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Abstract.  This paper concerns an application of evolutionary feature weighting for diagnosis support  in 
neuropathology. The original data in the classification task are the microscopic images of ten classes of  
Central Nervous System (CNS) neuroepithelial tumors. These images are segmented and described by the 
features  characterizing  regions  resulting  from  the  segmentation  process.  The  final  features  are  in  part  
irrelevant. Thus, we employ an evolutionary algorithm to reduce the number of irrelevant attributes, using  
the predictive accuracy of a classifier ("wrapper" approach) as an individual's fitness measure.  The novelty  
of our approach consists in application of evolutionary algorithm for feature weighting, not only for feature 
selection. The obtained weights give quantitative information about the relative importance of features. The 
results  of  computational  experiments  show  a  significant  improvement  of  predictive  accuracy  of  the 
evolutionarily found feature sets with respect to the original feature set.

1. Introduction

Any application of computer support in medicine, regardless of methodology and techniques used, requires 
some domain knowledge.  Artificial Intelligence (AI) offers a wide scope of various knowledge representation  
languages and different techniques for knowledge acquisition, processing, updating, and retrieval.  Specifically,  
as the volume of knowledge related to particular topics grows at enormous speed with the progress in medicine, 
there is a vital need for methods, which would be able to acquire domain knowledge in an automated or semi-
automated way [14]. 

One of the branches of AI which tries to cope with this “knowledge acquisition bottleneck” problem is 
Machine Learning (ML).  For medical diagnosing purposes, the most natural ML setting is classification, where 
the decision classes correspond to different diagnoses. Such an approach is popular in medical applications, for 
instance [27],  [10],  [6].  In  what  is  probably the most  often applied paradigm of  ML called  learning from 
examples, the goal of the learning system is to acquire knowledge directly form a set of solved instances of the 
given problem, called training set (e.g., patient records with assigned diagnosis).  That process is often referred 
to as induction, because the learner has to go beyond the training data set and generalize the knowledge being 
acquired to perform well when faced with new, previously unseen problems [32]. 

The  main  problem  concerning  usage  of  classification  systems  is  the  definition  of  features describing 
examples,  which  allow obtaining  good classification  accuracy.  In  ML applications  for  medical  diagnosing 
support, the original examples are usually described by clinical data and/or other forms of information, such as 
images, time series, etc.  Especially in the latter case, when the data is represented in a non-vector form, it is  
easy to suggest (or even automatically generate) many features.  However, only part of them is usually relevant  
for the given classification task.  The remaining features are usually redundant (i.e., their values depend on the 
values of relevant features) or irrelevant, being noise from the viewpoint of the diagnostic problem in question 
[8].  Such features can significantly deteriorate the predictive accuracy of the classifier, especially when it does  
not perform an inherent feature evaluation (like, for instance, decision tree inducers; see [36]).  Thus, there is a 
need for  an  additional  pre-processing step  of  feature  selection,  which would get  rid  of  the  redundant  and 
irrelevant features. 

Feature selection became a popular topic in Machine Learning.  There are various approaches described in  
the literature, which may be grouped with respect to the search strategy and to the function used for feature set  
evaluation [8].  In this paper, we would like to present a variant of an evolutionary approach to feature selection 
and, specifically, to introduce the idea of evolutionary weighting of features.  We tested the proposed method on 
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a complex medical task of diagnosing the neuroepithelial subgroup of CNS tumors based on the microscopic  
images of histological sections.  The results of computational experiments prove the usefulness of the proposed 
method and show that  our  idea of  feature weighting significantly outperforms the ordinary genetic  feature 
selection as far as the classification accuracy of the selected description is concerned. 

The paper is organized as follows. In the next section we describe briefly basic notions and problems related  
to feature selection in a machine learning setting.   Section 3 presents the evolutionary approach to feature 
selection and introduces a novel method of feature weighting.  In Section 4, we briefly describe the considered  
data sets  of  histological  images,  which are subject  to feature extraction described in Section 5.   Section 6 
concerns the framework of computational  experiments,  and Section 7 presents the final  results  and groups 
conclusions.  

2. Feature selection for classification

As mentioned in the introduction, the goal of feature selection (FS) is to get rid of redundant and irrelevant  
features.  In the classification setting, this task may be defined more precisely as follows: given a training set  
(labeled instances of the problem) described by a set of features  F, find a subset of features  , which 
gives the highest classification accuracy on the testing set (unlabeled instances). 

