>>> QOperating Systems And Applications For Embedded Systems
>>> FreeRTO0S

Name: Mariusz Naumowicz
Date: 27 sierpnia 2018

[-1$ _ [1/19]

>>> Plan

1. FreeRTOS
TOP LEVEL TASK STATES
Creating Tasks
The actual execution pattern of the two tasks
Tick interrupt executing
The execution pattern when one task has a higher priority than the other
Full task state machine
The execution sequence when the tasks use vTaskDelay() in place of the NULL
loop
The execution pattern with periodic task
The sequence of task execution without idle state
The execution sequence with task deleting
Execution pattern with pre-emption points highlighted

2. Interrupt Management
Interrupt example

3. Memory Management
RAM allocation

[-1$ _ [2/19]

>>> TOP LEVEL TASK STATES

All tasks that are [\ Only one task
not currently can be in the
Running are in the Running state at
Not Running State any one time

[1. FreeRTOS]$ _ [3/19]

>>> Creating Tasks I

Listing 1: Listing

vTaskl1 (*pvParameters)
*pcTaskName = 5
ul;
{

vPrintString (pcTaskName);

(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

w

[1. FreeRTOS]$ _ [4/19]

>>> Creating Tasks II

}
vTask2 (*pvParameters)
{
*pcTaskName = 3
ul;
C 5500
{

vPrintString(pcTaskName);

(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

[

[1. FreeRTOS]$ _ [5/19]

>>> Creating Tasks III

main ()

xTaskCreate (vTaskl,

>

1000,
NULL ,

il ¢

NULL);

xTaskCreate (vTask2,

vTaskStartScheduler () ;

[1. FreeRTOS]$ _

>

1000,

NULL ,

1,

NULL);

[6/19]

>>> Creating Tasks IV

[7/19]
[1. FreeRTOS]$ _

>>> The actual execution pattern of the two tasks

[1. FreeRTOS]$ _

At time t1, Task 1

enters the Running

state and executes
until time t2

At time t2 Task 2 enters the Running [
state and executes until time 3 - at
which paint Task1 re-enters the
Running state

[8/19]

>>> Tick interrupt executing

Kernel runs in tick
interrupt to select
next task

EEN

ick
interrupt
occurs

" Newly selected task runs when
the tick interrupt completes

Kernel
Task 1
Task 2

[1. FreeRTOS]$ _

>>> The execution pattern when one task has a higher priority than the other

Kernel
Task 1
Task 2

[1. FreeRTOS]$ _

Tick
interrupt
occurs

The scheduler runs in the tick interrupt
but selects the same task. Task 2 is
always in the Running state and Task 1 is
always in the Not Running state

[10/19]

>>> Full task state machine

P

Mot Running
(super state)

/ vTaskSuspend()

called vTaskResumed)

Event

\

vTaskSuspend()

called |
\\

N Blocked -

[1. FreeRTOS]$ _ [11/19]

>>> The execution

[1. FreeRTOS]$ _

4 - \When the delay expires the scheduler maves the],
2-Task 1 prints out its string, then it too[™ | tasks back into the ready state, where both execute
enters the Blocked state by calling again before once again calling vTaskDelay() causing
vTaskDelay(). them to re-enter the Blocked state. Task 2 executes

first as it has the higher priority.

1 - Task 2 has the highest priority so runs first. It

prints out its string then calls vTaskDelay() - and in so 3 - At this point both application tasks are
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.
priority Task 1 o execute.

sequence when the tasks use vTaskDelay() in place of the NULL loop

[12/19]

>>> The execution pattern with periodic task

1'is chosen and
interrupt - during which time it caul
out its string many times.

Periodic

Continuous 1

The ldle task never enters the
. . . \ Running state as there are
Continuous 2 ! | always higher priority

o do so

both are alwer ble to run thE
sharas proc ing time batweean the two - so
Continuous 2 enters the Running state where it

[1. FreeRTOS]$ _

[13/19]

>>> The sequence of task execution without idle state

3 - Task1 runs again when[>,
1-Task1 runs | Task2 lowers its own priority
first as it has the back to being below the

N,

as both application tasks
are always able to run and

always have a priority
ahove the idle priorit

2 - TaskZ runs each |
time Task1 sets the
Task2 priority to be
the highest

[1. FreeRTOS]$ _

[14/19]

>>> The execution sequence with task deleting

2 - Task 2 does nothing other than delete
itself, allowing execution to return to Task 1.

—

Task 2 starts to run immediately as

the idle task to run until the delay time
has the higher priority.

expires, and the whole sequence repeats.

1-Task 1runs and creates Task 2. l}‘ 3 - Task 1 calls vTaskDelay(), allowing
it
5

[1. FreeRTOS]$ _ [15/19]

>>> Execution pattern with pre-emption points highlighted

Task 2 pre-empts Task 3 1 Task 1 pre-empts Task 20

Task?2 (med, peric
Task3 (low, eventﬁ

[dle task (oominuous}i — —

[1. FreeRTOS]$ _ [16/19]

>>> Interrupt example

—

LLJ
N
7
o
<
i
T
-

L——ooeds saly ——

—configTOTA

[2. Interrupt Management]$ _ [17/19]

>>> RAM allocation

—

LLJ
N
7
o
<
i
T
-

L——ooeds saly ——

—configTOTA

[3. Memory Management]$ _ [18/19]

>>> References

H R. Barry.
Using the FreeRTOS Real Time Kernel: A Practical Guide.
Real Time Engineers Limited, 2010.

[3. Memory Management]$ _ [19/19]

	FreeRTOS
	TOP LEVEL TASK STATES
	Creating Tasks
	The actual execution pattern of the two tasks
	Tick interrupt executing
	The execution pattern when one task has a higher priority than the other
	Full task state machine
	The execution sequence when the tasks use vTaskDelay() in place of the NULL loop
	The execution pattern with periodic task
	The sequence of task execution without idle state
	The execution sequence with task deleting
	Execution pattern with pre-emption points highlighted

	Interrupt Management
	Interrupt example

	Memory Management
	RAM allocation

