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a b s t r a c t

We are considering knowledge discovery from data describing a piece of real or abstract world. The

patterns being induced put in evidence some laws hidden in the data. The most natural representation of

patterns-laws is by ‘‘if..., then...’’ decision rules relating some conditions with some decisions. The same

representation of patterns is used in multi-attribute classification, thus the data searched for discovery of

these patterns can be seen as classification data. We adopt the classification perspective to present an

original methodology of inducing general laws from data and representing them by so-called monotonic

decision rules. Monotonicity concerns relationships between values of condition and decision attributes,

e.g. the greater the mass (condition attribute), the greater the gravity (decision attribute), which is a

specific feature of decision rules discovered from data using the Dominance-based Rough Set Approach

(DRSA). While in DRSA one has to suppose a priori the presence or absence of positive or negative

monotonicity relationships which hold in the whole evaluation space, in this paper, we show that DRSA

can be adapted to discover rules from any kind of input classification data, exhibiting monotonicity

relationships which are unknown a priori and hold in some parts of the evaluation space only. This

requires a proper non-invasive transformation of the classification data, permitting representation of

both positive and negative monotonicity relationships that are to be discovered by the proposed

methodology. Reported results of a computational experiment confirm that the proposed methodology

leads to decision rules whose predictive ability is similar to the best classification predictors. It has,

however, a unique advantage over all competitors because the monotonic decision rules can be read as

laws characterizing the analyzed phenomena in terms of easily understandable ‘‘if..., then...’’ decision

rules, while other predictor models have no such straightforward interpretation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Knowledge discovery from data describing a piece of real or
abstract world is a field of computer science that concerns the
process of automatically searching the data for patterns that can
be considered knowledge about this piece of the world. The
patterns are to evidence by induction some laws hidden in the
data. The most natural representation of patterns-laws is by ‘‘if...,
then...’’ decision rules relating some conditions with some deci-
sions. The same representation of patterns is used in multi-
attribute classification, thus the data searched for discovery of
these patterns can be seen as classification data. In this paper, we
adopt the classification perspective to present an original meth-
odology of inducing general laws from data and representing
them by so-called monotonic decision rules.

Classification concerns a set of objects described by a set of
attributes. Commonly, in the set of attributes there is at least one
ll rights reserved.
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called decision attribute (also called dependent variable, output
variable or predictor), and others called condition attributes (also
called independent variables, input variables or features). The
decision attribute makes a partition of the set of objects into classes,
thus the value set of the decision attribute is composed of class
labels. Analysis of classification data aims at discovering relation-
ships between decision attribute and condition attributes, which can
be seen as patterns or laws characterizing the world described by
the data. The type of discovered relationships depends on the
character of decision and condition attributes. The character of the
attributes which is pertinent for our study concerns the presence or
absence of an order in their value sets. Specifically, we distinguish
ordinal and non-ordinal attributes, both decision and condition.

Moreover, the nature of the classification problem may require
that discovered relationships show a monotonic dependency

between values of some ordinal condition attributes and values
of the ordinal decision attribute, e.g. the greater the mass
(condition attribute), the greater the gravity (decision attribute).
This was precisely a specific feature of the approach to knowledge
discovery from data presented in a series of publications on
Dominance-based Rough Set Approach (DRSA) (see, e.g. Greco
et al., 2001, 2007; S"owiński et al., 2009). Let us remember that
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DRSA has been developed as a generalization of rough set theory
(Pawlak, 1991) based on the concept of monotonicity for reason-
ing about ordinal data.