Following the typical view of FS algorithms [3], it is convenient to treat FS as a search problem, where each 
state in the search space represents a subset of features.  Then, one can define the basic components of a general  
FS method:  a  search algorithm – which looks through the space of feature subsets; an evaluation function – 
used to evaluate examined subsets of features; and a classifier – which is constructed based on a final subset of 
features. These elements can be integrated in two basic ways forming filter or wrapper model [22]. In the filter 
model,  features are selected as a pre-processing step before a classifier is  used. Features are selected (i.e.,  
filtered)  depending  on  properties  of  the  data  itself,  independently  from  the  learning  algorithm  used  in  a 
classifier. In the wrapper model, the search algorithm conducts a search for a good subset of features using a  
classifier itself as the evaluation function. Evaluation is usually done by estimating predictive accuracy in a  
cross-validation test. In the literature, a broad range of feature selection algorithms have been described [3],  
[22], [34], [18].  For an extensive review, see [8]. 

There are at least two non-trivial problems which emerge when considering the FS task formulated in the  
classification setting.  The first one is computational complexity.  As there are  subsets of the feature set F, 
an exact algorithm searching through all subsets has an exponential complexity.  This is why various heuristics 
are often used to reduce the number of  considered subsets.   The second problem is  a  consequence of the  
classification setting.  The feature selection algorithm has to take into account not only the descriptive properties 
of a particular feature set (related to the training set), but also its inductive (predictive) ability, which is usually  
verified  on  the  testing  set.   In  consequence,  the  above-mentioned  wrapper  approach  is  often  reported  to 
outperform other approaches, as it incorporates the inductive bias of the classifier into the evaluation function 
[24].  

It is worth mentioning that feature selection can be treated as the simplest method belonging to a constructive 
induction methodology – regarded as an approach to supporting automatic, problem-oriented transformation of 
representation space to facilitate learning [31], [28], [29], [40]. Usually, an improvement of predictive accuracy 
in  constructive  induction  is  obtained  by  construction  of  new  features,  modification  of  existing  ones  and 
reduction of irrelevant ones. Most methods use a specific technique within one basic computational method.  
Basic methods are classified as data-driven, hypothesis-driven and knowledge-driven [40]. 

3. Evolutionary selection and weighting of features

3.1. Evolutionary techniques in optimization

Evolutionary techniques  [11],  [30]  are  one  of  many existing methods  used for  solving difficult  (NP-hard)  
optimization tasks. An example of evolutionary optimization techniques is a genetic algorithm (GA), which has 
been successfully applied to solving many various problems [9]. This search method has proved efficient and 
robust.  GAs simulate  natural  mechanisms,  like selection and inheritance,  while  processing a  population of 
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individuals – each individual representing one solution. The algorithm is iterative – in each generation the best 
individuals are promoted (selection), information between them is exchanged (crossover) and  mutation takes 
place. These operations are conducted in order to improve fitness of future populations, and are usually non-
deterministic – they occur with certain probabilities. Despite this non-determinism, GAs manage to find the 
neighborhood of optimal solutions where other search algorithms cannot be applied or do not work effectively.

One of the inconveniences in GAs is a great number of parameters, which have to be adjusted, and a need to  
choose  between  many  possible  techniques  used  within  the  GA.  There  are  many  interesting  ideas  and  
modifications and it  is  hard to  create  universal  rules,  which would determine the optimal  architecture  and  
parameters of a GA system for any task. However, the growing number of theoretical studies and applications of  
GAs makes them clearer; some aspects have already been analyzed and described [11]. Further research on 
these topics will make GA systems easier to design and use for the non-professionals. 

3.2. Evolutionary algorithms in feature selection

Among many feature selection techniques [39], [8], evolutionary techniques are not especially popular ones. 
There have been some experiments with GAs [39], [5], [35], [38], [41], but more research is conducted on the 
improvement  of  other  existing heuristic  methods  than on devising new ones.  Most  of  the  existing feature  
selection techniques seem to be sophisticated, and often carry a large number of assumptions and parameters.

The genetic algorithm is a good tool for feature selection problems, as it can search the space of solutions in a 
global,  non-greedy  manner,  discovering  important  features  and  passing  them  to  future  generations.  Each 
individual represents a subset of features. The genotypes are binary strings, where “1” means choosing a feature, 
and 0 – omission of a feature. Usually the evolutionary process is aimed at finding individuals, which yield the 
highest classification accuracy in the given problem.

