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Abstract. In this paper, genetic algorithms are used in machine learning classification task. They act as a  
constructive induction engine, which selects features and adjusts weights of attributes, in order to obtain the  
highest  classification  accuracy.  We  compare  two  classification  approaches:  a  single  1-NN  and  a  n2 

meta-classifier.  For  the  n2-classifier,  the  idea  of  an  improvement  of  classification accuracy is  based on 
independent modification of descriptions of examples for each pair of  n classes. Finally, it gives (n2 – n)/2 
spaces  of  attributes  dedicated for  discrimination of  pairs  of  classes.  The computational  experiment  was 
performed on a medical data set. Its results reveal the utility of using genetic algorithms for feature selection 
and weight adjusting, and point out the advantage of using a multi-classification model (n2-classifier) with 
constructive induction in relation to the analogous single-classifier approach.
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1   Introduction

The main problem concerning usage of any classification system is definition of a set of features, which allows 
obtaining the highest possible classification accuracy. In many practical applications of machine learning, such 
as pictorial  image classification,  speech recognition,  identification tasks etc.,  it  is  easy to suggest  (or  even  
automatically generate) many features. However, only a part of them is usually relevant. An influence on the  
accuracy  of  those  remaining  may  be  not  significant;  sometimes  using  them  may  even  deteriorate  the 
classification result. 

In order to solve that problem many feature selection algorithms have been developed [2], [14], [23], [10]. In  
general, feature selection can be treated as a search problem. Each state in the search space represents a subset  
of  possible features.  Following the typical  view of feature selection algorithms [2] one can define:  search 
algorithm – which looks through the space of feature subsets; evaluation function – used to evaluate examined 
subsets of features; and classifier – which is constructed basing on final subset of features. These elements can 
be integrated in two basic ways forming filter or wrapper model [4]. In the filter model, features are selected as 
a pre-processing step before a classifier is used, depending on the properties of the data itself. In the wrapper  
model,  the search algorithm conducts a search for a good subset of features using a classifier itself  as the  
evaluation function. Evaluation is usually done by estimating classification accuracy. 

Feature  selection and attribute  weighting can be  treated as  the  basic  methods  belonging to  constructive 
induction (CI)  methodology  –  regarded  as  supporting  automatic,  problem-oriented  transformation  of 
representation space to facilitate learning [21], [18], [24]. An improvement of accuracy in CI is usually obtained 
by construction of new features, modification of existing ones and reduction of irrelevant ones. Most systems  
use  specific  techniques  within  one  basic  computational  method:  data-driven,  hypothesis-driven  or 
knowledge-driven [24]. 

In this paper we employ a multi-classification system,  n2-classifier (proposed by Jelonek and Stefanowski 
[9]), in a constructive induction framework. The n2-classifier is composed of (n2 – n)/2 binary base classifiers (n 
is a number of classes). Each base classifier is specialized to discriminate one pair of decision classes. A quite  
similar approach was independently proposed by Friedman [6], and later extended and modified [8], [19]. Our 
previous experiments have shown that the n2-classifier with inherent capability of reducing irrelevant features 
usually  yields  better  classification  results  than  the  analogous,  single  classification  model  [10],  [12].  This  
observation led us to the hypothesis that creation of dedicated sets of features (e.g. by CI) for discrimination of 
pairs of classes by independent classifiers gives higher accuracy than using a single set of features dedicated for  
classification of all classes simultaneously. That was verified on a medical data set in [13], where a genetic  
algorithm was used for feature selection. Here we extend the capabilities of a genetic algorithm, so that it can 
not only select features, but also adjust their weights in a nearest-neighbor classification and the wrapper model. 
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To sum up, we compare here a constructive induction process for both single classifier and n2-classifier. CI is 
performed by a genetic algorithm, which provides a global, evolutionary technique for finding best descriptions 
of  examples  [15].  In  the  n2-classifier  case,  CI  process  is  repeated  (n2 – n)/2  times  in  order  to  obtain 
best-discriminating description spaces for all pairs of classes. Finally, the best sets of weighted features found  
during the GA runs are used for constructing the n2-classifier. Our computational experiment based on medical 
data set confirms the advantage of using a multiple CI algorithm instead of a single CI algorithm. Furthermore,  
the results obtained show that extending the capabilities of genetic algorithm by weight adjusting yields greater  
improvements in n2-classifier, than in a single classifier.

