
>>> Operating Systems And Applications For Embedded Systems
>>> FreeRTOS

Name: Mariusz Naumowicz
Date: 27 sierpnia 2018

[~]$ _ [1/19]

>>> Plan

1. FreeRTOS
TOP LEVEL TASK STATES
Creating Tasks
The actual execution pattern of the two tasks
Tick interrupt executing
The execution pattern when one task has a higher priority than the other
Full task state machine
The execution sequence when the tasks use vTaskDelay() in place of the NULL
loop
The execution pattern with periodic task
The sequence of task execution without idle state
The execution sequence with task deleting
Execution pattern with pre-emption points highlighted

2. Interrupt Management
Interrupt example

3. Memory Management
RAM allocation

[~]$ _ [2/19]

>>> TOP LEVEL TASK STATES

[1. FreeRTOS]$ _ [3/19]

>>> Creating Tasks I

Listing 1: Listing

1 void vTask1 (void * pvParameters)
2 {
3 const char * pcTaskName = "Task 1 is running \r\n";
4 volatile unsigned long ul;
5 /* As per most tasks , this task is implemented in an infinite loop. */
6 for(;;)
7 {
8 /* Print out the name of this task. */
9 vPrintString (pcTaskName);

10 /* Delay for a period . */
11 for(ul = 0; ul < mainDELAY_LOOP_COUNT ; ul++)
12 {
13 /* This loop is just a very crude delay implementation . There is
14 nothing to do in here. Later examples will replace this crude
15 loop with a proper delay/sleep function . */
16 }
17 }

[1. FreeRTOS]$ _ [4/19]

>>> Creating Tasks II

18 }
19 void vTask2 (void * pvParameters)
20 {
21 const char * pcTaskName = "Task 2 is running \r\n";
22 volatile unsigned long ul;
23 /* As per most tasks , this task is implemented in an infinite loop. */
24 for(;;)
25 {
26 /* Print out the name of this task. */
27 vPrintString (pcTaskName);
28 /* Delay for a period . */
29 for(ul = 0; ul < mainDELAY_LOOP_COUNT ; ul++)
30 {
31 /* This loop is just a very crude delay implementation . There is
32 nothing to do in here. Later examples will replace this crude
33 loop with a proper delay/sleep function . */
34 }
35 }
36 }

[1. FreeRTOS]$ _ [5/19]

>>> Creating Tasks III

37 int main(void)
38 {
39 /* Create one of the two tasks. Note that a real application should check
40 the return value of the xTaskCreate () call to ensure the task was created
41 successfully . */
42 xTaskCreate (vTask1 , /* Pointer to the function that implements the task. */
43 "Task 1",/* Text name for the task. This is to facilitate debugging
44 only. */
45 1000 , /* Stack depth - most small microcontrollers will use much
46 less stack than this. */
47 NULL , /* We are not using the task parameter . */
48 1, /* This task will run at priority 1. */
49 NULL); /* We are not going to use the task handle . */
50 /* Create the other task in exactly the same way and at the same priority . */
51 xTaskCreate (vTask2 , "Task 2", 1000 , NULL , 1, NULL);
52 /* Start the scheduler so the tasks start executing . */
53 vTaskStartScheduler ();
54 /* If all is well then main () will never reach here as the scheduler will
55 now be running the tasks. If main () does reach here then it is likely that

[1. FreeRTOS]$ _ [6/19]

>>> Creating Tasks IV

56 there was insufficient heap memory available for the idle task to be created .*/
57 for(;;);
58 }

[1. FreeRTOS]$ _ [7/19]

>>> The actual execution pattern of the two tasks

[1. FreeRTOS]$ _ [8/19]

>>> Tick interrupt executing

[1. FreeRTOS]$ _ [9/19]

>>> The execution pattern when one task has a higher priority than the other

[1. FreeRTOS]$ _ [10/19]

>>> Full task state machine

[1. FreeRTOS]$ _ [11/19]

>>> The execution sequence when the tasks use vTaskDelay() in place of the NULL loop

[1. FreeRTOS]$ _ [12/19]

>>> The execution pattern with periodic task

[1. FreeRTOS]$ _ [13/19]

>>> The sequence of task execution without idle state

[1. FreeRTOS]$ _ [14/19]

>>> The execution sequence with task deleting

[1. FreeRTOS]$ _ [15/19]

>>> Execution pattern with pre-emption points highlighted

[1. FreeRTOS]$ _ [16/19]

>>> Interrupt example

[2. Interrupt Management]$ _ [17/19]

>>> RAM allocation

[3. Memory Management]$ _ [18/19]

>>> References

R. Barry.
Using the FreeRTOS Real Time Kernel: A Practical Guide.
Real Time Engineers Limited, 2010.

[3. Memory Management]$ _ [19/19]

	FreeRTOS
	TOP LEVEL TASK STATES
	Creating Tasks
	The actual execution pattern of the two tasks
	Tick interrupt executing
	The execution pattern when one task has a higher priority than the other
	Full task state machine
	The execution sequence when the tasks use vTaskDelay() in place of the NULL loop
	The execution pattern with periodic task
	The sequence of task execution without idle state
	The execution sequence with task deleting
	Execution pattern with pre-emption points highlighted

	Interrupt Management
	Interrupt example

	Memory Management
	RAM allocation