When the only evaluation criterion is the predictive accuracy of individuals, there is no pressure to reduce the 
number of irrelevant features. This implies that only features which decrease the accuracy will be ignored (the  
corresponding genes will be rewarded for being zero). The features which are irrelevant and do not affect the 
accuracy will be selected or not on a random basis.

The disadvantage of using GAs in feature selection tasks is the computational complexity of this optimization 
method. When the “wrapper” model is used, in each generation a population of individuals (subsets of features) 
is to be evaluated by calling the classifier and obtaining the classification accuracy. This can be a very time-
consuming process, and therefore standard GAs seem to be appropriate for off-line feature selection. However, it 
is usually possible to shorten the evolutionary run, diminish the size of the population and thus obtain similar  
results faster, but it is never known if the final solution is not a local optimum (this problem is present in many 
feature selection algorithms).

3.3. Evolutionary feature weighting

Genetic algorithms have an important advantage: they process a set of solutions, and so they are a more global  
method, compared to other optimization techniques. This is why it may be worthwhile to employ evolutionary  
methods in the constructive induction process [25]. In this paper we use GAs not only for feature selection, but  
also for adjusting weights of attributes in order to improve the classification accuracy. Both feature selection and 
their weighting can be regarded as simple methods of constructive induction.

When using a k-Nearest Neighbor (k-NN) classifier [7], weights of attributes may be used to reflect their  
importance. The distance between two examples is usually the sum of differences on all the attributes describing  
these examples. Therefore, when a difference in a given attribute has a high weight (i.e., is multiplied by a high  
value), this attribute becomes important in the process of discriminating examples. There are some classification 
algorithms that are able to adjust weights in order to obtain better classification accuracy (for instance IBL4 [1],  
[2]).  However,  it  may  be  important  to  employ  here  some global  technique  which  adjusts  all  the  weights  
simultaneously, and uses the classification accuracy itself as the evaluation criterion of the weight vector.

This  idea  was  used  in  devising  the  method  presented  in  this  paper.  Genetic  algorithms  process  here  a  
population of sets of weights, each weight corresponding to one attribute. Such individuals are evaluated, and  
their fitness is defined as the classification accuracy they yield. Thus the only feedback used in the selection  
phase of the evolutionary process is  the accuracy of individuals.  The classification accuracy is  a  complex, 
“global”  evaluation criterion,  because  all  the  properties  of  single  attributes  are  encompassed in  this  value. 
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Weights are not adjusted on the one-by-one basis, but the set of optimal weights emerges simultaneously, during 
the evolutionary run, respecting mutual dependencies and regarding relationships between attributes’ weights. 

The genotype representation needed for evolutionary feature weighting is quite similar to the standard GA 
zero-one representation. The genotype length is still constant. The difference is that each gene is a number that 
defines a weight of an attribute. There is a need to define appropriate genetic operators, crossover and mutation.  
There are a few possibilities here. The crossover may be any of the well-known operators, like one- or two-point 
crossover, or uniform crossover, but another reasonable choice would be the average operator. The mutation  
operator can be a simple “random” operator, but also a “creep” one [9], or a modified random (changing 0 to a  
random value or a non-zero value to zero, as used in the experiments described in this paper).

In general, numbers-weights in the genotype can be positive and negative. Positive weights mean that the 
larger the difference in the attribute, the larger the dissimilarity of two considered examples. Negative weight  
corresponds to the opposite situation: the larger the difference, the smaller the dissimilarity. Zero weight means  
that the corresponding attribute may be ignored (treated as irrelevant) during the computation of total similarity  
of examples. Similar to feature selection, when there is no penalty for the number of features used, weights of  
features which do not affect the accuracy (fitness of individuals) will be random, not necessarily zero.

The weight-adjusting task is more general than feature selection. In fact, feature selection is a special case of  
the weighting task, where weights can be zero or one only [41]. The search space for feature selection is , 
and for weight adjusting it is  , where w is the number of possible weight values, and F denotes the set of 
features.

4. Data sets

The  data  sets  used  in  our  experiments  represent  one  of  the  main  groups  of  brain  tumors,  i.e.,  tumors  of 
neuroepithelial tissue, which covers about 50% of the most frequent clinical cases.  Specifically, we tested the  
proposed approach on two subgroups of these tumors [23], which have different clinical origin. The first data 
set, denoted hereafter by A, concerns the classification of astrocytic tumors, and the second (B) covers the most 
often occurring glial tumors.  In both subgroups, there are six types of tumors represented.  The decision classes  
represented in the data sets are shown in Table 1. 

