
-— 2 Create Timing Constraints . Report Name \ Status Generated Errors
/O Pin Planning (PlanAhead) - Pre-Synthesis [
donbreetemmingu(plan/head) - Post-Synthesis £ Secondary Reports Synthesis Report) Current Tue Feb 5 10:47:48 2013 0
Floorplan Area/10/LogMglanAhead) [A) 18IM Simulator Log Translation Report /
Synthesize - XST INGRRER0L e
View RTL Schematic
View Technolog b Place and Route Report
Cagod 7
- = Design Properties Power Report
were gn -
T [7] Enable Message Filtering Post PAR Static Timing Report
o Translate Optional Design Summary Contents Bitgen Report
S Map [7] Show Clock Report
& Place & Route [7] Show Failing Constraints
a Show Warnings
[3) e] 9 Secondary Reports
@ G Configure Target Device [T Show Errors
@4 Analyze Design Using ChipScope LI |status
ISIM Simulator Log |outof pate
Date Generated: 02/05/2013 - 10:47:43
| & start | =3 Design [) Fies [[D) Libraries £ (¢ Design Summary (SVD I simple_verlog.uc
Console \ /

Minimum period: No path found

Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 5.456ns

e —————
@he::ﬂe - XST" completed successfully
‘ < | 11,

(B console |@ errors | A\ Warnings | 12§ Findin Files Results |

Implement: Next step is to define the hardware configuration. With your top module source file
selected (simple_verilog.v in this case), double click the Implement Design process in the
Processes tab. This will translate the design to something that can physically be mapped to the
particular FPGA that’s on our board (the xc6sIx16-3csg324). You should see a green check mark
if this step finishes without issues. If there are issues, you need to read them for clues about what
went wrong and what you should look at to fix things. If you expand this Implement Design tab
(which is not necessary) you will see that the Implement Design process actually consists of
three parts:

a. Translate: Translate is the first step in the implementation process. The Translate process
merges all of the input netlists and design constraint information and outputs a Xilinx NGD
(Native Generic Database) file. The output NGD file can then be mapped to the targeted

C.

FPGA device.

Map: Mapping is the process of assigning a design’s logic elements to the specific physical
elements that actually implement logic functions in a device. The Map process creates an
NCD (Native Circuit Description) file. The NCD file will be used by the PAR process.

Place and Route (PAR): PAR uses the NCD file created by the Map process to place and
route your design. PAR outputs an NCD file that is used by the bitstream generator (BitGen)
to create a (.bit) file. The Bit file (see the next step) is what’s used to actually program the
FPGA. In this part the actual transistor configuration and wire routing is decided.

Original author: Prof. Brunvand

Revision and reconstruction: Paymon Saebi

6. Generate: In this step all information resulting from the previous steps are gathered and put into
a Bit format that the USB programmer on the FPGA board (in our case Nexys3) understands.
Simply double-click the Generate Programming File to generate a .bit file which will be used
in the final step to program the board. Now the design is ready to be put on the board so we can
physically see its functionality.

H|8|RSRv

€2 No Processes Running
Processes: simple_verilog
= Design Summary/Reports
& Design Utilities
& User Constraints
Create Timing Constraints
I/0 Pin Planning (PlanAhead) - Pre-Synthesis
I/0 Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/10/Logic (PlanAhead)
=) Synthesize - XST
View RTL Schematic
4 View Technology Schematic
) Check Syntax
) Generate Post-Synthesis Simulation Model
= 2@ Implement Design

8AE) Translate
& T Map
& BQE) Place & Route
2@ Generate Programming File
@ ‘:@ Configure Target Device
€4 Analyze Design Using ChipScope

Attention: Before proceeding to the next step connect the board via the USB cable to the PC you’re
using, and turn on the power, the next step ensure proper connection to the board. Also note
that you do not have to do steps 4, 5, and 6 individually. These processes are dependent on
each other, if one needs a preceding process to be updated then it will automatically run that
process before it runs itself. So you can just proceed to step 7 and watch ISE do everything.

7. Program: You can start the programming process by double clicking Configure Target Device
and ISE will launch yet another Xilinx tool called iMpact. A warning box appears complaining

about “No iMpact project file exists...’

automatically read your existing project.