The paper is organized as follows: in the next section we describe a constructive induction framework based  
on the feature selection. Going into details in subsections 2.1 and 2.2 we present two main components of the CI  
loop, i.e. function optimization engine (a genetic algorithm) and features evaluation obtained by using a single 
or a multi-classification model. The details of computational experiments are included in section 3, where we  
describe the medical data set, our implementation of the classifiers, the parameters of genetic algorithms and the  
results of a single and a multi-classifier approach. Section 4 groups final remarks and conclusions.

2   Constructive induction based on feature selection

Figure 1 shows a typical loop of a constructive induction framework. In this scheme function optimization is 
based on maximization of classification accuracy by modification of input data space (feature selection and their  
weighting is  applied here).   In  each iteration the function optimization engine calls  the features  evaluation 
module to estimate the quality of the features. We applied genetic algorithms as a function optimization engine 
and a typical k-nearest neighbor classifier (1-NN) as features evaluator [1]. The 1-NN algorithm was used both 
in a single and in a multi-classifier (n2-classifier) model. 

Fig. 1.  Main loop of a constructive induction framework

2.1   Genetic algorithms for function optimization

Genetic algorithms (GA) have been successfully applied to many difficult optimization problems. This search  
method was proved efficient and robust [7]. GA simulate natural mechanisms, like selection and reproduction,  
while processing a  population of  individuals –  each individual  representing one solution.  The algorithm is 
iterative – in each generation best individuals are promoted (selection), information between them is exchanged 
(crossover) and mutation takes place [5]. Those operations are conducted in order to improve fitness of the next 
population and to avoid premature convergence to local optima. The operations are usually non-deterministic – 
they happen with certain probabilities. Despite this non-determinism, GA manage to find the neighborhood of 
optimal solutions where other search algorithms cannot be applied or do not work effectively [20].

Genetic algorithm is a good tool for feature selection problems. It is not a greedy algorithm – it can search the 
space of solutions in a global manner, discovering important features and their weights, and passing them to 
future generations. In our case, each individual represents a weight vector (each weight corresponds to one  
attribute). In a feature selection task, weights can be equal to 0 or 1 only. Evaluation of each individual (a vector  
of weights of features) is done by estimating the classification accuracy it yields. Best individuals are the best  
weight vectors – the weights that give the highest classification accuracy in the classification problem.



2.2   Classifiers

2.2.1   Single classifier

In the wrapper model, the classifier is used to estimate sets of features. It is called every time an individual is  
evaluated. In GA, a population of individuals is evaluated in each generation, so the classifier should be quick.  
As we want the CI to be performed by the GA only, the classifier should be simple – should not adapt to the  
data, remove redundant features nor modify them (i.e., by weighting). If it did, the classification accuracy would 
not concern original features, but an altered solution.

This is why we used 1-NN classifier (nearest neighbor). In a single-classifier approach, 1-NN is the main 
classifier. In the n2-classifier approach, 1-NN is used as a binary classifier which distinguishes between pairs of 
classes.

2.2.2   The n2-classifier

The  n2-classifier belongs to a group of multiple learning algorithms dedicated to solving multiclass learning  
problems [4], [16]. The main principle of the n2-classifier is the discrimination of each pair of the classes: (i, j), 
i,  j   1..n,  ij,  by  an independent  binary  classifier  Ci,j.  Each base  binary  classifier  Ci,j corresponds  to  a 
combination of two classes: i and j only. Therefore, the training of each base classifier C i,j consists in presenting 
it with a subset of the entire data set that contains examples from class i and j only. The classifier Ci,j yields a 
binary classification indicating whether a new example, x, belongs to class i or j. Let Ci,j(x) be the classification 
of example x by the base classifier Ci,j. We assume that if Ci,j(x) equals 1, then the example x is classified by Ci,j 

to class i, otherwise (Ci,j(x) = 0) x is classified to class j.
The complementary classifiers: Ci,j and Cj,i (where  i, j   1..n,  ij) solve the same classification problem. 

