
>>> Operating Systems And Applications For Embedded Systems
>>> eCos

Name: Mariusz Naumowicz
Date: 27 sierpnia 2018

[~]$ _ [1/18]



>>> Plan

1. eCos introduction
eCos Core Components
Processor and Evaluation Platform Support
Component Repository Directory Structure Descriptions

2. Exceptions and Interrupts
Exceptions flow
Interrupts flow
Interreupts
Synchronization Mechanisms
Device driver packages

3. Compatibility Layers
POSIX
µTRON
File Systems

4. Networking Support
OpenBSD
FreeBSD

[~]$ _ [2/18]



>>> eCos Core Components

* Hardware Abstraction Layer (HAL)—providing a software layer that gives general
access to the hardware.

* Kernel—including interrupt and exception handling, thread and synchronization
support, a choice of scheduler implementations, timers, counters, and alarms.

* ISO C and math libraries—standard compatibility with function calls.
* Device drivers—including standard serial, Ethernet, Flash ROM, and others.
* GNU debugger (GDB) support—provides target software for communicating with a GDB
host enabling application debugging.

[1. eCos introduction]$ _ [3/18]



>>> Processor and Evaluation Platform Support

* ARM
* Fujitsu FR-V
* Hitachi H8/300
* Intel x86
* Matsushita AM3x
* MIPS
* NEC V8xx
* PowerPC
* Samsung CalmRISC16/32
* SPARC
* SPARClite
* SuperH

[1. eCos introduction]$ _ [4/18]



>>> Component Repository Directory Structure Descriptions I

* compat: Contains packages for the POSIX (IEEE 1003.1) and µITRON 3.0
compatibility. cygmon Package contents for Cygmon standalone debug monitor.

* devs: Includes all device driver hardware-specific components such as serial,
Ethernet, and PCMCIA.

* error: Contains common error and status code packages. This allows commonality
among packages for error and status reporting.

* fs: Includes the ROM and RAM file system packages.
* hal: Incorporates all HAL target hardware packages.
* infra: Contains the eCos infrastructure such as common types, macros, tracing,
assertions, and startup options.

* io: Packages for all generic hardware-independent Input/Output (I/O) system
support, such as Ethernet, flash, and serial, which is the basis for system
device drivers.

* isoinfra: Contains package that provides support for ISO C libraries (such as
stdlib and stdio) and POSIX implementations.

* kernel: Includes the package that provides the core functionality (such as the
scheduler, semaphores, and threads) of the eCos kernel.

[1. eCos introduction]$ _ [5/18]



>>> Component Repository Directory Structure Descriptions II

* language: Incorporates the packages for the ISO C and math libraries, which
allows the application to use well-known standard C library functions and the
floating-point mathematical library.

* net: Packages for basic networking support including TCP, UDP and IP, and the
SNMP protocol and agent support libraries based on the UCD-SNMP project.

* redboot: Contains package for the RedBoot standalone debug ROM monitor.
* services: Includes packages for dynamic memory allocation and support for
compression and decompression library.

[1. eCos introduction]$ _ [6/18]



>>> Exceptions flow

[2. Exceptions and Interrupts]$ _ [7/18]



>>> Interrupts flow

[2. Exceptions and Interrupts]$ _ [8/18]



>>> Interreupts I

1. The first item in Figure shows the execution of a thread.
2. The next event is an external hardware interrupt.
3. Now, the processor looks into the VSR table, hal_vsr_table, to determine the

location of the interrupt vector service routine to execute. During HAL startup,
hal_mon_init installs the default interrupt VSR into the VSR table for the
external interrupt.

4. Next, the default interrupt VSR begins executing. The first task of the default
interrupt VSR is to save the current processor state. As mentioned before, the
current processor’s state can be saved either on a thread’s stack or on the
separate interrupt stack, depending on the HAL interrupt configuration options
selected. After the processor’s state information has been stored, the default
interrupt VSR increments the cyg_scheduler_sched_lock kernel variable to ensure
that scheduling does not take place. Next, the default vector service routine
needs to find out what ISR to call. ISRs are installed by the application. The
HAL uses three tables, implemented as arrays, to maintain the ISR information
needed. The size of these tables is architecture specific. The ISR tables are:

5. hal_interrupt_handlers—contains the addresses of the interrupt service routines
installed by the application.