Each class in our data set is represented by 5 clinical cases, and for each case 10 images have been acquired  
from microscopic section.  Thus, the considered data sets contain 6×5×10 = 300 images each.  Each image has 
512×512  pixels,  256  levels  of  intensity  for  each  base  color  component  (RGB)  and  shows  a  fragment  of 
particular  microscopic  section  magnified  200  times.   The  images  were  collected  and  classified  by  Janusz 
Szymaś, medical senior expert from the Department of Pathology, University School of Medicine in Poznań. 

A B
Astrocytoma anaplasticum Astrocytoma fibrillare
Astrocytoma fibrillare Oligodendroglioma isomorphum
Astrocytoma gemistocyticum Ependymoma
Astrocytoma pilocyticum Choroid plexus papilloma
Astrocytoma protoplasmaticum Glioblastoma multiforme
Glioblastoma multiforme Medulloblastoma

Table 1. Two groups of considered neuroepithelial tumors.

5. Feature extraction

In our previous experiments [17], [19], we used mainly various conventional global image features, such as  
RGB histograms and co-occurrence matrix [13], to discriminate the classes of tumors described in the previous  
section.  However, none of the applied conventional techniques gave a satisfactory accuracy of classification in  
the cross-validation test.  We performed also some experiments with other more domain-specific image features 
[20], [21].  Unfortunately, no significant improvement was observed in comparison to the former features. 
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These unsatisfactory results were mainly due to the high complexity of the problem, reflected by high intra-
class and low inter-class diversification of images.  Our experience led us to consider more abstract image  
features.  Specifically, we decided to perform image segmentation to obtain more qualitative description of the 
original image. In general,  the goal of image segmentation is to decompose an image into  regions (sets of 
adjacent  pixels)  of  uniform characteristics,  which may have some interpretation in terms of the domain of  
application (e.g.,  cell  nuclei in microscopic histological section).  From the scope of various approaches to 
image segmentation described in the literature [33], [37], we chose the region growing technique.  Though it has 
relatively high computational complexity, it  usually outperforms other methods as far as the fidelity of the 
resulting segmented image compared with the original one is concerned.  Region growing starts with each image 
pixel being a separate region.  Then, the algorithm performs bottom-up joining of adjacent regions. If a result of 
a  merger  of  a  pair  of  adjacent  regions  does  not  fulfill  the  region  uniformity  condition,  a  backtracking  is 
performed and the considered pair of regions is restored.  That process is repeated until no pair of regions can be 
merged.

The main problem with the segmentation is the choice of an appropriate condition for region uniformity. 
Usually, some uniformity index u is introduced together with an experimentally adjusted threshold T imposed on 
it.  Then, a region r is uniform if .  The uniformity index u reflects usually the intensity profile of a 
region,  being  for  instance  the  variance  of  the  intensity  values.   Specifically,  the  uniformity  index  based 
exclusively on the color characteristics of the region is used.  However, as we focus on stained microscopic  
images, we would like to make the results independent from the staining and lighting variations, which are 
inherent to the section preparation and image acquisition. Thus, instead of using the conventional Red-Green-
Blue color representation space, we switched to the Hue-Saturation-Intensity (HSI) space [12] and discarded 
Saturation and Intensity, taking into account the Hue component only.  Some preliminary experiments showed 
that such an approach ensures better fidelity of the segmented image with respect to the original one when  
compared to the RGB color representation.

The uniformity condition for a given region r is formulated as

, (1)

where  denotes the value of the Hue for the pixel p, is the mean value of  for all 
pixels p in region r, and  is the cyclic symmetric difference operator (since Hue is defined on a cyclic scale 
[0,255]).  The process of region merging is carried out with gradually increasing value of , where 

 is a user-adjusted threshold. For each value of  T, all pairs of adjacent regions fulfilling the uniformity 
condition are merged. As a consequence, only very similar adjacent regions are joined in the first iterations of  
the algorithm, whereas more dissimilarity is allowed when merging regions at further stages.  In the experiments 
reported below,  has been used. 

The application of the segmentation algorithm to microscopic images of CNS tumors gave in average ca. 
13,000  regions  per  image,  which  is  a  significant  reduction  when  compared  to  over  a  quarter  of  million 
(512×512) pixels in the original image.  However, as we are interested in a standard machine learning setting,  
which requires a constant length vector of relatively few features, there is still a need for further compression of  
the description obtained in such a way.  For this purpose, we decided to classify image regions into categories,  
according to their mutual similarity.  

