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Logos serve a fundamental role in branding as the visual figurehead of the brand.
Yet, due to the difficulty of using unstructured image data, prior research on
logo design has been largely limited to non-quantitative studies. In this work,
we explore logo design from a data-driven perspective. In particular, we aim to
answer several key questions: first, to what degree can logos represent a brand’s
personality? Second, what are the key visual elements in logos that elicit brand
and firm relevant associations, such as brand personality traits? Finally, given
text describing a firm’s brand or function, can we suggest features of a logo
that elicit the firm’s desired image? To answer these questions, we develop
a novel logo feature extraction algorithm, that uses modern image processing
tools to decompose unstructured pixel-level image data into meaningful visual
features. We then analyze the links between firm identity and the features of
logos through a deep, multiview generative model, which links visual features
of logos with textual descriptions of firms and consumer ratings of brand per-
sonality by learning representations of brand identity. We apply our modeling
framework on a dataset of hundreds of logos, textual descriptions from firms
websites, third party descriptions of firms, and consumer evaluations of brand
personality to explore these questions.
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1. Introduction

Logos are the most distinct marks of brands, adorning everything from packaging to adver-
tising. Designers create logos to represent the essence of brands, and firms motivate brand
and logo redesigns with an intention to convey a new idea. Yet, despite the overwhelming
significance of logos, and the substantial costs of logo redesigns, marketing scholars have
paid relatively little attention to the logo design process. In this work, we show that there is
a science to the logo design process that can be captured by models, and that such models
can serve as a basis for understanding the meaning conveyed by logos, as well as aid brands
in the design of logos consistent with their brand identities. In particular, we synthesize
novel image processing techniques with a deep, multiview representation learning frame-
work, to capture the links between a brand’s function and identity, its logo features, and
how consumers perceive the brand’s personality.

Our data-driven treatment of logos, together with a multiview representation learning
framework, allows us to understand the branding and design process from three related
perspectives:

1. The researcher’s perspective. What types of logo features are associated with
specific brand identity and brand personality traits? By considering the logo fea-
tures as inputs to the model, and text and brand personality as the outputs, we can
understand how different logo features contribute to consumer perceptions.

2. The designer’s perspective. Given a description of a brand, or a desired consumer-
level perception, which logo features are most commonly used to achieve that identity?
This mirrors the design process, where a company-supplied brief is used as the basis
for designing a logo, and relies on being able to use text and/or brand personality as
an input to predict logo features.

3. The brand manager’s perspective. Given a new logo, how will consumers perceive
that logo? Or, given a set of candidate logos, which may vary on key design elements,
which logo best matches a company’s intended brand perception? This, again, requires
being able to go from a logo as input, to a set of brand descriptors, like keywords or
brand personality perceptions.

Our work makes several contributions. Foremost, it is the first paper to study logos
from a holistic and quantitative perspective. This is important, first, because it adds a level
of objectivity to the design process: while our model cannot replace the creative touch of
designers, it can offer both designers and firms guidance in crafting their brand identities,
in an objective fashion. When weighing competing designs and opinions, an objective
prediction of the reactions of consumers to a logo design can allow managers to make a
data-driven decision, in what has historically been viewed as a creative domain. A model-
based approach lets us simultaneously assess the many facets of logo design, and work with
unstructured, natural data like text. Moreover, because a model-based approach allows us to
make design recommendations, it can be used even by budget-strapped firms to thoughtfully
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design their logos in a data-driven fashion. By basing our framework on representation
learning, where unstructured data is converted to dense, numeric representations of brands
in a latent space, we gain an additional design-related benefit: by interpolating between
brands in the latent space, we can come up with novel combinations of existing brand
identities, thus facilitating the creativity process.

From a methodological perspective, ours is among the first papers in marketing to
directly use image data, without relying on human coders. Specifically, our work presents
a novel approach to working with unstructured, visual data, through a theory-driven image
processing approach. Our feature extraction algorithm decomposes logos into meaningful
features, many of which are driven by prior theory about how logos convey meaning. The
set of these features forms a “visual dictionary” which we can use to describe logos in a
way that is meaningful to designers, and that is also amenable to probabilistic modeling.
Working directly with image data is important for wide and general applicability of our
framework, as well as for scalability: for brand managers or designers to use our model in
practice, it cannot be based on the inputs of human coders.

Our work is also among the first in marketing to synthesize both unstructured text
and image data. The model we develop for that purpose is called a multimodal variational
autoencoder. Variational autoencoders (VAE) are popular machine learning tools for learn-
ing representations of complex data. In this work, we develop a multimodal variational
autoencoder, which learns representations of brands across all of the ways in which brand
is manifest: text, logo, and brand personality. The task of learning unified representations
across domains is an instance of multiview or transfer learning. As we operationalize trans-
fer learning via learned representations that are shared across domains, it is also an instance
of representation learning (Li et al., 2016). For inference, we draw on the weakly supervised
product-of-experts inference network approach, introduced by Wu and Goodman (2018),
which learns a set of functions that can infer a brand’s latent representation, given any of
the modalities, and which can then be used to predict any of the other domains. For ex-
ample, given a textual description of the brand, we can predict which features we expect to
find in that brand’s logo, and how we expect consumers to perceive the brand’s personality.

The rest of the paper is organized as follows: in Section 2, we review the existing
literature on logo design and aesthetics in marketing. In Section 3, we describe the unique
dataset we have compiled to calibrate our model. In Section 4, we briefly describe how
images are stored at the data-level, then describe our logo feature extraction algorithm. In
Section 5, we present descriptive and “model-free” predictive evidence of the links between
design, brand personality, and firm function. In Section 6 , we develop a multi-view learning
model of brands and their logos, and in Section 7, we show the results of applying that model
to our data, including examples of the learned representations, logo recommendations, and
links to brand personality. Finally, we conclude with a summary of on-going research and
directions for further study.
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2. Literature

There is a sizable literature, especially in consumer behavior, on how consumers react to
aesthetics, both in logos and in other aspects of marketing. Much of this literature describes
how specific logo features lead to different consumer reactions and impressions. Other papers
discuss how these reactions vary cross-culturally, or the mechanisms governing consumers’
reactions to various visual stimuli. In this section, we review those findings, which we then
draw on in Section 4 as the basis for our logo feature extraction algorithm.

2.1. Logos

A limited amount of research in marketing has been done specifically on firm logos, starting
with Henderson and Cote (1998), where they use factor analysis on a set of logo traits,
coded by experts, to come up with a set of constructs that describe logos generally: natural,
harmonious, elaborate, parallel, repetition, proportion, and roundness. Of their factors, only
natural, harmonious, and elaborate (from now denoted NHE) seem predictive of outcome
measures generally. In Henderson et al. (2003), they test whether these constructs hold
cross-culturally, finding little difference of the predictive power of NHE in Asia versus the
United States. This cross-cultural work is then expanded by van der Lans et al. (2009),
again using NHE, together with three “objective design measures”—repetition, proportion,
and parallelism, all determined by expert coders from disparate geographies. They find the
NHE dimensions are universally good descriptors of design, even cross culturally. Together,
these studies support the idea that NHE provide a good proxy for design elements of logos.

Other work has looked at specific aspects of logos. Klink (2003), for example, studies
the link between the brand name and the traits of the logo, finding ties between the phonetic
structure of the name and the traits used in the logo, such as color and angularity. Walsh
et al. (2010) find that moving from an angular logo to a round logo produces generally
mixed responses in consumers, dependent on their level of commitment to the brand. The
idea of circular versus angular logos is also explored in Jiang et al. (2015), where they find
that the mere circularity or angularity of the logo affects perceptions of the product and the
company, through perceived hardness or softness, which in turn influences attribute judg-
ments. Other studies look at the orientation of the logo, including Cian et al. (2014), who
find that different logos can evoke the idea of movement, often through the positioning of
the logo elements or the horizontal orientation of the logo, which in turn affects consumers’
engagement and attitudes. Even more recently, Schlosser et al. (2016) find that upward di-
agonals convey greater activity than downward diagonals, leading to more favorable product
evaluations, greater efficacy beliefs, and greater post-consumption satisfaction. Together,
these studies imply that among the objective design measures employed in a design model
should be traits like color, angularity, and orientation.

Finally, there has been a significant amount of work done on typeface and font. Doyle
and Bottomley (2006) provide an excellent overview and study of fonts in logos, describing
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both the background of typeface research, and studying specifically the appropriateness of a
given typeface for describing a particular product or brand. They define appropriateness in
terms of abstract connotations,1 where abstract connotation is captured by Osgood’s evalu-
ation, potency, and activation dimensions (EPA), a set of factors that has been shown across
contexts (including typeface) to capture abstract connotations. They find that congruence
in EPA between the font and the product leads to more frequent choice of the product. In
another study, Hagtvedt (2011) shows that incomplete typeface can lead to both percep-
tions of untrustworthiness and increased innovativeness. Hence, an understanding of the
role of font is important.

2.2. Aesthetics

While academic work specifically on logos has been relatively limited, there is a large body
of work on aesthetics and perception, some of it in marketing, especially in the domain of
consumer response to advertising.

Color In marketing, Deng et al. (2010) study consumers’ preferences for color combinations
in product design. They have three main findings. First, of the three common dimensions
of color—hue, saturation, and lightness—they find people tend to de-emphasize lightness,
relative to the other two. Second, in product design, people prefer generally similar colors,
but with a single contrast color, where the contrasting color is often used to highlight a
single distinctive element. Finally, they find that people generally prefer a small number of
colors. Kareklas et al. (2014) also explore color in marketing. They find that people exhibit
an automatic preference for white over black in product choice and advertising, similar
to the implicit bias observed in other studies in psychology. Relatedly, Semin and Palma
(2014) find that white is perceived as more feminine, whereas black is perceived as more
masculine. In psychology, more work has been done on color. For example, Valdez and
Mehrabian (1994) study the effect of color on emotions, finding that of the three key color
dimensions, saturation and lightness drive emotional responses along the pleasure, arousal,
and dominance dimensions. They also find shades of blue, green, and purple to be the most
pleasant, and shades of yellow to be the least pleasant.

Font Besides logos, font and typeface have also been explored both in the domain of
advertising, and in impression management generally. Childers and Jass (2002) explore
the influence of typeface on perceptions, finding that the semantic connotations of typeface
can influence consumers’ ratings of products. Henderson et al. (2004) take a different
approach and analyze many extant fonts in an effort to summarize their impressions and
design features. They come up with a set of four factors—pleasing, engaging, reassuring,
and prominent—that describe typeface impressions, and six factors—elaborate, harmony,
natural, flourish, weight, and compressed—that describe typeface design, based on the

1Abstract connotations differ from direct connotations, like, for example, a font with “snowcaps” being
associated with something cold.
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typology literature and ratings of experts, and conclude that there may be universal design
elements that can help managers in impression management.

