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>>> TOP LEVEL TASK STATES

All tasks that are [\ Only one task
not currently can be in the
Running are in the Running state at
Not Running State any one time
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>>> Creating Tasks I

Listing 1: Listing

vTaskl1 ( *pvParameters )
*pcTaskName = 5
ul;
{

vPrintString ( pcTaskName );

( ul = 0; ul < mainDELAY_LOOP_COUNT; ul++ )

w
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>>> Creating Tasks II

}
vTask2 ( *pvParameters )
{
*pcTaskName = 3
ul;
C 5500
{

vPrintString( pcTaskName );

( ul = 0; ul < mainDELAY_LOOP_COUNT; ul++ )

[
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>>> Creating Tasks III

main ( )

xTaskCreate ( vTaskl,

>

1000,
NULL ,

il ¢

NULL );

xTaskCreate ( vTask2,

vTaskStartScheduler () ;
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>

1000,

NULL ,

1,

NULL );
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>>> Creating Tasks IV
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>>> The actual execution pattern of the two tasks

[1. FreeRTOS]$ _

At time t1, Task 1

enters the Running

state and executes
until time t2

At time t2 Task 2 enters the Running [
state and executes until time 3 - at
which paint Task1 re-enters the
Running state
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>>> Tick interrupt executing

Kernel runs in tick
interrupt to select
next task

EEN

ick
interrupt
occurs

" Newly selected task runs when
the tick interrupt completes

Kernel
Task 1
Task 2
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>>> The execution pattern when one task has a higher priority than the other

Kernel
Task 1
Task 2
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Tick
interrupt
occurs

The scheduler runs in the tick interrupt
but selects the same task. Task 2 is
always in the Running state and Task 1 is
always in the Not Running state
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>>> Full task state machine

P

Mot Running
(super state)

/ vTaskSuspend()

called vTaskResumed)

Event

\

vTaskSuspend()

called |
\\

N Blocked -
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>>> The execution

[1. FreeRTOS]$ _

4 - \When the delay expires the scheduler maves the],
2-Task 1 prints out its string, then it too[™ | tasks back into the ready state, where both execute
enters the Blocked state by calling again before once again calling vTaskDelay() causing
vTaskDelay(). them to re-enter the Blocked state. Task 2 executes

first as it has the higher priority.

1 - Task 2 has the highest priority so runs first. It

prints out its string then calls vTaskDelay() - and in so 3 - At this point both application tasks are
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.
priority Task 1 o execute.

sequence when the tasks use vTaskDelay() in place of the NULL loop
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>>> The execution pattern with periodic task

1'is chosen and
interrupt - during which time it caul
out its string many times.

Periodic

Continuous 1

The ldle task never enters the
. . . \ Running state as there are
Continuous 2 ! | always higher priority

o do so

both are alwer ble to run thE
sharas proc ing time batweean the two - so
Continuous 2 enters the Running state where it
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>>> The sequence of task execution without idle state

3 - Task1 runs again when[>,
1-Task1 runs | Task2 lowers its own priority
first as it has the back to being below the

N,

as both application tasks
are always able to run and

always have a priority
ahove the idle priorit

2 - TaskZ runs each |
time Task1 sets the
Task2 priority to be
the highest

[1. FreeRTOS]$ _

[14/19]



>>> The execution sequence with task deleting

2 - Task 2 does nothing other than delete
itself, allowing execution to return to Task 1.

—

Task 2 starts to run immediately as

the idle task to run until the delay time
has the higher priority.

expires, and the whole sequence repeats.

1-Task 1runs and creates Task 2. l}‘ 3 - Task 1 calls vTaskDelay(), allowing
it
5
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>>> Execution pattern with pre-emption points highlighted

Task 2 pre-empts Task 3 1 Task 1 pre-empts Task 20

Task?2 (med, peric
Task3 (low, eventﬁ

[dle task (oominuous}i — —
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>>> Interrupt example
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—configTOTA
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>>> RAM allocation
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—configTOTA
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