The  definition  of  region  prototypes  is  based  on  the  knowledge  resulting  from the  image  segmentation 
process.  For this purpose, five images were randomly selected from each decision class.  Their descriptions  
resulting from segmentation process have been collected, building a database of over 340,000 region records, 
each described by four  features:  region area  and mean values  of  hue,  saturation,  and intensity.   Then we 
performed  a  cluster  analysis in  the  space  spanned  over  these  features  to  find  the  centroids  of  the  most 
characteristic regions.  As we intended to obtain univocal and stable region prototypes, we did not use the  
popular k-means technique [26], because it is known to depend heavily on the initial cluster assignment.  Instead  
of this, a technique was applied, which is exact in the sense that it does not depend on the starting placement of  
cluster centroids.  However, due to a large number of objects being analyzed, it was inconvenient to use the  
simple exact method of bottom-up hierarchical analysis, as it requires computation of all the pairwise object  
distances.  

Instead of this, we developed a complementary top-down approach of hierarchical analysis.  The proposed 
technique starts from one cluster containing all considered objects.  Then, it recursively divides each cluster into  
two sub-clusters using the Principal Component Analysis [15], building in such a way a binary hierarchy (tree) 
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of clusters.  The method uses the best-first strategy, splitting always the tree nodes with the highest intra-node  
variance at the moment.  The process of partitioning continues until no node with variance greater than a user-
defined threshold can be found. 

After preliminary experiments with different parameter adjustments, we decided to use a tree composed of 69  
nodes, 35 of which were leaves.  This tree has been used in the last stage of feature extraction, which consisted 
in describing the segmentation result for a particular image in terms of these 69 categories of regions.  The 
approach used is somehow similar to the querying of decision trees [36].  Each region of the image “passes”  
through the tree, starting from the root and choosing always the more similar (in terms of the four features  
mentioned above) child node.  When processing regions from a particular image, each tree node counts the  
regions passing through it.  After processing all the regions from an image, a final feature vector is created based 
on the values of region counters of particular nodes.  Specifically, each tree node yields two attributes: the  
absolute and the relative number of regions (the second one being the fraction of the counter and the total  
number of regions in a particular image).  Thus, the final feature vector used in our experiments consists of  
69×2=138 attributes. 

Fig. 1. Hierarchy of region types used for region classification (fragment).  Node filling reflects the final weight assigned by  
GA weighting (  0,   9).

Figure 1 shows the main part of the region classification tree used in the computational experiments described in  
the next section.  Note that due to the best-first strategy the tree is not balanced. 

6. Computational experiments

In the wrapper model the classifier is used to evaluate each individual (feature subset).  As in GA a population  
of individuals is evaluated in each generation, the classifier should be quick and simple. Furthermore, as we 
want the selection and weighting to be performed by a GA, the classifier itself should not remove redundant and  
irrelevant features nor adjust their importance. This is why a 1-Nearest Neighbor classifier [7] was used.

We carried out separate experiments with feature selection and feature weighting for the two six-class data  
sets (denoted in Section 4 as A and B).  For each example (image), a feature vector was computed by means of 
the procedure described in Section 5.  The data sets were normalized, as required by the k-NN classifier.  To  
achieve more stable and certain evaluation of individuals, cross-validation tests in the wrapper method were 
repeated 10 times and the mean value was computed.

In our genetic algorithm, each individual is represented by a genotype string of digits. In the feature selection  
task,  the genes are  binary:  ‘1’  gene means that  the corresponding attribute  is  chosen,  ‘0’  means that  it  is  
discarded. In a weight-adjusting task, each gene can be a digit ‘0’ to ‘9’, which is the integer (non-negative)  
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weight of the corresponding attribute. During the run of GA, the features and their weights that best distinguish 
all the classes are searched for. 

Fig. 2. Evolution of subsets of features and their weights (best-so-far accuracy is shown).

Most of the genetic algorithm’s parameters were identical for all runs and based on our previous experience.  
Population size  was constant  (100 individuals).  Selection was carried out  according to  the remainder  with  
repetitions rule [11].  The evolutionary run was terminated after 200 non-improving generations.