Orientation In an early study on advertising, Meyers-Levy and Peracchio (1992) show that
the camera angle of an ad showing a product can influence consumers’ judgments of the
product, moderated by processing motivation. Specifically, they find that when processing
motivation is low, looking up at the product yields more favorable judgments; alternatively,
when processing motivation is moderate, looking at an eye-level product is best. More
recently, Chae and Hoegg (2013) find that in cultures where reading is done from left to
right, products are viewed more favorably when positioned congruently with this spatial
orientation (and vice versa). Deng and Kahn (2016) find that the location of the product
image on its packaging (top/left or bottom/right) influences the item’s perceived weight
(lighter or heavier respectively).

Other A host of other papers discuss other aspects of aesthetics that might be relevant for
logo design. For example, Navon (1977) finds that global features are processed more readily
and fully than local ones, a trait we might expect to operate also in logos. More recently,
Pieters et al. (2010) use eye-tracking to study the visual complexity of advertisements.
They come up with two distinct aspects of visual complexity: feature complexity and design
complexity. Feature complexity simply refers to variation in basic features like color and
edges, and is measured by variance at the pixel level, while design complexity refers to
variation in the elaborateness of the design, and is measured by six general principles:
quantity of objects, irregularity of objects (shape), dissimilarity of objects, detail of objects,
asymmetry of object arrangement, and irregularity of object arrangement.

Relevant to relating brand constructs to visual elements, Orth and Malkewitz (2008)
decompose package design into five distinct “types”—massive, contrasting, natural, delicate,
and nondescript—and relate those types prescriptively to brand personalities. In a review
article, Spence (2012) discusses cross-modal effects, including visual perceptions associated
with tastes and textures (e.g. the angularity of carbonation or bitterness), which could
be relevant determinants of logo design. Spence argues that firms can use these principles
to set up an appropriate cross-modal expectation for a consumption experience, thereby
enhancing it. This, in turn, is based off earlier work that discusses consumers preferences
for congruity in the consumption experience (e.g. a fancy logo matching a fancy experience;
see Patrick and Hagtvedt (2011) for an example of this kind of effect).

3. Data

In this section, we describe the dataset we have compiled of brands and their logos. Our
goal is to understand both what brand-relevant concepts a given logo conveys, and how a
firm can design a logo consistent with those concepts. To that end, our dataset consists
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of four components: logos, textual descriptions of firms from the firms’ websites, industry
labels, and brand personality ratings from consumers reacting to both the logo and textual
description.

Our insights derive from learning the links between existing logos and these other vari-
ables; hence, for our insights to meaningfully capture good design practices, we must ensure
that the firms we gather data for have given some thought to the design of their logos. We
thus chose firms that were either rated as having a strong brand identity by brand special-
ists, or were highly profitable and recognizable, with the rationale that these firms have
likely invested in their brand identity as part of their success. Specifically, we looked at all
firms that were either listed in the Interbrand brand consultancy’s list of Top 100 Global
Brands of 2016, listed as among the top 500 most valuable American brands of 2016 by the
brand valuation consultancy Brand Finance, or listed in the Forbes 500 in 2016. There was
a large degree of overlap between the lists, leaving us with a final sample of 715 firms.

Logos Firms typically employ a variety of logos for different purposes. Broadly speaking,
a logo may be comprised of three key features: marks, logotype, and subtext. Marks are the
non-textual parts of the logo (e.g. the Apple apple, or the Nike swoosh); the logotype is the
primary textual identifier, usually displaying the brand name; and the subtext is other text,
often a brief descriptor of the brand. A logo always has either a mark or a logotype, while
some logos have both, and some include a subtext. Some firms employ variants of their
logo for different purposes, which may consist of either just the mark, or just the logotype,
or the mark and logotype omitting the subtext, or a logo where the colors are inverted
(e.g. blue lettering on a white background becomes white lettering on a blue background).
Determining which logo to use thus requires some amount of judgment on the part of the
researcher. As a rule, we selected logos with white backgrounds, if such a logo is in use.
Similarly, we selected the logo with both logotype and mark, if it is in use by the firm. For
other aspects of the logo, including subtext and the orientation of the mark relative to the
logotype, we used the version that appeared most commonly on the firm’s online marketing
materials.

Text To understand which firms use which design features, we collected web descriptions
from the firms’ websites, consisting of both functional and brand-relevant text taken directly
from firms’ websites. We collected this data in two batches: in one, we asked Amazon
mechanical turk users to find text on the firm’s website that describes how the firm views
its brand, and that does not merely describe what the firm does. We guided workers toward
the About Us, Mission Statement, Corporate Values, or Investor Relations pages of firms’
sites. In a second batch, we asked workers to find text that describes what the firm does,
and is not identical to the text already supplied. In both cases, we gave incentives for
workers to provide long descriptions.

7

 Electronic copy available at: https://ssrn.com/abstract=3406857 



Industry Labels In addition to the full textual descriptions, as a simpler measure for
capturing what firms do, we also collected industry labels from the database Crunchbase.
Crunchbase is commonly used by investors to learn about firms. One feature that Crunch-
base captures is a set of standard tags describing what the firms do. For example, the
ride-sharing company Uber has the labels Customer Service, Mobile Apps, Public Trans-
portation, Ride Sharing, and Transportation. In total, there were 615 labels across our 715
companies. These labels are further organized into category groups, which reflect similar
activities. For example, Public Transportation, Ride Sharing, and Transportation are all
be categorized under the group Transportation.

Brand Personality Finally, we also collected brand personality ratings from consumers,
following the framework of Aaker (1997), as a simple way of understanding brand impres-
sions in the minds of consumers. Specifically, we used Amazon Mechanical Turk to elicit
brand personality perceptions from U.S.-based consumers, by showing participants both
the logo and the text describing the firm, and then we asking them to rate the extent to
which they thought each of a set of traits describes the focal firm, based on the logo and
text provided. We used the original set of 42 personality traits from Aaker (1997), as well
as three reverse-coded attention check traits.2 We gathered 20 responses per brand.

4. Logo Feature Extraction

The primary barrier to using visual data in models is the difficulty of working with un-
structured image data. Many methods have been developed for incorporating images in
models, with much of the literature coming from the computer vision and machine learning
communities. Broadly, there are two approaches to using images in models: the first uses
raw pixel-level data as the input to a probability or machine learning model. This is com-
mon, for example, in models of image recognition or image captioning, where the model is
typically based on a neural network, and the task is a supervised prediction task. A second
approach first processes the image, then uses the outputs from this processing as an input
to the model. A common approach here is to create an image “dictionary” of representative
image features. In our work, we follow the second approach: to incorporate the logos into
our model of design, we first process the logo image into logo features, through a novel logo
feature extraction algorithm based on modern image processing methods. Our algorithm is
rooted in the literature on logo design and consumers responses to aesthetics, and distills
a logo into components that are meaningful for consumers and designers. This approach
facilitates understanding of our final model, as each of the inputs is human interpretable.
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Figure 1: Examples of global features, using Amazon’s logo as an example. Percent whitespace
captures the percentage of pixels that are white (background), within the convex hull of
the logo. The number of corners is a measure of angularity computed via the Harris corner
detector. Edge gradients capture directionality of edges in the logo, and are computed by
computing numerical gradients sliding over a binarized (black and white) version of the
logo. The convex hull is the smallest convex polygon containing all of the non-background
pixels.

4.1. Algorithm Overview

Our algorithm has three general stages: in the first stage, which we term summarization,
we compute a variety of features from the logo as a whole, which we refer to as global
summary features. Examples of these features are given in Figure 1, using Amazon’s logo
as an example. One such computation is a density-based color quantization, where we learn
how many distinct colors are in each logo. In the second stage of the algorithm, which we
term segmentation, we assign each pixel in the logo to one of these colors, then segment the
logo into regions that are separated either by color or by background (i.e. the color white).
For each of these segments, we separate them into characters and marks. This process is
illustrated in Figure 2, again using Amazon’s logo as an example. In the final stage, which
we term tokenization, we cluster several of the features across logos, including the color,
hull shape, and mark shape, to form a dictionary of logo features.

4.2. Visual Features

A comprehensive listing of all of our visual features can be found in the table in Appendix
A, including descriptions on each feature, and how each feature connects to the literature
outlined in Section 2. In this section, we briefly describe each logo feature, grouping them
into color, format and shape, font, and other features. Note, however, that these groups
are just for expositional convenience; in our analysis, we treat each feature independently.

2The reverse-coded traits were honest/dishonest, exciting/boring, and good-looking/ugly. Any participant
who answered that both traits are descriptive of the firm was automatically removed.
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Figure 2: Examples of the segmentation process, using Amazon’s logo as an example. The original
logo is at top. Beneath that is the segmented logo, where black identifies the background,
and distinct regions are marked by different color regions. We then apply a template
matching and filtering algorithm to identify which of these regions are characters (bottom-
right), and assume the remainder are the marks (bottom-left).

Color The full dictionary of colors is given in Figure 3. This is computed by clustering
colors across all of the logos in the dataset. Besides for just computing which colors are
present in a logo, we also compute which color is the dominant color (one per logo), which
colors are accent colors (all colors except the dominant color), and how much whitespace
there is within the convex hull of all logo pixels. We also compute other summary statistics
about color in the hue-saturation-value (HSV) color space, including the mean and standard
deviation of the saturation and lightness channels.

Format and Shape These variables include features like whether or not the logo has
a mark, how many marks there are, and what the aspect ratio of the logo is. We also
compute the convex hull of the logo, which is the smallest convex polygon that contains all
of the non-background pixels. We then cluster these hulls across logos to form a dictionary
of logo shapes, which is shown in Figure 4. We also do something similar for the shape
of the marks: for each mark, we standardize its shape and convert it to greyscale, then
cluster across marks into 14 representative mark types. This maintains more details than
the convex hull approach, allowing us to see, for example, the difference between solid and
hollow circles, but is also typically more noisy. We give examples of these classes in Figure
5.