Their predictions can be computed as the opposite predictions of their complementary equivalents: 

Ci,j(x) = 1 – Cj,i(x) . (1)

The final decision is obtained by aggregation of votes of binary classifiers. In order to accomplish this, the 
credibility of each base classifier is estimated. It can be done in several ways, however in this study we associate  
with each classifier Ci,j its credibility coefficient, Pi,j, defined in the following way: 

, (2)

where ej is a number of misclassified examples from class j, and vi is a number of correctly classified examples 
from class  i.  The computation of the credibility coefficients  is  performed during the learning phase of the 
classification task (in our case, it is done on the training data set, during the feature selection stage). 

The aggregation rule should take into account the reliability of each base classifier. We decided to treat the  
credibility coefficients Pi,j as weights of the sum of the responses yielded by base classifiers for each row of  
classifier matrix C. Now, the whole process of classification can be described in the following steps:

1. Apply example x to all classifiers, Ci,j (i < j), and obtain their predictions Ci,j(x).
2. Determine classification of the remaining classifiers, Ci,j (i > j), using formula (1).
3. For each class i, i  1..n, compute weighted sum: 

. (3)

4. Find the greatest value of Si and return its index, i, as a final classification (break ties arbitrarily in favor of 
the class that comes first in the class order).

In the context of constructive induction, presented in this paper, the n2-classifier acts both as a framework in 
which feature selection is performed and as the final classifier.

3   Experiments

3.1   Data set 

The data set used in our experiment is composed of 700 histological images. The images have been collected 
and classified by Janusz Szymaś, medical senior expert from the Department of Pathology, University School of  



Medicine in Poznan. The whole data set includes 50 images for each of 14 classes of brain tumors ( tumors of 
neurepithelial tissue). Each class is represented by 10 images of 5 patients. To avoid undesirable appearance of 
the data, coming from the same patient in learning and testing data set, we were obliged to perform a 5-fold  
cross validation technique. Neglecting this restriction leads to overoptimistic results, as it was shown in [11].

Our previous experiments showed that the histogram of intensities of three principal color components (RGB 
– red, green, blue) is a simple feature which gives a relatively good classification results. Thus, we have 3 (R, G, 
B) × 256 attributes. After a simple quantization (replacing each of four consecutive values by their sum), we 
obtained 192 features. 68 of them were redundant (equal to zero for all cases). Finally, our data set contains 700 
objects described by 124 attributes.

3.2   Implementation

In our  genetic  algorithm, each individual  is  represented by a  genotype string of  124 digits.  In  the feature  
selection task, the genes are binary: ‘1’ gene means that the corresponding attribute is chosen, ‘0’ means that it  
is discarded. In a weight-adjusting task, each gene can be a digit ‘0’ to ‘9’, which is the integer weight of the  
corresponding attribute. In a single-classifier approach, there is only one run of GA – we look for features that  
discriminate all the classes best. In a n2-classifier approach, each run is to find the optimal features subset for a 
binary classifier, which distinguishes between two classes only. (n2 – n)/2 classifiers and as many evolutionary 
runs are needed. In our case, for 14 classes, we need 91 binary classifiers. 

We carried out separate experiments with a single classifier and n2-classifier. For each of those approaches, 
we examined feature selection without attribute domain normalization, feature selection with normalization, and  
attribute  weighting  with  normalization.  The  attribute  normalization  process  (adjusting  the  domain  of  each 
attribute to a [0,1] interval) was very time-consuming, so we had to shorten the corresponding evolutionary runs.

Most of the genetic algorithm’s parameters were identical for all runs and based on our previous experiences.  
Population size  was constant  (80 individuals  for  experiments  without  normalization and 40 individuals  for 
experiments  with  normalization,  due  to  the  time  constraints).  Selection  was  carried  out  according  to  the  
remainder with repetitions rule. To achieve more stable and certain evaluation of individuals, cross-validation 
tests were repeated 10 times and the mean value was computed. Despite this, due to the random nature of cross-
validation tests, the mean could vary a few percent depending on a fold distribution during those 10 repetitions.  
In a n2-classifier experiment, the mean varied more because the number of examples was much smaller (only  
two classes for a binary classifier). 

Crossing-over probability was 100%. Two-point crossing-over was used. For feature selection task, mutation 
was a simple bit-flipping (0 to 1 or 1 to 0). For feature weighting, mutation turned a gene to 0 when it was  
greater than 0, or set it randomly to a 1-9 digit when it was 0.

