
>>> Operating Systems And Applications For Embedded Systems
>>> Build System

Name: Mariusz Naumowicz
Date: 26 marca 2019

[~]$ _ [1/26]

>>> Plan
1. Build system

Open source build systems
Abilities
Other useful features
Open source build systems

2. Buildroot
Buildroot
Installing
Configuring
Running
License compliance
Adding source

package/Config.in
package/hello/Config.in
package/hello/hello.mk
package/hello/src/Makefile

3. The Yocto Project
Components
Installing the Yocto Project
Configuring
Building
Running
BitBake and recipes
Interesting features
Further reading

[~]$ _ [2/26]

>>> Open source build systems

* The toolchain

* The bootloader

* The kernel

* The root filesystem

[1. Build system]$ _ [3/26]

>>> Abilities

* Download a source from upstream, either directly from the source code control
system or as an archive, and cache it locally

* Apply patches to enable cross compilation, fix architecture-dependent bugs,
apply local configuration policies, and so on

* Build the various components

* Create a staging area and assemble a root filesystem

* Create image files in various formats ready to be loaded onto the target

[1. Build system]$ _ [4/26]

>>> Other useful features

* Add your own packages containing, for example, applications or kernel changes

* Select various root filesystem profiles: large or small, with and without
graphics or other features

* Create a standalone SDK that you can distribute to other developers so that they
don’t have to install the complete build system

* Track which open source licenses are used by the various packages you have
selected

* Allow you to create updates for in-field updating

* Have a user-friendly user interface

[1. Build system]$ _ [5/26]

>>> Open source build systems

1. Buildroot: An easy-to-use system using GNU make and Kconfig
(http://buildroot.org)

2. EmbToolkit: A simple system for generating root filesystems; the only one at the
time of writing that supports LLVM/Clang out of the box
(https://www.embtoolkit.org)

3. OpenEmbedded: A powerful system which is also a core component of the Yocto
Project and others (http://openembedded.org)

4. OpenWrt: A build tool oriented towards building firmware for wireless routers
(https://openwrt.org)

5. PTXdist: An open source build system sponsored by Pengutronix
(http://www.pengutronix.de/software/ptxdist/index_en.html)

6. Tizen: A comprehensive system, with emphasis on mobile, media, and in-vehicle
devices (https://www.tizen.org)

7. The Yocto Project: This extends the OpenEmbedded core with configuration,
layers, tools, and documentation: probably the most popular system
(http://www.yoctoproject.org)

[1. Build system]$ _ [6/26]

>>> Buildroot

The Buildroot project website is at http://buildroot.org.

Current versions of Buildroot are capable of building a toolchain, a bootloader
(U-Boot, Barebox, GRUB2, or Gummiboot), a kernel, and a root filesystem. It uses GNU
make as the principal build tool.

There is good online documentation at http://buildroot.org/docs.html, including The
Buildroot User Manual.

[2. Buildroot]$ _ [7/26]

>>> Installing

1. git clone git://git.buildroot.net/buildroot

2. cd buildroot

[2. Buildroot]$ _ [8/26]

>>> Configuring

1. cd buildroot

2. make qemu_arm_versatile_defconfig

3. make

[2. Buildroot]$ _ [9/26]

>>> Running

qemu-system-arm -M vexpress-a9 -m 256 -kernel output/images/zImage -dtb
output/images/vexpress-v2p-ca9.dtb -drive file=output/images/rootfs.ext2,if=sd
-append ”console=ttyAMA0,115200 root=/dev/mmcblk0” -serial stdio -net
nic,model=lan9118 -net user

[2. Buildroot]$ _ [10/26]

>>> License compliance

make legal-info

[2. Buildroot]$ _ [11/26]

>>> Adding source

1. modify file package/Config.in

2. create project directory in package directory

3. in project directory create files: Config.in project_name.mk and directory src

4. move your source files into src directory and create Makefile

[2. Buildroot]$ _ [12/26]

>>> Adding source

menu "Misc"
source "package/hello/Config.in"
endmenu

[2. Buildroot]$ _ [13/26]

>>> package/hello/Config.in

config BR2_PACKAGE_HELLO
bool "hello"
help

Hello world package.

http://example.com

[2. Buildroot]$ _ [14/26]

>>> package/hello/hello.mk

##
#
hello
#
##

HELLO_VERSION = 1.0
HELLO_SITE = ./package/hello/src
HELLO_SITE_METHOD = local

define HELLO_BUILD_CMDS
$(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C $(@D)
endef

define HELLO_INSTALL_TARGET_CMDS
$(INSTALL) -D -m 0755 $(@D)/hello $(TARGET_DIR)/usr/bin
endef

$(eval $(generic-package))

[2. Buildroot]$ _ [15/26]