Font Font is a crucial feature of logos. We therefore have developed an elaborate procedure
to identify and describe characters and their fonts. Specifically, for each segment of the

10

 Electronic copy available at: https://ssrn.com/abstract=3406857 



Name R G B Color Name R G B Color
White 253 253 253 Dark Blue 30 42 124
Black 20 18 18 Light Gray 165 164 167
Red 226 33 41 Light Blue 54 153 204
Blue 25 89 152 Light Green 99 178 67
Dark Green 34 120 77 Yellow 245 202 36
Orange 239 131 40 Tan 186 164 103
Dark Gray 116 111 111 Dark Red 174 39 63

Figure 3: The color dictionary: This table shows the RGB color channel values of the cluster centers
for the representative set of colors, along with the actual color encoded by those values.
These were obtained by clustering in the LAB color space across logos, which is meant to
capture differences in human color perception.

Figure 4: The hull classes: This table shows the six typical shapes of logos, as characterized by their
convex hulls. Each logo in our dataset is assigned to one of these classes.

logo, we apply a template matching procedure, to try match the segment to an extensive
collection of fonts, which we curated to capture the intricacies of font design as exhaustively
as possible. This font dictionary captures a range of font families, forms, and stylings,
including examples of fonts from all Vox-ATypI font classes, a standard font classification
scheme used by font experts.3 We illustrate our complete font typology in Figure 6.

Other There are several other features which we found in the literature review to be
important aspects of design: complexity, symmetry, repetition, and orientation. For each
of these, we include direct or indirect measures aimed at capturing that feature, without
the need for a human coder. For complexity, we include a number of measures, including
the number of distinct colors, the number of segments, the perimetric complexity (the
ratio of edge pixels to interior area), and the greyscale entropy (the average variance of
pixel intensities across sliding windows). We also include measures of both horizontal and
vertical symmetry, computed by looking at the correlation between halves of the image. For
repetition, we look at the different subregions of the logo, and compute correlations between
size and complexity across them, as a proxy for repetitive structure. For orientation, we
compute both measures of position of the mark relative to the text, and also edge-based
metrics. Several of these features are illustrated in Figure 1.

3https://en.wikipedia.org/wiki/Vox-ATypI_classification
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Figure 5: The mark classes: This table shows three examples of our mark classes, with 10 randomly
sampled examples of each. Each mark is assigned to a single class.

Calligraphic font classes:

Casual (Nadianne)
Glyphic (Copperplate)

Font weight:

Original
Light
Bold

Serif font classes:

Clarendon (Clarendon)
Didone (Bodoni)
Oldstyle (Bembo)
Slab (Rockwell)

Transitional (Times)

Sans-serif font classes:

Geometric (Futura)
Square (Eurostile)

Grotesque (Helvetica)
Humanist (Gill Sans)

Font style:

Upright
Italics

Font width:

Normal
Condensed
Wide

Figure 6: Font classification system employed by the algorithm: fonts were matched to a font family,
weight, style, and width.

5. Exploring the Data

Before describing our multiview learning framework, we first provide some simple descriptive
evidence illustrating the interplay between logo features, firm function, as operationalized
by industry labels, and brand personality perceptions. There are two primary goals of this
section: first, to build familiarity with the logo data, and second, to motivate the full model,
by illustrating the complex interplay between each of our domains (logo, firm website text,
and brand personality).

To capture the interplay between these variables in an intuitive and interactive fashion,
we rely on visualizations commonly called forest plots, which show how one focal variable,
the outcome, varies as a function of another (binary) variable.4 In the case of a true binary
variable, like color (e.g. does a logo have blue in it?), the plot shows the difference in
the outcome for firms that have the variable (e.g. the logo has blue), compared to firms
that do not have the variable (e.g. the logo has no blue in it). For real-valued variables,

4We include OLS-based explorations in Appendix C.
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we consider a median split: comparing firms that are in the top 50% for the variable
to firms that are in the bottom 50% for that variable. In the remainder of this section,
we highlight a few of these plots. However, we also provide a web app that allows the
reader to explore the full set of possible forest plots, which can be accessed at https:

//rdew.shinyapps.io/explore_logo_data.

5.1. Brand Personality

In our data, brand personality provides an especially insightful portrait as to how consumers
perceive the firm. In Figure 7, we present a series of plots that look at how brand personality
perceptions vary as a function of logo features, that are both intuitive, and corroborate some
of the findings from the literature on logos and aesthetics, adding validity to our data and
logo processing algorithm.

The first of these plots compares consumer’s brand personality perceptions across the
three most common dominant logo colors: black, blue, and red. We can see, for instance,
that black logos tend to score low on down-to-earth, but high on dimensions like daring,
spirited, and imaginative. Interestingly, they also seem to score high on upper class and
charming, but also on outdoorsy and tough. This result, in isolation, seems surprising, as
upper class and charming seem quite different than outdoorsy and tough. This unintuitive
result highlights the need for understanding the whole combination of logo features, jointly:
black, alone, may be used to convey a multitude of brand identities. Logo design must thus
rely on many facets, simultaneously, to build a personality-consistent logo.

One crucial feature beyond color is font, and in the second plot in Figure 7, we explore
different font features. In many cases, these features also match intuitions: serif fonts are
perceived as more sophisticated, less rugged. Condensed lettering is more down-to-earth
but less intelligent, while wide lettering is tough. Bold lettering and light lettering move
in opposite directions, with bold letters being perceived as more down-to-earth and tough,
while light letters are daring and sophisticated. Italics are tough and down-to-earth, but
not upper class. We can thus begin to see that the combination of color and font can bring
out unique identities, when one, in isolation, cannot. It is this combination of features that
the model of logo design which we propose in the next section aims to capture.

In the final plot of Figure 7, we see some of the global features of logos. These features
are less intuitive than color and font, but have been emphasized more in the literature. For
instance, we see that horizontally symmetric logos (feature h sym) tend to be perceived bet-
ter along almost all dimensions, except intelligent, perhaps reflecting the role of harmony in
positive affect discussed in Henderson and Cote (1998). We find horizontal orientation (fea-
ture hor) is related to tough and outdoorsy brands, whereas upward-diagonal orientation
(feature up diag) appears positively related with cheerful, spirited firms. This latter point
lends some support for the findings of Schlosser et al. (2016), who found that upward diago-
nals convey activity. Angularity, as captured by the number of corners (feature ncorners),
is positively associated with down-to-earth and tough logos, and negatively related to the
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Figure 7: Each color in the plot represents a different brand personality factor, denoted in the legend.
On the x-axis are features of the logo. On the y-axis is the difference in brand personality
perception for firms that have a certain feature (or fall in the top half of firms for that
variable), versus firms that do not have that feature (or fall in the bottom half).
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others. This appears to support the findings of Jiang et al. (2015), where angularity is
found to be associated with durability. Percentage whitespace (variable perc white) has
a positive association with upper class and charming, and not with outdoorsy and tough,
which is reminiscent of the findings of Semin and Palma (2014) about the femininity of
white.

5.2. Industry Labels

As a simple measure of what a firm does, we rely on industry labels from the database
Crunchbase. Apart from conveying brand image, logos may also simply convey what it is
that a firm does. Firms may rely on logos as a signal, such that consumers can identify the
firm as fitting their expectations for what kind of product or service they will receive. As
such. In Figure 8, we show a set of forest plots, similar to those for brand personality, this
time exploring variation in terms of industry labels, focusing on the dominant color of the
logo. At the top, we show: given a logo has a specific feature, is that company more or less
likely to be in a certain industry? At the bottom, we consider the other direction: given a
firm is in a particular industry, is it more or less likely to have a particular feature in its
logo?

We can see some of these relationships are quite strong and intuitive. For instance,
blue is associated with the financial services industry, but not food and beverage, and the
reverse is true for red. Black is associated with clothing and apparel companies, which is
also consistent with the brand personality link of black with upper class and charming, as
many clothing and apparel companies are also luxury brands. However, we also see, again,
that the story is complicated. For example, while we saw in the brand personality analysis
that black logos are perceived as rugged, it is not necessarily the case that companies in
rugged industries, like manufacturing, are using black logos.

These visual analyses study effects in isolation. They thus raise the question: what is
the right combination of logo features a firm should employ to be perceived a certain way?
We see, for instance, that red is positively associated with food and beverage companies,
but negatively with an upper class brand personality perception. What combination of
logo features might convey the idea of an upper class fast food company? In addition, the
industry label is a very simple way of operationalizing what a firm does, just as brand per-
sonality is a simple way of operationalizing what a brand is. To answer questions regarding
combinations of features, and to facilitate the use of unstructured, textual data that may
more accurately reflect the nuances of a company, we need a model that is able to make
sense of this type of data, and simultaneously weigh all of these distinct aspects of brand
identity.
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Figure 8: We show the relationship between industry label and logo color in two different ways: at
the top, we show, given a logo has a certain dominant color, whether the logo is more or
less likely to be labeled with a certain industry label. At the bottom, we show, given a
logo has a certain industry tag, is it more or less likely to have each of the dominant colors.
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6. Model of Logo Design

In this section, we describe our model of logo design. Specifically, our model draws on
methods from deep generative modeling (Rezende et al., 2014; Kingma and Welling, 2013;
Ranganath et al., 2014) and multiview learning (Li et al., 2016; Wu and Goodman, 2018) to
learn joint representations of brands that can then be used to predict each of our domains of
interest. Specifically, our model synthesizes our three main data sources: the web descrip-
tions, which are how the firm describes itself in text, the logo, comprised of the features we
described in Section 4, and finally consumers’ perceptions, operationalized by their brand
personality evaluations. By leveraging multiview representation learning, we are able to
understand the links across these domains, in a flexible fashion, without specifying a priori
which feature or modality is the dependent variable, and which are the independent vari-
ables. In turn, this enables us to answer questions from all three perspectives described in
the intro: the researcher’s perspective, the designer’s perspective, and the brand manager’s
perspective.

6.1. Multimodal VAE

Our modeling framework is based on the variational autoencoder (Rezende et al., 2014;
Kingma and Welling, 2013), a deep learning model designed to learn generative models
of data. A variational autoencoder contains two components: an inference network, and
a decoder network. The inference network is a deep neural network takes data as input,
and outputs the parameters of an approximate posterior distribution for those data’s latent
parameters. The decoder network is a separate deep neural network that takes the vector
representations of the data, and outputs a probability distribution over the original data.
In this way, the two together provide dimensionality reduction: the inference network doing
the inference from data, and the decoder making predictions.

Our specific implementation is a multimodal variational autoencoder (MVA), similar to
that used in Wu and Goodman (2018), which learns a representation of the joint distribution
across many domains of interest. In generality, suppose we have D domains of interest,
indexed by d = 1, . . . , D. In our application, these will be text, logo, and brand personality.
For each of the brands in our data, b = 1, . . . , B, denote the data of brand b in domain
d as xdb . In each domain, there are different features (words for text, logo features for
logos, personality traits for brand personality). We will index these features j = 1, . . . , Vd.
Note that, in our work, we observe data in all of the domains for each brand, but that the
framework also allows for missingness. For each one of the domains, we posit a probability
model that captures the features of that domain.

