
>>> Operating Systems And Applications For Embedded Systems
>>> Profiling and Tracing

Name: Mariusz Naumowicz
Date: 27 sierpnia 2018

[~]$ _ [1/18]

>>> Plan

1. Profiling and Tracing
Profling with top
Poor man’s profler

2. perf
perf
Confguring the kernel for perf
Building perf with the Yocto Project
Building perf with Buildroot
Profling with perf
perf user interfaces
OProfle and gprof
LTTng components
LTTng and the Yocto Project
LTTng and Buildroot
Callgrind
Helgrind
Using strace to show system calls

[~]$ _ [2/18]

>>> Profling with top

top is a simple tool that doesn’t require any special kernel options or symbol
tables. There is a basic version in BusyBox, and a more functional version in the
procps package which is available in the Yocto Project and Buildroot.

procps Busybox
us usr User space programs with default nice value
sy sys Kernel code
ni nic User space programs with non-default nice value
id idle Idle
wa io I/O wait
hi irq Hardware interrupts
si sirq Software interrupts
st – Steal time: only relevant in virtualized environments

Mem: 57044K used, 446172K free, 40K shrd, 3352K buff, 34452K cached
CPU: 58% usr 4% sys 0% nic 0% idle 37% io 0% irq 0% sirq
Load average: 0.24 0.06 0.02 2/51 105
PID PPID USER STAT VSZ %VSZ %CPU COMMAND
105 104 root R 27912 6% 61% ffmpeg -i track2.wav
[...]

[1. Profiling and Tracing]$ _ [3/18]

>>> Poor man’s profler

1. Attach to the process using gdbserver (for a remote debug) or gbd (for a native
debug). The process stops.

2. Observe the function it stopped in. You can use the backtrace GDB command to see
the call stack.

3. Type continue so that the program resumes.

4. After a while, type Ctrl + C to stop it again and go back to step 2.

[1. Profiling and Tracing]$ _ [4/18]

>>> perf

perf is an abbreviation of the Linux performance event counter subsystem,
perf_events, and also the name of the command-line tool for interacting with
perf_events. Both have been part of the kernel since Linux 2.6.31. There is plenty
of useful information in the Linux source tree in tools/perf/Documentation, and also
at https://perf.wiki.kernel.org.

[2. perf]$ _ [5/18]

>>> Confguring the kernel for perf

You need a kernel that is confgured for perf_events and you need the perf command
cross compiled to run on the target. The relevant kernel confguration is
CONFIG_PERF_EVENTS present in the menu General setup | Kernel Performance Events And
Counters.

[2. perf]$ _ [6/18]

>>> Building perf with the Yocto Project

EXTRA_IMAGE_FEATURES = "debug-tweaks dbg-pkgs tools-profile"
IMAGE_INSTALL_append = "kernel-vmlinux"

[2. perf]$ _ [7/18]

>>> Building perf with Buildroot

* BR2_LINUX_KERNEL_TOOL_PERF in Kernel | Linux Kernel Tools. To build packages
with debug symbols and install them unstripped on the target, select these two
settings.

* BR2_ENABLE_DEBUG in the menu Build options | build packages with debugging
symbols menu.

* BR2_STRIP = none in the menu Build options | strip command for binaries on
target.

[2. perf]$ _ [8/18]

>>> Profling with perf

perf record sh -c "find /usr/share | xargs grep linux > /dev/null"
[perf record: Woken up 2 times to write data]
[perf record: Captured and wrote 0.368 MB perf.data (∼ 16057 samples)]
ls -l perf.data
-rw–––- 1 root root 387360 Aug 25 2015 perf.data

[2. perf]$ _ [9/18]

>>> perf user interfaces

* –stdio: This is a pure text interface with no user interaction. You will have to
launch perf report and annotate for each view of the trace.

* –tui: This is a simple text-based menu interface with traversal between screens.
* –gtk: This is a graphical interface that otherwise acts in the same way as –tui.

[2. perf]$ _ [10/18]

>>> OProfle and gprof

* CONFIG_PROFILING in General setup | Profiling support

* CONFIG_OPROFILE in General setup | OProfile system profiling

operf <program>
busybox grep łinux"*
ls -l gmon.out
-rw-r–r– 1 root root 473 Nov 24 14:07 gmon.out
gprof busybox
Flat profile:
Each sample counts as 0.01 seconds.
no time accumulated
% cumulative self self total time seconds seconds calls Ts/call Ts/call name
0.00 0.00 0.00 688 0.00 0.00 xrealloc
0.00 0.00 0.00 345 0.00 0.00 bb_get_chunk_from_file
0.00 0.00 0.00 345 0.00 0.00 xmalloc_fgetline
0.00 0.00 0.00 6 0.00 0.00 fclose_if_not_stdin
0.00 0.00 0.00 6 0.00 0.00 fopen_for_read
0.00 0.00 0.00 6 0.00 0.00 grep_file
[...]

[2. perf]$ _ [11/18]

>>> LTTng components

* A core session manager

* A kernel tracer implemented as a group of kernel modules

* A user space tracer implemented as a library

[2. perf]$ _ [12/18]

>>> LTTng and the Yocto Project

IMAGE_INSTALL_append = "lttng-tools lttng-modules lttng-ust"

[2. perf]$ _ [13/18]

>>> LTTng and Buildroot

* BR2_PACKAGE_LTTNG_MODULES in the menu Target packages | Debugging, profiling and
benchmark | lttng-modules.

* BR2_PACKAGE_LTTNG_TOOLS in the menu Target packages | Debugging, profiling and
benchmark | lttng-tools.

* BR2_PACKAGE_LTTNG_LIBUST in the menu Target packages | Libraries | Other, enable
lttng-libust.

[2. perf]$ _ [14/18]

>>> Callgrind

valgrind –tool=callgrind <program>

[2. perf]$ _ [15/18]

>>> Helgrind

valgrind –tool=helgrind <program>

[2. perf]$ _ [16/18]

>>> Using strace to show system calls

* Learn which system calls a program makes.

* Find those system calls that fail together with the error code. I find this
useful if a program fails to start but doesn’t print an error message or if the
message is too general. strace shows the failing syscall.

* Find which files a program opens.

* Find out what syscalls a running program is making, for example to see if it is
stuck in a loop.

strace ./helloworld
execve("./helloworld", ["./helloworld"], [/* 14 vars */]) = 0
brk(0) = 0x11000
uname({sys=Łinux", node="beaglebone", ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, - 1, 0) =
0xb6f40000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=8100, ...}) = 0
mmap2(NULL, 8100, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb6f3e000
close(3) = 0

[2. perf]$ _ [17/18]

>>> References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

[2. perf]$ _ [18/18]

	Profiling and Tracing
	Profling with top
	Poor man's profler

	perf
	perf
	Confguring the kernel for perf
	Building perf with the Yocto Project
	Building perf with Buildroot
	Profling with perf
	perf user interfaces
	OProfle and gprof
	LTTng components
	LTTng and the Yocto Project
	LTTng and Buildroot
	Callgrind
	Helgrind
	Using strace to show system calls