In our experiments, mutation probability was variable during the evolution. It was 5% in the beginning to 
diversify the population and prevent premature convergence, and decreased linearly to 1/(population size) [7] to 
allow more precise tuning of solutions. However, we do not expect convergence to a single solution; we keep  
track of the best individual found so far during the evolution. This is an off-line process. 

Standard deviation (sigma) truncation scaling was used. The scaling coefficient decreased non-linearly from 
5 in the beginning to 1 at the end of the evolution. Non-linear decrease yields a shorter low-pressure period and 
a longer high-pressure period.

3.3 Results

3.3.1   Single classifier

The evolution in “feature selection with no attribute normalization” task was supposed to last  at  most 500  
generations. Mutation probability reached 1/80 after 50 generations,  z reached 1 after 500 generations. The 
evolution lasted less than 500 generations, and was finished because there was no improvement during the last 
100 generations.

Full search space for feature selection consisted of 2124 solutions (more than 1037). In 500 generations and 
with 80 individuals, we examine 500×80 solutions only, which is less than 10-33 of the full space. For a weight-
adjusting problem, the full search space size is 10124.

The experiments with normalization of attribute domains were more complex and time consuming, and so the 
populations were smaller and the evolutionary runs shorter. The results are shown in Table 1 (best classification 
accuracy and standard deviations).



3.3.2   n2-classifier

In  this  multi-classifier  approach,  we needed 91 evolutionary runs  (one for  each pair  of  classes).  Figure  2  
presents best-so-far classification accuracy for some sample binary classifiers, each distinguishing between a 
pair of classes. 
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Fig. 2. Evolution of subsets of features in a n2-classifier model (best-so-far accuracy).

There was no need to evolve discriminant subsets of features for classes 1 and 3; in the first generation, a  
random subset of features could separate them with 100% accuracy. Pair 1-10 could be 100%-discriminated 
after a few generations only. Pair 2-8 was hard to distinguish; classes 1 and 6 were easier, but not perfectly 
distinguishable. The evolution of subsets of features for pair 1-2 was finished due to no improvement in the last  
200 generations. 

The whole  n2-classifier system yielded 75% classification accuracy in feature selection task; this was still 
improved in the experiment with attributes’ weighting. Table 1 summarizes all results.

Table 1. Classification accuracy for a single and n2-classifiers

Data characteristics
Classification accuracy [%]

Single classifier n2-classifier
Improvement
n2  vs. single

all features
no normalization

35.34 ± 0.97 35.81 ± 1.20 -

feature selection
no normalization

49.89 ± 1.32 75.03 ± 0.88 25.14

feature selection
normalized

52.49 ± 0.87 74.05 ± 1.38 21.56

weighting
normalized

53.00 ± 0.74 81.61 ± 0.81 28.61

4   Conclusions

The  experiments  we  have  performed  show  the  ability  of  using  evolutionary  algorithms  for  constructive 
induction tasks. The genetic algorithm described in this paper is capable of both selecting features and adjusting  
their weights for best classification accuracy. The latter capability gives the evolution more freedom and seems  
promising (even better results could have been achieved if the evolutionary runs lasted longer and had more 
individuals; that was not carried out because of time limitations).

It can be easily seen that the main improvement was achieved by using CI within a n2-classifier. In this meta-
classifier, letting the GA adjust weights improved the classification accuracy by more than 6%, comparing to 
feature  selection.  A disadvantage  of  the  meta-classifier  may  be  its  high  computational  complexity  (which 
depends on the complexity of the base classifiers).

Our future work will concern various improvements of the genetic algorithm (genetic operators, parameters, 
etc.), and comparison with another algorithms for feature selection, weight adjusting and CI. We are working on  
implementation of a two-level cross-validation, so that evaluation of individuals during the evolution will be  
done by a cross-validation in a learning subset of the whole data set. Such architecture of the CI system may 



bring more objective evaluation of its performance and results, but will also be much more complex and time  
consuming.

It would be worthwhile to extend our approach by more “constructive”, evolutionary induction (including 
creation of new attributes, rules etc. [15]). A tradeoff between the number of features, their easy interpretation  
and classification accuracy could also be introduced. This approach should also be tested on more known data 
sets to validate its promising utility.
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