An overview of the basic components of the model is the following:

• Each brand has its own latent representation, denoted z, that captures the “brand
identity” of the brand in dense, numeric, vector form.
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• Given the representation, z, the decoder network, parametrized by a set of hyperpa-
rameters θ, transforms z into the parameters, µ, of feature-specific probability models,
p(x|µ = f(z; θ)), which in turn predict the features we expect that brand to have.

• Given data, x, from some or all of the domains, the inference network is a func-
tion, parametrized by a set of hyperparameters φ, computes an approximation of the
posterior distribution of z, p(z|x;φ).

These three components are deeply interconnected, such that describing each, in isolation,
is challenging. We thus first, in Section 6.2, describe the probability models, which capture
the traditional “likelihood” of the data. Then, we describe the decoder network used to
link the representations to these models in Section 6.3. Finally, we describe the inference
network, which can be used to learn the latent representations from the data, in Section
6.4.

6.2. Domain Probability Models

Conditional on the joint representation zb, each brand’s features are modeled using domain-
specific probability models, the parameters of which, µb, are inferred from the decoder
network described in the following section, µb = f(zb; θ). The specific models used for our
data are:

• Text: For determining which words to include, we stemmed and tokenized the full
vocabulary, removed standard stopwords, then filtered out words that occurred in less
than twenty different brand descriptions. For modeling this textual data, we then use
a simple binary model, capturing whether or not a given word is present in the textual
description. That is, for each brand b, for each word w, we model:

P (xTextbw > 0) =
1

1 + exp(−µTextbw )
(1)

This simple coding captures the idea that firms choose to use a set of words, and
that we are interested in whether or not a firm chooses to label itself a certain way
(e.g. as “innovative”). Although the number of times a given word is repeated may
contain information, it may also merely reflect how much text was present on the
firm’s website, or any number of unrelated factors. Hence, we only model whether or
not a given word is present.

• Logo features: Many of the logo features exhibit very different statistical properties.
In the appendix, we describe all of the logo features, together with their data types. In
our model, conditional on the latent representation zb, each of these features is drawn
independently. For each one of these features, we then use an exponential family
distribution that has support on that data type. Specifically, for real-valued data,
like entropy, we use a normal distribution (or a lognormal distribution for continuous
values with only positive support), such that for a real-valued feature indexed j, we
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have:5

xLogobj ∼ N (µLogobj1 , σLogobj ), σLogobj = log(eµ
Logo
bj2 − 1)) (2)

Note that, for two parameter families, like the normal, we learn both the mean and
the variance. For binary data, like whether the logo has a mark, we use a bernoulli
distribution, equivalent to the model for text described above. For choice data, like
the dominant color, where we have one of m = 1, . . . ,Mj possible options, we use a
categorical distribution, such that:

xLogobj ∼ Categorical(Softmax(µbj)), (3)

µbj = (µbj1, . . . , µbjMj
) (4)

• Brand personality: Similar to the real-valued logo features, brand personality in our
data is also real-valued: it is the average of all respondents ratings, measured between
0-4. We approximate this using a normal model, again with the mean and variance
learned from the latent representation.

6.3. Latent Representations and the Decoder Network

To learn the parameters µdbj , we assume that each brand has a K-dimensional latent vector
representation, which we denote zb = (zb1, . . . , zbK), that is shared across the domains. For
each component of this representation, zbk, we assume a unit normal prior:

zbk ∼ N (0, 1).

Given this representation, the parameters µdbj are computed from a deep neural network.
The structure of this neural network may depend on the domain. Typically, we will use
dense layers with rectified linear activation units (ReLU) and skip connections, which means
the following sequence of computations:

hdb1 = max(0,ad0 +Wd0zb) (5)

. . . (6)

hdbLd
= max(0,ad(Ld−1) +W h

d(Ld−1)h
d
b(Ld−1) +W z

d(Ld−1)zb) (7)

µdbj = adLdj + (wh
dLdj

)′(hdbLd
) + (wz

dLdj
)′zb (8)

Intuitively, we are applying the same operation (the ReLU) in sequence. At each layer of
the model, we compute a new representation of the brand which we call the hidden units at
layer `, denoted by hdb`, using both bias (intercept) parameters ad,` and kernel (coefficient)
parameters W h

d,`, W
z
d,`. We combine these hidden units with the original representation zb,

5The log(ey−1) structure in Equation 2 is the inverse of the so-called softplus function, y = log(1+ex), which
is commonly used to enforce positivity, as a more numerically stable alternative to a simple exponentiation.
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in what is known as a skip connection, to learn the hidden units of the next layer.6 This
operation is repeated Ld times for the number of layers in the network for domain d. At
each layer, the number of hidden units (meaning the dimension of h) may change, which
allows the network to learn different levels of abstraction of the data. Moreover, as the
operations are nonlinear, this network theoretically corresponds to learning an arbitrary
nonlinear relationship between the data and the representation. In effect, this means we
can capture quite complex joint distributions. The more hidden units, and the more layers,
the more expressive the model.

We denote the whole set of parameters,

θdj = (adLdj , wdLdj , {ad`,Wd`}`=1,...,Ld−1),

and this whole operation as:
µdbj = DNetd(zb; θdj),

where DNet(·) stands for “decoder network.” Note first that, across j, many of the com-
ponents of θdj will be shared within a domain. We may also use θd to refer to all of the
network parameters within domain d across all j. Also, note again that the exact nature
of this network can differ across domains: the above conveys the general structure. We
describe the specifics of each domain’s network in a later section.

6.4. Multiview Inference Networks

The key task in using the MVA framework is learning the representations zb. Once we
know zb, we can use zb to make predictions across modalities via the probabilistic decoder.
Important to our framework, we would like to be able to learn zb given information on
only a subset of the domains. Then, we can use the representation zb and the decoder to
make predictions for the unseen modalities. In practice, this means we could use the MVA
to generate a logo template, given a textual description, to generate words describing a
specific set of logo features, or to predict brand personality assessments given either visual
or textual information.

The goal of the inference network is to go from data xb to an approximate posterior
distribution for the latent representation zb. In most models, learning latent parameters is
accomplished by model training, using either maximum likelihood, MCMC, or variational
inference. Inference networks transform the problem of inference of latent parameters into
a problem of learning a function, parametrized by a (deep) neural network, such that given
any data, we can obtain an approximate posterior distribution for the latent variables of
interest, simply by evaluating the function. Using similar notation as above, a generic
inference network can be written as:

ξbk = INet(xb;φ),

6We include skip connections to avoid a phenomenon called latent variable collapse, in which models like
ours get stuck in uninformative local optima (Dieng et al., 2018).
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where this condensed notation stands for a neural network given by:

hInf
b1 = max(0, cd0 + V0xb) (9)

. . . (10)

hInf
bL = max(0, cL−1 + VL−1h

Inf
b(L−1) (11)

ξbk = cLk + (vLk)
′(hInf

bL ), (12)

and where ξbk is the vector of parameters of a (mean field) approximation to the true
posterior, q(zbk; ξbk) ≈ p(zbk|xb).7 In the case of a VAE, this approximation is assumed to
be normally distributed, such that:

q(zbk; ξbk) = N (zbk;µ = ξbk1, σ = ξbk2). (13)

In our model, the goal is transfer learning via multiview representation learning: we
want to be able to go from data in one domain, to the joint representation, and then to
make predictions in all domains. To facilitate that, we implement a training procedure for
multimodal variational autoencoders, similar to that of Wu and Goodman (2018). Specifi-
cally, we implement not a single inference network, but a set of modality-specific inference
networks, which take as inputs data from a single domain, and outputs the posterior of the
full representation. That is, we learn D distinct inference networks,

ξbk = INetd(xbd;φd),

corresponding to the model’s “best guess” at the posterior distribution, given data from
only one domain. This forces the model to learn multimodal representations, and avoids
the case wherein some of the latent dimensions specialize in predicting only one domain.
Although we defer our description of the full inference algorithm to a later section, the way
this works intuitively is that, during training, at each iteration of the training algorithm,
the data is randomly split into D bins. Then, for brands in bin d, only the data from
domain d, xdb , are used to learn the parameters zb. The result is, after training is done, we
have D functions which we can use to go from one domain to infer the full posterior of zb,
which in turn, lets us make predictions about the other domains, via zb.

6.5. Network Structures

As described previously in Equation 5, we use a skip structure in our decoder network
(Dieng et al., 2018), where each layer of the network also contains the latent representation
z, in addition to the hidden units h. This structure helps avoid a phenomenon called
latent variable collapse, in which VAE-type models learn uninformative representations of
the data very close to the prior. The remaining structure of the data is then specifying

7Note that, while the inference networks and decoder networks are all functions modeled with deep neural
networks, these neural networks are modeled as a priori independent; that is, there is no imposed dependency
between the two.
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the dimensionality of the latent representation zb, as well as how many layers, and how
many hidden units are in each layer, for each domain of the data, for both the decoder and
inference networks.

In this work, all of our components are small, relative to much of the deep learning
literature. This is because we are using relatively small data, with already somewhat struc-
tured and pre-processed inputs, that are already represented at higher levels of abstraction.8

Specifically, we assume there are 10 latent variables (K = 10). In the decoder networks, we
assume that each domain’s network has two layers, with 20 hidden units in the top layer
for each. For text, we use 60 hidden units in the second (bottom) layer, reflecting its higher
dimensionality than other domains. For the rest, we use a bottom layer of 40 units.

Under our multiview inference framework, we assume a four part structure: one infer-
ence network for each of the domains, and a fourth inference network which is given access
to all of the domains. For these, we assume the topmost layer has 20 hidden units, but again
assume a different number of hidden units for the bottom layer, reflecting our assumptions
about how information-rich each domain is: for the full information inference network, we
assume the second (bottom) layer has 80 hidden units; for the text, logo, and BP inference
networks, we assume the second layer has 40 units.

6.6. Inference

We perform inference on the model via a form of Variational EM (VEM), implemented in the
Edward probabilistic programming language. This follows the standard inference procedure
for VAEs, as introduced in Rezende et al. (2014) and Kingma and Welling (2013), with only
a slight twist to allow for our multiple decoder and inference networks. Specifically, the goal
is to infer the model parameters for the decoder networks and the inference networks. In
the classical VAE, the following loss function is minimized:

`(θ, φ) =

B∑
b=1

−Ez∼q(z;ξb=INet(xb;φ))[log pθ(xb | z)] +

KL(q(z; ξb = INet(xb;φ)) || p(z)). (14)

This is equivalent to the standard evidence lower bound (ELBO) for doing variational infer-
ence on the latent parameters, z, but where the variational approximation is given by the
inference network (Blei et al., 2017). Another interpretation is that the first term encour-
ages a good reconstruction of the data, while the second term regularizes estimates toward
the prior. This is referred to as variational EM, as the variational procedure approximates
the distribution of the latent variables z, but the model parameters θ are optimized for the
likelihood of the data.