[2. Exceptions and Interrupts]$ _ [9/18]



>>> Interreupts II

6. hal_interrupt_data—contains the data to be passed into the ISR.
7. hal_interrupt_objects—contains information that is used at the kernel level and

hidden from the application layer. The HAL default interrupt VSR uses an
architecture-specific function, hal_intc_decode, to perform the lookup into the
hal_interrupt_handlers table. This function finds the index into the table based
on the interrupt vector number and/or through examining the hardware, such as an
interrupt controller. The value is used for indexing into the data (which is
passed into the ISR) and objects (used at the kernel level) tables as well.

8. Next, the default VSR calls the ISR installed by the application. The ISR, which
executes at the application level, performs any necessary functions for the
particular interrupt. The ISR notifies the kernel that the DSR should be posted
for execution by returning CYG_ISR_CALL_DSR. The ISR also returns
CYG_ISR_HANDLED to terminate any chained interrupt processing.

[2. Exceptions and Interrupts]$ _ [10/18]



>>> Synchronization Mechanisms

1. Mutexes
2. Semaphores
3. Condition variables
4. Flags
5. Message boxes
6. Spinlocks (for SMP systems)

[2. Exceptions and Interrupts]$ _ [11/18]



>>> Device driver packages

1. Ethernet
2. Flash
3. Compaq IPAQ Platform-Specific Keyboard
4. Compaq IPAQ Platform-Specific Touch Screen
5. Personal Computer Memory Card International Association (PCMCIA)
6. Serial
7. Universal Serial Bus (USB)
8. Watchdog
9. Wallclock

[2. Exceptions and Interrupts]$ _ [12/18]



>>> POSIX

* POSIX Scheduling Configuration (CYGPKG_POSIX_SCHED)
* POSIX Pthread Configuration (CYGPKG_POSIX_PTHREAD)
* POSIX Timers (CYGPKG_POSIX_TIMERS)
* POSIX Semaphores (CYGPKG_POSIX_SEMAPHORES)
* POSIX Message Queues (CYGPKG_POSIX_MQUEUES)
* POSIX Signals Configuration (CYGPKG_POSIX_SIGNALS)
* POSIX Utsname Configuration (CYGPKG_POSIX_UTSNAME)

[3. Compatibility Layers]$ _ [13/18]



>>> µTRON

* Required (R)—Functions in this level are mandatory for µITRON 3.0
implementations.

* Standard (S)—Includes basic functions for achieving a real-time, multitasking
operating system.

* Extended (E)—Includes additional and extended functions, such as object creation
and deletion, memory pools, and timer handler functions.

* CPU Dependent (C)—Incorporates CPU or hardware configuration implementation
dependent functions.

[3. Compatibility Layers]$ _ [14/18]



>>> File Systems

* ROM
* RAM
* JFFS2

[3. Compatibility Layers]$ _ [15/18]



>>> OpenBSD

* IPv4—Internet Protocol version 4
* ARP—Address Resolution Protocol
* RARP—Reverse Address Resolution Protocol
* ICMP—Internet Control Message Protocol
* UDP—User Datagram Protocol
* TCP—Transmission Control Protocol
* DHCP—Dynamic Host Configuration Protocol
* BOOTP—Bootstrap Protocol
* TFTP—Trivial File Transfer Protocol

[4. Networking Support]$ _ [16/18]



>>> FreeBSD

* IPv4—Internet Protocol version 4
* IPv6—Internet Protocol version 6
* ARP—Address Resolution Protocol
* RARP—Reverse Address Resolution Protocol
* ICMP—Internet Control Message Protocol
* IGMP—Internet Group Management Protocol
* UDP—User Datagram Protocol
* TCP—Transmission Control Protocol
* DHCP—Dynamic Host Configuration Protocol
* BOOTP—Bootstrap Protocol
* TFTP—Trivial File Transfer Protocol
* Multicast addressing

[4. Networking Support]$ _ [17/18]



>>> References

Anthony Massa.
Embedded Software Development with eCos.
Prentice Hall Professional Technical Reference, 2002.

[4. Networking Support]$ _ [18/18]


	eCos introduction
	eCos Core Components
	Processor and Evaluation Platform Support
	Component Repository Directory Structure Descriptions

	Exceptions and Interrupts
	Exceptions flow
	Interrupts flow
	Interreupts
	Synchronization Mechanisms
	Device driver packages

	Compatibility Layers
	POSIX
	µTRON
	File Systems

	Networking Support
	OpenBSD
	FreeBSD