Crossover probability was 0.8. Uniform crossover was used. For the feature selection task, mutation was a  
simple bit-flipping (0 to 1 or 1 to 0). For feature weighting, mutation turned a gene to 0 when it was greater than  
0, or set it randomly to a 1-9 digit when it was 0. The mutation probability was equal to 1/(population size) [11], 
which amounts to 0.01. As we do not expect convergence to a single best solution, we keep track of the best 
individual found so far during the evolution. This is a standard off-line process. 

Standard deviation (sigma) truncation scaling was used. The scaling coefficient decreased non-linearly from 
5 in the beginning to 1 at the end of the evolution. Non-linear decrease yields a shorter low-pressure period and 
a longer high-pressure period.

Figure 2 shows the evolutionary runs for both data sets and evolutionary feature selection and weighting. As 
best-so-far fitness (classification accuracy) is shown, only improvements can be seen.

7. Results and conclusions

The experiments we have performed show the ability of evolutionary algorithms to select and weight features in  
order to improve the predictive accuracy of a machine learning classifier.  As is shown in Table 2, the accuracy  
of classification yielded by the reduced description for both feature selection and weighting is much better than 
that of the original set of features. The best achieved classification accuracy exceeded 80%, which is reported to  
be  the  minimum  accuracy  needed  for  medical  diagnosing  [4].  Moreover,  the  proposed  feature  weighting 
outperforms slightly  the  ordinary  feature  selection  as  far  as  the  classification  accuracy  is  concerned  (it  is  
statistically significant at  the confidence level 0.01),  while reducing the comparable number of features.  In 
general, as feature selection may be considered a special case of feature weighting, weighting should always 
yield classification accuracy at least as good as feature selection.  This principle was also fulfilled in all the  
previous experiments with various data sets [16].  We suppose that even better improvements of predictive 
accuracy could be achieved with continuous positive and negative weights.
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Data set
Classification accuracy [%] # of features 

All features Selection Weighting All / FS / FW

A: astrocytic tumors 57.50 ± 1.15 80.00 ± 1.22 83.43 ± 1.93 138 / 45 / 53

B: glial tumors 54.73 ± 2.32 75.70 ± 1.64 77.83 ± 2.03 138 / 49 / 62

Table 2. Classification accuracy and the final number of features for evolutionary feature selection (FS) and feature 
weighting (FW)

The performance of the genetic algorithm could be improved in terms of design, parameters, etc. However, the 
point  was  to  compare  feature  selection  and  feature  weighting  and  in  both  experiments,  similar  genetic  
algorithms were used to find best-classifying solutions.

It is interesting that in all experiments the number of attributes used was significantly reduced during the  
evolutionary run, although there was no penalty for the number of features in the evaluation function.  In most  
cases, only about 1/3 of the original features were employed in classification (see Table 2 for details). Such 
considerable  reduction  may imply  that  many features  were  not  only  irrelevant,  but  lowered  the  predictive 
accuracy.

Genetic feature selection and weighting seem to co-operate well with the method used for feature extraction.  
They constitute useful tools for acquisition of domain knowledge, as they allow interpreting the results in terms  
of the application domain.  One can make use of region types, which have been recognized as useful by GA 
selection or weighting.  In the hierarchy shown in Figure 1, the tree nodes corresponding to such region types 
have been marked with filled circles (weighting on data set  A).  Note that this weight assignment confirms a 
common-sense conviction that the most general region types (corresponding to the tree nodes near the root) are 
not as useful for discrimination between decision classes as those more specific (placed deeper in the tree).  
Moreover, provided the data describing region types and their weights, it is also possible to interpret the results 
in a pictorial way.  For instance, Figure 3 shows a few representatives of well -discriminating region types on an 
exemplary tumor image.  It would be interesting to ask medical experts to interpret these selections in terms of 
their diagnostic experience. 

Fig.  3. An exemplary image from the considered data set with representatives of region types selected by evolutionary  
weighting. 
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Our future work will concern various improvements of the genetic algorithm (genetic operators, parameters,  
etc.), and comparison with another algorithms for feature selection, weight adjusting and constructive induction.  
We are working on implementation of a two-level cross-validation, so that evaluation of individuals during the 
evolution will be done by a cross-validation in a learning subset of the whole data set. Such architecture of the 
system may bring more objective evaluation of its performance and results, but will also be much more complex  
and time consuming.

It would be worthwhile to extend our approach by more “constructive” evolutionary induction (including  
creation of new attributes, rules etc. [25]). A tradeoff between the number of features, their easy interpretation  
and classification accuracy could also be introduced. This approach should also be tested on more known data 
sets to validate its promising utility.
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