8Many deep learning frameworks operate at the pixel level, which is the most raw, unprocessed format for
an image. As we described in Section 4, we choose a structured approach for feature extraction because it
makes the results of the model much more intuitive, as we will see in the Section 7.
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Feature(s) Full Data Logos Text BP Intercept Only

Binary Text 0.096 0.102 0.094 0.126 0.157
Binary Logo 0.122 0.135 0.126 0.182 0.212
Real Logo 0.472 0.504 0.487 0.686 0.753
BP Ratings 0.190 0.200 0.181 0.210 0.405

Table 1: The own- and cross-modal reconstruction error across all of the inference networks, relative
to an intercept only model.

In our multiview inference framework, the pθ(xb | z) from Equation 14 decomposes into
a product of the domain-specific decoder networks and feature-specific probability distri-
butions. Moreover, we modify the above to form a stochastic batched inference procedure
where, for each iteration of our optimization, we split the data into four equally sized bins,
such that for the first bin, we use the full inference network; for the second bin, we use the
text inference network; for the third bin, we use the logo inference network; and for the
fourth bin, we use the BP inference network. Returning to Equation 14, this means that, in
our optimization, at each iteration, the q(z; ξb = INet(xb;φ)) used for observation b depends
on the bin that brand b is assigned to in that iteration. Such a procedure is similar, but not
exactly equivalent to that suggested by Wu and Goodman (2018). We run this stochastic
procedure until the crossmodal log probability of the data, pθ(xb | z), converges.

7. Model Results

7.1. Model Fit

To begin, we examine how the model fits the data, and to what degree the inference networks
produce equivalent representations.

7.1.1. Reconstruction Error

The metric by which VAEs are often evaluated is what’s called reconstruction error: how
well does the model do at reconstructing the data it is meant to represent? In our case,
for each inference network, the error can be decomposed into the part that is own-modal
reconstruction error (the modality that was input to the network), and a part that is cross-
modal reconstrucion (i.e. the heldout modalities). In Table 1 we compare absolute error
rates across the inference networks for several components of the model, using the last batch
of training as the input data for the inference networks. We compare this to an “intercept-
only” benchmark, wherein the average value of each feature is used as the prediction for all
inputs.

There are three interesting patterns to note: first, the model is able to reproduce the
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Logos Text BP

Full Data 0.9 0.966 0.575
Logos . 0.899 0.568
Text . . 0.576

Table 2: Average over brands of the correlation between zb as learned by different inference networks.

data significantly better than a naive intercept-only model. Second, we notice that the BP-
based inference network does worse on all cross-modal reconstruction errors. This is not
surprising: relative to the other modalities, brand personality is a very high-level, abstract
input, with significantly fewer features. As such, it is unable to match the representations
learned by the other inference networks. Finally, for all networks except brand personality,
we find that the reconstruction error rates are roughly equivalent. This is because, in all
cases, the decoder network is the same, regardless of the inference network, and moreover,
at each iteration, the firms that are used in each inference network are randomly shuf-
fled. Hence, the model is incentivized to learn coherent representations across the inference
networks, which result in nearly equivalent hit rates.

7.1.2. Data Complementarity

Given these patterns in the reconstruction error, we are also interested in understanding to
what degree the learned representations are coherent across inference networks. That is, to
what degree is the posterior mean of zb when inferred through, for example, the full inference
network, correlated with, for example, the brand personality inference network? In Table 2,
we show the average correlation between representations, averaging over all brands. From
this, we see that there is by and large agreement. The full and text networks learn the
closest representations, which makes sense, given the richness of those two data sources.
By using just brand personality, we get correlated, but not equivalent representations.
This explains why the errors in Table 1 vary the way they do: brand personality is not rich
enough to achieve the same degree of precision as the other modalities. Moreover, the brand
personality representation is strongly correlated with the full representation in several of
the dimensions of the latent 10-dimensional representation, but weakly correlated in others.
This supports the idea that these modalities are complementary: brand personality captures
some aspect of the brand that’s displayed in text and logo, but that other aspects of textual
and visual identity are independent of the brand personality.

7.2. Exploring the Latent Space

Now that we understand how the model approximates the multimodal representation, we
can start exploring what representations the multiview variational autoencoder, or MVA,
learns.
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7.2.1. Neighbors in z Space

In general, it is difficult to interpret the latent space generated by our MVA, as the links
from the representation to the data through the decoder are highly nonlinear. One question
we can ask is, given a focal brand, which brands are closest to it in the latent space? We
show this analysis for four brands in Table 3.

Brands that are closeby in zb space are predicted to have similar properties across the
different modalities. In some cases, the results in Table 3 are very intuitive. For instance,
McDonald’s tends to be close to many mass market, affordable chain stores, with dense,
simple logos, often operating in the food industry. Starbucks’ closest neighbors share circular
properties, as well as operating within the slightly upper scale food space. Nike’s closest
neighbor is Adidas, which is similar both in terms of aesthetics and function to Nike. Finally,
Actavis, a pharmaceutical manufacturer, is close to other manufacturing and B2B firms,
with again similar logos, especially in terms of font, color scheme, and mark complexity.

McDonalds and Supervalu To help build intuition about Table 3, we consider the very
first example: McDonalds, and its nearest neighbor Supervalu. As just described, McDon-
alds and Supervalu have many superficial similarities: they both have red, bold logos, and
operate in the discount food space. These similarities are also reflected in the data. If we
consider how people perceive these brands, vis-a-vis brand personality, there are consider-
able similarities, as plotted in Figure 9. Moreover, the words that the two brands use to
describe themselves are also similar: the correlation between McDonalds binary text vector
and that of Supervalu is r = 0.24, nearly double the correlation of McDonalds with other
firms on average (r = 0.13). These similarities across all modalities among these two brands
is what the model is detecting, leading to their similar representations in z space.

Nike and Disney There are some less intuitive findings in Table 3 as well. Perhaps most
interesting are Nike’s neighbors besides Adidas: Disney, Polaris, and Lego. Let’s consider
the similarities between Nike and Disney. Aesthetically, their logos are, in fact similar, in
terms of color and layout. Their brand personalities are also aligned, as we show in Figure
10. What’s striking about this plot is on how many dimensions both brands score near the
top of the scale, including on dimensions like successful, imaginative, and family-oriented.
There are also some differences, especially related to the ruggedness of Nike. Finally, the
words they use to describe themselves are also similar: the correlation between Nike’s binary
word vector and that of Disney is r = 0.2, compared to r = 0.12 on average across all
brands. Hence, while perhaps surprising at first glance, there are deep connections between
the brand identities of Nike and Disney, which the model detects, and then subsequently
predicts.
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Focal Brand Neighbors in zb space

McDonalds Supervalu Old Navy Dollar General Kroger

Fast food
Retailing and

grocery
Apparel Discount retailer Grocery

Starbucks Chipotle Whole Foods L’Oreal Minute Maid

Coffee
Fast casual
restaurant

Organic grocer Personal care
Juice and
beverage

Nike Adidas Disney Polaris Lego
Footwear and

apparel
Footwear and

apparel
Media and

entertainment
Snowmobiles and

ATVs
Toys

Actavis Praxair Autoliv Clorox Optum Health
Pharmaceutical
manufacturing

Industrial gases
Automotive

safety supplier
Consumer
products

Health services

Table 3: The 4 closest brands to each focal brand in zb space, including their logo, name, and a brief
description.
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Figure 9: Brand personality ratings of McDonalds versus Supervalu, showing the high correlation
between personality perceptions of the two brands. Each dot represents a different brand
personality trait, with several suggestive traits labeled.
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Figure 10: Brand personality ratings of Nike versus Disney, showing the high correlation between
personality perceptions of the two brands. Each dot represents a different brand person-
ality trait, with several suggestive traits labeled.
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Rank (Closest) p = 0.9 p = 0.7 p = 0.5 p = 0.3 p = 0.1

1

2

3

Table 4: Linear interpolation between McDonalds and Nike, showing three brands, in order, whose
zb are closest to z = pzMcDonalds + (1− p)zNike.

7.2.2. Interpolating Between Brands

Another way to attempt to understand the latent 10-dimensional space learned by our
MVA is to use it to interpolate between brands. Intuitively, the MVA converts a large set
of features with very different statistical properties into compact, continuous vector repre-
sentations. Continuous movement in this latent space thus allows for continuous movement
among brand identities, slowly shifting the predictions of the model. We can use such
movement in the latent space to interpolate between brand identities.

McDonalds and Nike Midpoint Analysis For instance, drawing on our previous anal-
yses, we may ask the question: which brand identities emerge by interpolating between
McDonalds and Nike? To answer this question, we consider new z values of the following
form:

z = pzMcDonalds + (1− p)zNike.

We consider p = 0.9, 0.7, 0.5, 0.3, 0.1. We then find the actual zb vectors that are closest to
this interpolated value for each value of p. We show the results in Table 4. In general, we find
a few transitions that happen between these identities: first, we see the apparel companies
like Old Navy that were previously similar McDonalds emerge as the most similar to the
interpolation. We also see the element of ”value” fade away, as firms like Supervalu and
Dollar General disappear, and firms like Gap appear. At the midpoint, we see Cadbury,
a chocolate company, emerge as the midpoint. Finally, as we move toward Nike, we see
Disney and Adidas again emerge, although Disney emerges sooner than Adidas.

It is interesting to consider why the model identifies Cadbury as the closest brand to the
midpoint of McDonalds and Nike. First, it’s worth noting that, while Cadbury is the closest
in terms of z distance to the midpoint, it is not exactly at the midpoint. In fact, on several
dimensions, the Cadbury zb is actually quite far from the midpoint. Thus, in some sense,
no brand exists at the exact midpoint between McDonalds and Nike. There are, however,
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Figure 11: The actual brand personality of Cadbury is plotted against the predicted brand person-
ality of the fictitious brand that lies at the midpoint between McDonalds and Nike in z
space.

some clear similarities between this fictitious midpoint brand and Cadbury. For example,
in Figure 11, we plot the brand personality of Cadbury against what the model predicts
for the fictitious midpoint brand. We see a close, but not exact correlation: the model
predicts a midpoint brand that scores high on reliability, honesty, and success, while low on
upper class, glamorous, and small town. Cadbury, on the other hand, does not score as low
on things like upper class and glamorous, but agrees with much of the rest of the profile.
We can also use text to understand what kind of brand would exist at this intersection:
the model expects words like meaning, compete, step, footprint, citizen, force, healthier,
dollar, happen, creation, and breakthrough. Intuitively, these words do appear to be a
midpoint between McDonalds and Nike, emphasizing dollars, creating, health, competition,
and footprint.