>>> package/hello/src/Makefile

CC = gcc

.PHONY: clean

hello: hello.c
$(CC) -o ’$@’ ’$<’

clean:
rm hello

[2. Buildroot]$ _ [16/26]

>>> Components

1. Poky: The reference distribution

2. oe-core: The core metadata, which is shared with OpenEmbedded

3. BitBake: The task scheduler, which is shared with OpenEmbedded and other
projects

4. Documentation: User manuals and developer’s guides for each component

5. Hob: A graphical user interface to OpenEmbedded and BitBake

6. Toaster: A web-based interface to OpenEmbedded and BitBake

7. ADT Eclipse: A plug-in for Eclipse that makes it easier to build projects using
the Yocto Project SDK

[3. The Yocto Project]$ _ [17/26]

>>> Installing the Yocto Project

git clone -b fido git://git.yoctoproject.org/poky.git

[3. The Yocto Project]$ _ [18/26]

>>> Configuring

1. cd poky

2. source oe-init-build-env

source oe-init-build-env build-qemuarm

[3. The Yocto Project]$ _ [19/26]

>>> Building

* core-image-minimal: A small console-based system which is useful for tests and
as the basis for custom images.

* core-image-minimal-initramfs: This is similar to core-image-minimal, but built
as a ramdisk.

* core-image-x11: A basic image with support for graphics through an X11 server
and the xterminal terminal app.

* core-image-sato: A full graphical system based on Sato, which is a mobile
graphical environment built on X11, and GNOME. The image includes several apps
including a terminal, an editor, and a file manager.

bitbake core-image-minimal

[3. The Yocto Project]$ _ [20/26]

>>> Running

To run the QEMU emulation, make sure that you have sourced oe-init-build-env and
then just type:
runqemu qemuarm

[3. The Yocto Project]$ _ [21/26]

>>> BitBake and recipes I

* recipes: Files ending in .bb. These contain information about building a unit of
software, including how to get a copy of the source code, the dependencies on
other components, and how to build and install it.

* append: Files ending in .bbappend. These allow some details of a recipe to be
overridden or extended. A.bbappend file simply appends its instructions to the
end of a recipe (.bb) file of the same root name.

* include: Files ending in .inc. These contain information that is common to
several recipes, allowing information to be shared among them. The files may be
included using the include or require keywords. The difference is that require
produces an error if the file does not exist, whereas include does not.

* classes: Files ending in .bbclass. These contain common build information, for
example how to build a kernel or how to build an autotools project. The classes
are inherited and extended in recipes and other classes using the inherit key
word. The class classes/base.bbclass is implicitly inherited in every recipe.

* configuration: Files ending in .conf. They define various configuration
variables that govern the project’s build process.

[3. The Yocto Project]$ _ [22/26]

>>> BitBake and recipes II

The default task is do_build, so that you are running the build task for that
recipe. You can list the tasks available in a recipe by running bitbake
core-image-minimal like this:
bitbake -c listtasks core-image-minimal
The -c option allows you to specify the task, missing off the do_ part. A common use
is -c fetch to get the code needed by a recipe:
bitbake -c fetch busybox
You can also use fetchall to get the code for the target and all the dependencies:
bitbake -c fetchall core-image-minimal

[3. The Yocto Project]$ _ [23/26]

>>> Interesting features

* dbg-pkgs: installs debug symbol packages for all the packages installed in the
image.

* debug-tweaks: allows root logins without passwords and other changes that make
development easier.

* package-management: installs package management tools and preserves the package
manager database.

* read-only-rootfs: makes the root filesystem read-only.

* x11: installs the X server.

* x11-base: installs the X server with a minimal environment.

* x11-sato: installs the OpenedHand Sato environment

[3. The Yocto Project]$ _ [24/26]

>>> Further reading

* The Buildroot User Manual, http://buildroot.org/downloads/manual/ manual.html

* Yocto Project documentation: there are nine reference guides plus a tenth which
is a composite of the others (the so-called Mega-manual") at
https://www.yoctoproject.org/documentation

* Instant Buildroot, by Daniel Manchón Vizuete, Packt Publishing, 2013

* Embedded Linux Development with Yocto Project, by Otavio Salvador and Daianne
Angolini, Packt Publishing, 2014

[3. The Yocto Project]$ _ [25/26]

>>> References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

[3. The Yocto Project]$ _ [26/26]

	Build system
	Open source build systems
	Abilities
	Other useful features
	Open source build systems

	Buildroot
	Buildroot
	Installing
	Configuring
	Running
	License compliance
	Adding source

	The Yocto Project
	Components
	Installing the Yocto Project
	Configuring
	Building
	Running
	BitBake and recipes
	Interesting features
	Further reading