» Start ‘ B Design | U] Files [@ Libraries | =

-) 17 NET "F
) Running: Configure Device - 18 NET "F_

Processes: simple_verilog

1| £3 |£F +5| V

3 Design Utilities
=@ User Constraints
%,

= 8@ Implement Design

7% Configure Target Device

= Design Summary/Reports

Create Timing Constraints

1/0 Pin Planning (PlanAhead) - Pre-Synthesis
/O Pin Planning (PlanAhead) - Post-Synthesis |
Floorplan Area/I0/Logic (PlanAhead) |

View RTL Schematic

View Technology Schematic

Check Syntax

Generate Post-Synthesis Simulation Model

& P Translate
& 8@ Map
& P Place & Route

2@ Generate Programming File

€% Analyze Design Using ChipScope

, so just click OK to launch iMpact as it will

& Warning [
No iMPACT project file exists. Click OK to open iMPACT. You will then need to
!) define a configuration chain, designate which device in that chain is the target

device, and then save the IMPACT project file. Once this step is completed,
subsequent runs of the 'Configure Target Device' process can program the target
device without needing to open the iIMPACT GUL

Design Summary (Programming File Generated)

simple_verilog.ucf

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

a.

In the ISE iMpact window which again looks a lot like ISE, double click Boundary Scan in
the top left pane. In the boundary scan windows in the main pane, where it says “Right click
to Add Device or Initialize chain” right-click in the middle of the page and select Initialize
Chain or just press Ctrl + 1. This will ensure there is a good connection to your board and it

{3 ISE iMPACT (P.49d) - [Boundary Scan] [E=R)
[@ File Edit View Operations Output Debug Window Help NEE
=oliew
08 X
PROM File Format...
Right click to Add Device or Initialize JTAG chain
IMPACT Processes ~08x
Available Operations are:
Add Xilinx Device... Ctri+D
TS Device:
Initialize Chain
Cable Setup...
Output File Type
® Boundary Scan
Console o0& x
Rl —T—
[El console |@ Errors | A\ Warnings
No Cable Connection |No File Open |

After iMpact verifies that the cable is connected it will prompt you to load your .bit file that
you generated in step 6. Note that this file selection window doesn’t always default to your
existing project so you may need to navigate to your project folder and locate the .bit file.
This file is always named to your top module so in our case it is simple_verilog.bit. Double-

click or select the bit file and click open, again make sure it is the right file.

\% ISE iIMPACT (P.49d) - [Boundary Scan]
4 ry

% ,
10 D2E %D

iMPACT Flows

Axum ‘—.-A

12 | G %% Boundary Scan
13 =] SystemACE

15 || @ [WebTalk Data

DO &P F |12
"
=

14 [Z) Create PROM File (PROM File Format...

08 x
SPEEL
I 4337
xcBsix16
bypass

TDO.

1% Assign Won File\

=)

Fle oo

BEE

Lookin: C:\iinx\Example_Project)
A My ComPieama 10 ™

s
]2 Paymon Thcordsdis

=
xinx_auto_0_xdb
xst

Identify Succeeded |

File name: | simple_veriog.bit

Files of type: |All Design Files (*.bit *.rbt *.nky *.isc *.bsd)

<08 X

[E console Errors

Warnings

launched successful}

Configuration |Nexys3 [1600000 | |

Original author: Prof. Brunvand

Revision and reconstruction: Paymon Saebi

c. After the bit file is read in, iMpact prompts you to attach a PROM controller, just click NO to
skip this step since we’re not putting anything in the Flash memory.

@ Attach SPI or BPI PROM @

This device supports attached Flash PROMs.
Do you want to attach an SPI or BPI PROM toe this device?

e []

d. Inthe next dialog box you would be verifying which device on the board you’re targeting but

in our case we only have the FPGA chip to program, so click Ok and the preparation for
programming the board is complete

-
1% Device Programming Properties - Device 1 Programming Properties @

Category

dary-Scan
evice 1 (FPGA xcbshd 6) Property Name Value

Verify

o) o)) e)

e. All that is left is to right click on the green chip icon with the Xilinx logo in the main pane

and click Program. After the communication bar finishes, your design is programmed to the
Nexys 3 FPGA board.

13 ISE iMPACT (P.49d) - [Boundary Scan]

[=l3] = |

@ F T8x

D2E| & [ZE LR

IMPACT Flows 08 x

& 22 Boundary Scan

[£) SystemACE
[£] Create PROM File (PROM File Format...
@ [5] WebTalk Data
1% Configuration Operation

iIMPACT Processes 08 x

Available Operations are: Exeolthg commend:.

= Program

@ Get Device D =

® Get Device Signature/Usercode

= Read Device Status

@b One Step SVF

@ One Step XSVF

= Read Device DNA

3 Boundary Scan
+08 X
hain validated successfully.
"1': Programming device... —
« mr— |
[El consoe |@ Errors [1\ Warnings |
Configuration [Nexys3 (1600000

Original author: Prof. Brunvand
Revision and reconstruction: Paymon Saebi