Other Interesting Midpoints While by no means comprehensive, there are many other
interesting findings like the above, which fall out of the model’s ability to interpolate between
brand identities. These include:

• Under Armour as the midpoint between Nike and Gucci: Under Armour is positioned
to some degree as an upscale fitness clothing brand. It thus makes sense that the
midpoint between a fairly mainstream athletic brand, Nike, and a luxury fashion
brand, Gucci, would be a brand like Under Armour.

• Booking and Priceline are at the midpoint between Google and Hyatt, emphasizing
again this clean interpolation between brand identities and firm functionalities, with
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The Gucci of Nike

0.5zGucci + 0.5zNike ≈ zUnderArmour

The Mercedes of Old Navy

0.5zMercedes + 0.5zOldNavy ≈ zRalphLauren

The Google of Amazon

0.5zGoogle + 0.5zAmazon ≈ zeBay

The Google of Hyatt

0.5zGoogle + 0.5zHyatt ≈ zBooking

Figure 12: Interpolating between brands in the latent space. Here, we illustrate the visual similari-
ties, in addition to the functional and brand-related similarities described in the text.

Booking and Priceline being search engines for hotels.

• eBay is at the midpoint between Amazon and Google, which is fascinating, given
eBay’s visual similarity to Google, but functional similarity to Amazon.

• Ralph Lauren is at the midpoint between Mercedes-Benz and Old Navy. Ralph Lauren
is a more upscale and luxurious apparel brand, relative to Old Navy.

In addition to functional and brand-related similarities, there are also visual similarities, as
illustrated in Figure 12.

Implications for Design In the sense that the model allows for interpolation and “arith-
metic” between brand identities, it mirrors the logo design process. Logo designers often
start with a survey of an industry, competitors, and audience, and determine the key el-
ements of design that convey meaning in each of these spaces. In coming up with a final
design for a focal brand, the task is then one of interpolating: for instance, how do we think
of the Starbucks of Chinese cuisine? The Uber of healthcare? How can we infuse a little
bit of the brand identity of Gucci into the fast food industry? By being able to formulate
such questions mathematically, as vector operations in a latent space, we make this process
of interpolation data-driven.
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Figure 13: The predicted brand personality profile for our first randomly generated brand, the “cold,
modern corporation.” We show the predictions as differences from the average brand
personality rating for each trait (i.e. positive = more than average, negative = less than
average).

7.3. Generating Brand Identities

Our MVA is what is known as a deep generative model in machine learning. This term arises
because the model can be used to generate data that mirrors the input data. Generation
under the model simply involves sampling new zs from the prior, zk ∼ N (0, 1), then passing
these new z vectors through the decoder networks. Such generation gives us several insights:
first, it allows us to further explore the structure the model has learned, by seeing what
brand identities it generates. Second, it can provide a mechanism for idea generation, as
the simulated brands may be structured fusions of the input data. Finally, and perhaps
most importantly, it gives us a way of validating the model: by randomly sampling brand
identities from the model, we can see if the model has learned coherent patterns, thus
lending additional credibility to the learned latent space.

To illustrate that the model has, indeed, learned coherent representation, we will con-
sider a case study, with a randomly sampled z vector given by:

z = (0.61, 1.24, 0.96, 1.55, − 0.26, − 0.17, 2.96, − 1.09, − 0.48, − 0.68).

Below, we describe the features of a brand with this representation. As we show below,
this z corresonds to a brand identity which we label a “cold, modern corporation.” The
predicted brand personality profile corresponding to this z is displayed in Figure 13. From
this, we high scores on up-to-date, imaginative, technical, and corporate, and low scores on
wholesome, sentimental, tough, and family-oriented. Together, this paints a picture of a
technical, modern corporation.

The words that the model predicts are most likely to appear on the brand’s website
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Color Font Layout
Feature Prob Feature Prob Feature Prob

Has: blue dark 0.671 Font: wide 0.823 Has mark 1.000
Has: blue medium 1.000 Font: bold 0.956 Mark pos: bottom 0.967
Has: yellow 0.992 Font: no italics 0.981 Mark pos: top 0.556
Accent: blue medium 0.995 Class: geometric square 0.744
Accent: yellow 0.998 Class: clarendon 0.525

Table 5: Binary logo features that the model predicted would occur with greater than 50% proba-
bility for the generated brand, together with the predicted probabilities.

Feature Value Feature Value

# Characters -0.46 Aspect Ratio -1.31
# Colors -0.30 Entropy 0.33
# Corners -0.33 Perimetric Complexity -0.71
# Marks -0.27 Horizontal Symmetry 0.50
# Regions -0.54 Vertical Symmetry -0.90
% Whitespace -0.92 Mean Lightness -0.75
Vertical Edges 0.39 Mean Saturation 0.53
Down Diag Edges -0.16 SD Lightness 0.44
Horizontal Edges -0.28 SD Saturation 0.55
Up Diag Edges -0.30

Table 6: Real-valued logo features that the model predicted for the generated brand. These values
are standardized values (z-scores), and hence can be interpreted as standard deviations
different from the average value of the feature.

are displayed in a word cloud in Figure 14. In addition to the top predicted words, we also
show the words that are relatively likely and relatively unlikely for the simulated brand. In
general, there are certain words that many firms use, including product, business, customer,
world, provide, and service, which may not be as relevant to understanding the focal brand.
We see that these two word clouds support the identity conveyed by brand personality:
among the relatively likely words, we find technical words like data, app, problem, and
implement. In the relatively unlikely words, we find things like provide, family, culture, and
life.

Finally, we can see the visual features we expect to find in this firm’s logo by examining
Tables 5, 6, and 7. An interpretation of this logo by the author is presented in Figure
15.9 It is harder to objectively interpret these visual elements, but we claim that this logo
template appears to share similar elements to other logos in, for instance, the technology
space.

This simulation illustrates that the model learns, and can generate, coherent brand

9The authors are not designers, as may be obvious from the interpretation.
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Most Likely

Relatively Likely Relatively Unlikely

Figure 14: At top, a random sample of the words that the model predicts will occur with greater
than 50% probability, drawn proportional to their probability. At bottom left, the words
that the model predicts will occur significantly more than they occur on average. At
bottom right, the words that the model predicts will occur significantly less than they
occur on average.

Feature First (Prob) Second (Prob) Third (Prob)

Dominant Color Med. Blue (0.999) Dark Blue (0.001) Yellow (0.000)
Hull Class Circle (0.652) Triangle (0.293) Med. Rect./Oval (0.028)
Mark Class Wispy Horiz. (0.847) Circular (0.113) Square (0.023)
Font Serifs Sans-Serif (0.671) Serif (0.329) No Chars (0.000)

Table 7: Predicted categorical logo features for the generated brand. For each feature, we list the top
three most likely outcomes under the model, together with their probabilities. (Throughout,
the abbreviation “Med.” stands for “Medium.”
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Figure 15: A rendering by one of the authors of a logo matching the features described in Tables 5,
6, and 7.

identities. We include additional simulated identities in Appendix D. Next, we discuss
the decision support implications for the model, with an eye to answering the questions we
outlined in the introduction.

7.4. Crossmodal Inferences

Finally, from both a design and managerial perspective, the most critical component of our
model is the ability to move across modalities. That is, to predict, for instance, a logo, from
a textual brief. This is the designer’s perspective we outlined in the introduction. Moving
from text and brand personality to logo features allows us to inform the design process
in a data-driven fashion, by automatically translating text and survey data into visual
templates. The ability to go from a logo to text and personality is also important, insofar
as it allows for both the evaluation of potential identities, and for “letting the logos speak,”
to gain a better understanding of common design patterns. These are the researcher’s and
manager’s perspectives we outlined in the introduction. In this section, we illustrate two
of these channels: going from brand personality to text and logo, and going from text to
brand personality and logo.10

Before delving into those illustrations, we describe how the process works, mathemat-
ically. In all cases, crossmodal predictions work through the modality specific inference
networks, combined with the full decoder network. Specifically, given data on domain d for
a new firm, denoted xdnew, we can learn the approximate posterior of that brand’s represen-
tation, znew, via the modality d inference network:

znew ∼ N (ξnew,1, ξnew,2), ξnew = INetd(xnewd
;φd).

We can then make predictions for any of the domains by passing the expectation for znew,
E(znew) = ξnew,1 through the decoder network for any of the domains of interest, d∗:

p(xd
∗

new | znew) = p(xd
∗

new |µd
∗
bj = DNetd∗(znew; θd∗)).

This reveals the practicality of this multiview inference network approach: evaluating a

10Going from logo to text and brand personality is a work in progress.
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conditional posterior predictive is equivalent to evaluating two functions: the inference
network of the given domain d to infer the posterior of the latent parameter z, and the
decoder network of the domain of interest d∗, conditional on the inferred z.

7.4.1. Brand Personality to Textual and Visual Identity

Given a brand personality profile, our goal is to use the MVA framework to understand
what words might describe a firm with that personality, and what features are likely in that
firm’s logo. As a case study, we will focus on a firm that is a rugged, masculine, reliable,
and hard working firm, with brand personality profile (relative to the mean) displayed in
Figure 16.

Using the brand personality encoder network, we can learn a posterior distribution over
z for a brand with this personality. Plugging the mean of that posterior distribution for z
into the text decoder network, we find the most likely words are those shown visually in
the word cloud in Figure 17, and in Table 8. Visually, the model expects to find again a
blue logo, similar to the randomly generated firm in the previous section. The accent colors
it expects now are again yellow, but also light blue. The font it expects is distinct from
the random profile: it expects that this firm will use bold condensed letters, as opposed
to wide. In terms of convex hull, it gives the highest probability to a circular or wide
ovular/rectangular logo. Finally, similar to the random logo, it expects this firm will have a
dark logo with low whitespace, and with a lower than average aspect ratio, indicating that
it is less wide and more tall than average. We again provide a non-professional rendering
of a logo meeting many of these criteria in Figure 18.
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Figure 16: Brand personality of our focal firm for doing crossmodal inferences. Personality values
are shown relative to the mean (i.e. differenced from the mean personality value across
all firms).
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Figure 17: A word cloud reflecting the most likely words generated from the crossmodal inference
procedure for the focal brand personality profile, corresponding to words that would likely
be on the website of a firm with that brand personality.

Top 20 Words

Most Likely promis, regul, unit, whole, men, shop, accomplish, effici,
specialti, women, account, environment, strong, solut,
mobil, visit, exceed, divis, heritag, abil

Relatively Likely regul, ceo, meaning, compet, scientif, whole, treatment,
footprint, sector, trend, dollar, forc, implement, latest,
faster, healthier, everywher, clinic, sophist, compon

Relatively Unlikely improv, compani, time, experi, state, high, around, deliv,
also, day, offer, countri, best, can, everi, creat, provid, us,
new, work

Table 8: Likely and unlikely words generated from the crossmodal inference procedure for the focal
brand personality profile, corresponding to words that would (not) be on the website of a
firm with that brand personality.

7.4.2. Text to Logo and Brand Personality

Our final illustration of crossmodal inferences illustrates the direction that most approxi-
mates the design process: from a textual description to a logo and a prediction of brand
personality perceptions. For this section, we will focus on a firm that was not included in
our original dataset: Shake Shack. Shake Shack is a modern fast casual restaurant, serving
burgers, hot dogs, milkshakes, and french fries, based out of New York City. We processed
this text as we did the brands in our original sample, and present a summary of the text
from their website in Figure 19. We then used the text inference network to infer Shake
Shack’s latent zb. This was then passed to our logo and personality inference networks, to
predict the feature’s of Shake Shack’s logo, and the way consumers will perceive their brand
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Firm
Figure 18: Rendering of a logo containing many of the traits the model predicts given the focal brand

personality.

personality.

In Figure 20, we present the brand personality predictions, which we assess to be rel-
atively accurate: Shake Shack is a fairly trendy, contemporary take on fast food. It is
generally perceived as (relatively) glamorous and exciting, especially in its association with
New York City, and cheerful in both what it does, and how it portrays itself. In Tables 9,
10, and 11, we give the logo predictions, which are somewhat less accurate. Interestingly,
the accent color of (light) green is accurately predicted, as is the square font, the high peri-
metric complexity, the vertical symmetry, and the higher variation in lightness. But many
of the other predictions, including the dominant color of brown, the bold font, and the left
placement of the mark are off.

We may then ask, why do the model’s predictions differ from reality in the case of
Shake Shack? One interpretation is that Shake Shack has intentionally deviated from the
mold, to draw on certain poignant associations. For instance, an interesting element of the
Shake Shack logo is its resemblance to an old neon sign, emblematic of an old school hot
dog stand. While a standard fast food or fast casual restaurant may indeed feature bold
font, Shake Shack differs from the model to emphasize its heritage. Moreover, the emphasis
on blacks, instead of browns or blues, is characteristic of sophistication, charm, and luxury.
Originating in New York, and marketing itself as a more upscale experience, relative to the
standard burger and fries chains, perhaps this relative emphasis is thus strategic in its appeal
to the New York demographic, and its key point of differentiation from the competition.

8. Conclusions

In this work, we have explored logo design and brand identity from a data-driven perspec-
tive. Our primary contributions are an approach to working with logos as data in a way
that is both automatic and human interpretable, predictive results which can help iden-
tify specific features of interest and understand patterns in design, and finally a multiview
learning model that mimics the design process, and in which we introduce a new approach
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Figure 19: A word cloud representing the text from Shake Shack’s website, processed in the same
way as our original textual data.
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Figure 20: Brand personality predictions for Shake Shack, relative to the mean brand personalities
in our sample, based on a crossmodal prediction from Shake Shack’s text.

for using variational autoencoders for multiview learning. Our feature extraction algorithm
makes the process of understanding logo design both objective, in the sense that it is done
automatically through image processing, and useful for designers, in the sense that the
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Color Font Layout
Feature Prob Feature Prob Feature Prob

Has: Dark Blue 0.729 Weight: Bold 0.746 Mark pos: Left 0.509
Has: Med Blue 0.826 Weight: Original 0.654 Has Mark 1.000
Has: Light Green 0.861 No Italics 1.000
Accent: Dark Blue 0.820 Class: Geometric Square 1.000
Accent: Light Blue 0.923
Accent: Light Green 0.959

Table 9: Binary logo features that the model predicted would occur with greater than 50% proba-
bility for Shake Shack, together with the predicted probabilities.

Feature Value Feature Value

# Characters 0.22 Aspect Ratio 0.37
# Colors 0.59 Entropy 0.52
# Corners 0.05 Perimetric Complexity 0.60
# Marks -0.26 Horizontal Symmetry -0.47
# Regions -0.01 Vertical Symmetry 0.87
% White -0.37 Mean Lightness -0.33
Vertical Edges 1.26 Mean Saturation -0.28
Down Diag Edges 0.50 SD Lightness 0.15
Horizontal Edges -0.75 SD Saturation -0.56
Up Diag Edges -1.14

Table 10: Real-valued logo features that the model predicted for the Shake Shack. These values
are standardized values (z-scores), and hence can be interpreted as standard deviations
different from the average value of the feature.

Feature First (Prob) Second (Prob) Third (Prob)

Dominant Color Brown (0.847) Med. Blue (0.141) Dark Blue (0.006)
Hull Class Med. Rect./Oval (0.665) Thin Rect./Oval (0.333) Triangle (0.001)
Mark Class Vertical Narrow (0.359) Square (0.330) Bulky Hollow Geom. (0.306)
Font Serifs Sans-Serif (0.970) Serif (0.030) No Characters (0.000)

Table 11: Predicted categorical logo features for Shake Shack. For each feature, we list the top three
most likely outcomes under the model, together with their probabilities. (Throughout,
the abbreviation “Med.” stands for “Medium.”

features are interpretable.

Our multiview learning model provides a way of moving across three focal modalities—
textual descriptions of brands, their logos, and consumers’ perceptions brand personality.
In turn, this allows us to understand what features of logos convey which aspects of brand
meaning, to aid in the design process, and to help managers understand the implications
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of various design patterns. Our inference procedure mimics the way we envision the model
being used by both designers and managers: the encoder networks allow any feature to
be used as an input, from which the model can predict all left out features. In applying
the model to our data, we learned a latent space that is meaningful, and in which vector
operations, like the interpolation between two brands, yields interesting insights to brand
identity. This interpolation procedure illustrates another key benefit of the representation
learning paradigm, insofar as it can assist in the creative process.

Finally, there are several important limitations of this study. Foremost, our model is
a model of typicality, not optimality, as alluded to particularly with the example of Shake
Shack. We are able to capture what a typical firm does, not what is the best logo for a
firm to do, given certain objectives other than typicality. Additionally, our model does not
make strong claims about the causality of design: that is, why are existing logos designed
the way they are? Answering this question is difficult, and likely involves both temporal
factors (e.g. mimicry of a successful brand) and functional factors (e.g. red is easy to see
on a sign from far away, or red stimulates the appetite). We leave both of these issues as
topics for future study.
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Appendices

A. Logo Feature Details

In the following table, we explain all of our logo features, and their bases in the literature.
Note that the features are grouped, according to their theoretical basis in the literature. In
the model, each feature is treated independently.
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B. Technical Details on the Logo Feature Extraction Algorithm

In this section, we give more of the technical details of our image processing algorithm. For
specific features, see Appendix A. The basic data representation of images is the raster
array, which defines an image by an h × w grid of color values. The grid cells are called
pixels, and the colors are typically broken down according to an underlying color model.
The most common color model is the red-green-blue (RGB) system, which defines the full
spectrum of colors by intensities on red, green, and blue color channels. Most image analysis
algorithms are based on this representation of an image, and most data analysis software
imports images in this form. An alternative representation, which we make use of in our
own image processing algorithms, is the hue-saturation-value (HSV) color model, which is
a cylindrical coordinates transformation of the RGB color space. It defines colors in terms
of their hue, meaning the basic color itself, saturation, meaning how “intense” the color is,
and value, which refers to how bright the color is. Finally, greyscale images can be also
represented through raster arrays as a single decimal value at each pixel, representing the
intensity of light at that pixel.

B.1. Color Quantization through Density-based Clustering

The algorithm begins by learning how many distinct colors are in a given logo through a
density-based clustering algorithm. Specifically, we employ the DBSCAN algorithm, which
is a popular clustering algorithm which does not rely on a pre-specified number of clusters
or distributional assumptions (Ester et al., 1996). Rather, it uses a density criterion to
automatically determine both the number of clusters and cluster membership. DBSCAN is
ideal for this application, as we know exactly the nature of the colorspace on which we are
clustering, allowing us to specify a sensible density cutoff. Moreover, it is robust to noise.

We perform DBSCAN clustering on the HSV colorspace, which is a cylindrical coordi-
nate transformation of the RGB colorspace that separates out the actual color value (hue)
from other aspects of the color (saturation and lightness, also called value). Because of the
cylindrical nature of the colorspace, hue (i.e. color) is represented along a circle, and hence
the clustering must also operate over a circle, as shown in Figure 21. This is another benefit
of DBSCAN: it does not rely on any assumptions about the distributions of the points or
the geometry of the space, besides for being able to specify a suitable density metric.

A downside of DBSCAN is that it can be computationally inefficient, and the logos in
our dataset can be quite large. Thus, we typically do DBSCAN on a random selection of
pixels. Once we have identified the number of clusters through that, we use those same
cluster centers in the standard k-means algorithm. The end result of the clustering is an
assignment of each pixel in the original logo to a color cluster, or to the background. This
is referred to as color quantization.
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Figure 21: The three colors from Burger King’s logo (blue, red, and yellow), plotted as the Hue value
from HSV in polar coordinates. Here, red is the cluster of points at right, yellow is the
cluster in the top-right, and blue is the cluster in the bottom-left. This is the space on
which the DBSCAN clustering operates.

B.2. Region-based Segmentation

Computationally, quantizing the logo reduces the three dimensional raster array into a two
dimensional matrix of cluster assignments. This is illustrated in Figure 22. Given this
format, determining distinct regions of the logo is often as simple as identifying connected
regions of this matrix, and this, plus some steps to filter out noise and very small image
segments, is how our algorithm proceeds. However, there are two complications. The first
relates to text: in practice, some fonts are condensed to the point that two letters are
slightly joined, leading the algorithm to think there is only one connected region, when
there are in fact two distinct letters. The second complication relates to the mark, and is
in some sense the inverse of the first: sometimes, a single mark may consist of several very
closeby regions.

To address the first concern, we employ mathematical morphology, specifically the ero-
sion and dilation operations. Erosion is a standard image processing technique that works on
binarized images (background = 0, foreground = 1), transforming that image by assigning
each pixel in the transformed image the minimum value within a pre-defined neighborhood
of that pixel in the original binary image. Dilation is similar, but employing the maximum.
In practice, what this means is that in erosion, connected regions are typically shrunk,
whereas in dilation, they are expanded. To use these operations to help separate barely
connected letters, we employ the following three steps: first, for every region isolated in
the basic segmentation, we apply erosion, and identify any subregions generated by that
erosion. Second, we separate those subregions, and then dilate them to approximately their
original form. Finally, we run each of these new features through the font identification
system defined in the next section. If any of them is identified as a font, the old region is
discarded in favor of the subregions.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 0 0
0 0 0 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 0 0
0 0 0 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22: An example of color quantization: the image at left is quantized, yielding the matrix
representation at right, where 0 corresponds to blue, 1 to red, and 2 to green.

To address the second concern, we again apply DBSCAN clustering, this time using
position on the logo as the quantity of interest. We set the density in the DBSCAN algorithm
according to the size of the logo. This then finds mark pixels that are close together,
regardless of whether or not they are actually connected.

B.3. Font Identification

For each of the segments identified through the above procedure, we first try to match them
to a font. To do that, we standardize each segment to a grayscale 25×25 pixel representation,
then apply template matching against our extensive collection of fonts, which have also been
converted to the same representation. This representation is equivalent to representing each
segment, and each font instance, as a length 625 vector, with values between 0 (black) and 1
(white). By template matching, we mean a simple distance calculation between the segment
of interest, and each member of our font dictionary. In practice, this takes the form of a
correlation between the entries in the segment vector and the entries in each font instance
vector. We use a fairly simple heuristic to identify whether a segment represents a character:
if the correlation between the segment and any font instance is greater than a certain cutoff,
we say it is a match, and say that the segment matches the font with the highest correlation.
We use different cutoffs, depending on the complexity of the segment, where complexity is
measured by the perimetric complexity (the ratio of edge pixels to interior pixels). This is
important because some letters, like i (which is represented without the dot), l, and o are
very similar to commonly occurring mark features.
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B.4. LAB Color Clustering

The colors within a given logo are represented in the continuous RGB color space. To
convert these color triples to meaningful dictionary items, we then run another clustering
algorithm on these triples across logos.12 However, in order to cluster the colors, we need
a sensible distance metric in this space. While RGB colors are the standard for computer
representation, it is well established that distances in RGB color space do not correspond
well to distances in human perceived distance. To rectify that, we employ another colorspace
transformation, from RGB to the CIE-LAB (also just called LAB) colorspace, which is
designed such that distances in colorspace correspond to differences in human perception
of color (McLaren, 1976). Then we perform standard K-means clustering, resulting in the
color dictionary shown in Figure 3.

B.5. Hull and Mark Clustering

To cluster both the hulls and the marks, we apply a similar procedure described above for
fonts: we convert each hull and each mark to a 25 × 25 standardized greyscale represen-
tation, and then apply ordinary k-means clustering over the resultant length 625 vectors,
determining the optimal number of clusters via scree plots. The only challenge is for the
marks: the standardization procedure discards information about size. Yet, we also want to
capture the different sizes of marks: a mark that forms the background of, and thus takes
up 80% of a logo is different than one that takes up only 10%. To take this into account,
we include an additional term in the clustering of marks, that adds weight to the fraction
of the the logo’s area taken up by the mark.

C. Additional Model-free Analyses

The goal of these analyses is to see whether or not the brand personality and the industry
category of the brand explain anything about a firm’s logo. To do that, we considered all
logo features as real-valued outcomes, and ran naive OLS regressions, saving the adjusted
R-squared value from each.13 We did this analysis in three separate batches: (1) predicting
logos from industry, (2) predicting logos from brand personality, and (3) predicting logos
from both together.

In Tables 13 and 14, we present the results for the most and least explained variance
features, from regressions 1 and 2. In general, we find that brand personality scores capture
much more variance than the industry codes, though this may also be attributed to the
greater variance in the continuous brand personality scores, versus the binary industry
labels. We find that features pertaining to the color palette tend to be the easiest to

12The number of clusters both in this step and others was determined by the researcher, using scree plots.
13In many cases, the true variable is not real valued (see Appendix A), but rather binary, and thus this

approach will sometimes be underpowered.
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Most Least
Feature R2 Adjusted Feature R2 Adjusted

SD: sat 0.249 0.201 Dom. color: grey dark 0.037 -0.025
Mean: sat 0.187 0.135 Width: mixed 0.042 -0.02
Perc. white 0.164 0.111 Mark class: thin vertical rectangle 0.044 -0.017
GPC 0.137 0.081 Mark pos: absright 0.049 -0.012
Hor. symmetry 0.132 0.076 Mark class: wispy horizontal lines 0.049 -0.012
Color: yellow 0.13 0.074 Mark pos: top 0.053 -0.008
Font weight: bold 0.121 0.065 style mixed 0.054 -0.007
Hull type: rectangle-oval thin 0.12 0.063 Mark class: simple shapes 0.054 -0.006
Color: black 0.119 0.062 Mark class: long horizonal 0.054 -0.006
Down diagonals 0.118 0.062 Mark class: bad letters 0.054 -0.006

Table 13: The ten logo features with the most and least variance explained by brand personality, as
captured by simple OLS.

Most Least
Feature R2 Adjusted Feature R2 Adjusted

Hor. symmetry 0.147 0.084 Mark class: bad letters 0.025 -0.046
SD: sat 0.141 0.078 Dom. color: brown 0.038 -0.033
Mean: light 0.14 0.078 Dom. color: red dark 0.044 -0.026
Horizontal edges 0.135 0.072 Mark pos: bottom 0.045 -0.025
Perc. white 0.117 0.052 Mark pos: bot 0.047 -0.023
Entropy 0.114 0.049 Color: red dark 0.047 -0.022
Dom. color: blue medium 0.113 0.048 Mark class: bulky hollow geometric 0.048 -0.022
SD: light 0.111 0.046 Mark class: hollow circles 0.048 -0.022
Color: blue medium 0.111 0.046 Dom. color: blue dark 0.049 -0.021
Hull type: rectangle-oval thin 0.105 0.039 Mark class: long horizonal 0.052 -0.018

Table 14: The ten logo features with the most and least variance explained by industry codes, as
captured by simple OLS.

Feature Industry BP Both Feature Industry BP Both

SD: sat 0.078 0.206 0.222 down diag 0.022 0.069 0.081
Mean: sat 0.03 0.145 0.159 SD: light 0.046 0.052 0.077
Perc. white 0.052 0.123 0.157 Color: grey dark 0.008 0.051 0.073
Hor. symmetry 0.084 0.074 0.128 Color: black 0.024 0.051 0.065
Mean: light 0.078 0.055 0.104 Entropy 0.049 0.026 0.06
Horizontal edges 0.072 0.055 0.103 # Chars 0.011 0.052 0.057
Color: yellow 0.005 0.08 0.093 Color: red 0.038 0.045 0.056
GPC 0.019 0.081 0.09 # Colors 0.028 0.027 0.049
Hull type: rectangle-oval thin 0.039 0.062 0.083 ar 0.033 0.032 0.046
Font weight: bold 0.01 0.07 0.083 # Regions 0.016 0.052 0.046

Table 15: The 20 highest adjusted R2 values from predicting logo features with both brand person-
ality and industry codes, compared to the same adjusted R2 from just the industry code
model, and just the BP model. We see in almost all cases, a modest increase in adjusted
R2 from considering both sets of predictors jointly. Note that the number in the BP
column may be slightly different than in Table 13, as several firms were missing industry
codes, and had to be excluded.
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explain in both cases, including the mean and variance of the HSV colorspace’s saturation
and lightness (value) channels, the percentage whitespace, and a few of the color variables.
Interestingly, in both cases, the degree of horizontal symmetry is also well explained, as do
various aspects of complexity, including perimetric complexity and entropy. The variables
that are least explained by BP and industry tend to be those that either relate to the mark
class, or those that tend to have very few observations associated with them, like logos with
mixed font styles, or logos with the mark at the bottom.

In Table 15, we show what happens to the adjusted R-squared in regression 3, when we
include both brand personality and industry codes in simple OLS to predict logo features.
This illustrates the importance of jointly considering both what the firm does, as well as the
firm’s brand identity : in almost all cases, we find that the adjusted R-squared of including
both sets of predictors is higher than either of the models in isolation. As this is adjusted
for the number of predictors, this indicates that there is explanatory power by considering
both sets of variables jointly.

D. Simulating More Brand Identities

Generating identities from the model is straightforward. In this section, we present several
additional simulations, albeit in less detail that the cold, modern corporation above. Each
of these was generated simply by evaluating each of the decoder network at a vector of 10
standard normal draws.

Sophisticated Media The following corresponds to a brand identity with

z = (−1.60, 0.45,−0.71,−1.35,−1.29, 1.50,−1.36, 0.01, 1.23,−1.33) :

• Relatively likely words: ’book’, ’physic’, ’televis’, ’word’, ’step’, ’decemb’, ’sophist’,
’someth’, ’pleas’, ’readi’

• Relatively unlikely words: ’communiti’, ’can’, ’custom’, ’compani’, ’global’, ’solut’,
’servic’, ’innov’, ’work’, ’provid’

• Top three relative brand personality traits: glamorous, trendy, exciting

• Bottom three relative brand personality traits: masculine, hard working, wholesome

• Some likely visual features: black dominant color, yellow and light green accent colors,
light font, no italics, geometric font class, has a mark

From these traits, we label this a sophisticated media firm.
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Family Friendly Food The following corresponds to a brand identity with

z = (−1.12, 0.22, 0.04,−1.22, 1.17, 0.56, 0.28, 0.91, 1.11, 0.83) :

• Relatively likely words: ’www’, ’televis’, ’central’, ’happen’, ’mutual’, ’dollar’, ’in-
gredi’, ’ultim’, ’hand’, ’kind’

• Relatively unlikely words: ’employe’, ’technolog’, ’solut’, ’global’, ’new’, ’custom’,
’work’, ’innov’, ’servic’, ’provid’

• Top three relative brand personality traits: cheerful, friendly, family-oriented

• Bottom three relative brand personality traits: rugged, tough, masculine

• Some likely visual features: brown dominant color, red and yellow accent colors, bold
font, geometric font class, has a mark

From these traits, we label this a family-friendly food firm.
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