In this paper, we shall extend the consideration of monotonicity
on non-ordinal classification. In fact, until now, monotonicity has
been considered only in case there is a clear and predefined
correspondence between decision and condition attributes, such
that we know a priori that the value of the ordinal decision attribute
is consistently monotonically increasing or decreasing with respect
to the value of a given ordinal condition attribute. Very often,
however, the user does not know a priori if such a monotonic
dependency is present, and if so, what type of monotonicity it is. For
instance, investigating how a given substance is influencing a new
disease, the medical doctor could not know how the amount of the
substance in the blood is related to the gravity of this disorder. What
is more, (s)he could not know a priori if the relationship between
the amount of substance and the gravity of disorder is monotoni-
cally positive or negative. In such a case, (s)he would like to discover
from the data if such a monotonic relationship exists and if it is
positive or negative. Moreover, one should not limit the interest to
global monotonicity, which holds in all the space of variation of
decision and condition attributes. We believe that monotonicity is
something more than a relationship between quantities to be
investigated. We claim that it is a universal category permitting to
analyze any data, giving easily understandable laws explaining
important aspects of the studied phenomena. In this sense, we
consider the concept of monotonicity also when the monotonicity is
not global, i.e. there are local relationships of monotonicity that can
be positive in some part of the investigated space, and negative in
other parts of the same space. For instance, investigating the effects
of some medicines in treating a certain disease, we can have that
until a certain point, the greater the dose the better the result, but
after that point the further increase of the dose may have a negative
effect. Such types of phenomena cannot be studied using the
methodology supposing that a positive or negative monotonicity
holds in all the space, and trying to discover relationships respecting
this assumption. Therefore, to deal with classification data describ-
ing such phenomena, we propose a new methodology that attempts
to discover local monotonicity relationships, without assuming a
priori a specific and constant direction of this monotonicity.

Taking into account the distinction of ordinal and non-ordinal
attributes, as well as presence or absence of monotonicity
relationships, we can consider the following types of classification
problems:
ðaÞ
 non-ordinal classification, where all condition attributes and
the decision attribute are non-ordinal,
ðbÞ
 non-ordinal classification, where all condition attributes are
ordinal, but the decision attribute is non-ordinal,
ðgÞ
 ordinal classification, where all condition attributes are non-
ordinal, but the decision attribute is ordinal,
ðdÞ
 ordinal classification, where at least one condition attribute is
ordinal, and the decision attribute is also ordinal, but there is
no monotonic relationship between values of ordinal condi-
tion and decision attributes,
ðeÞ
 ordinal classification, where at least one condition attribute is
ordinal, the decision attribute is also ordinal, and there is a
monotonic relationship between values of ordinal condition
and decision attributes.
The following examples illustrate, respectively, the above
types of classification problems:
ðaÞ
 taxonomy of plants, where condition attributes are morpho-
logical features of the plants and the class labels correspond
to types of plants,
ðbÞ
 taxonomy of plants, where condition attributes are measures
of morphological features and the class labels correspond to
types of plants,
ðgÞ
 rating of films, where condition attributes are characteristics of
films and spectators, and the class labels express the attrac-
tiveness of the films (in terms of one, two, three, etc. stars),
ðdÞ
 classification of comfort states, where the room temperature
is the ordinal condition attribute, and the ordinal decision
attribute is the comfort level, but it is not true that the higher
the temperature, the higher the comfort, nor vice versa,
ðeÞ
 classification of students, where the ordinal condition attributes
are course grades, and the ordinal decision attribute is the overall
student evaluation, while there exists a monotonic relationship
between each course grade and the overall student evaluation.
It is clear that the classification problem ðeÞ is the most specific,
because other classification problems use less background infor-
mation than ðeÞ, however, we shall show that any classification
problem can be formulated in its terms, exploiting the concept of
monotonicity also when it is neither predefined nor global.

The relationships between decision and condition attributes
are particular for each classification problem type. We are inter-
ested in relationships (patterns-laws) in the form of ‘‘if..., then...’’
decision rules. In the condition (if) part of the rules there is a
conjunction of elementary conditions concerning the values taken
by particular condition attributes, while in the decision (then)
part of the rules there is a decision about the class label given to
an object satisfying the condition part.

The rules are induced from classification data presented in a
classification table whose rows correspond to objects and columns
to condition and decision attributes. To induce decision rules for
the ðeÞ classification problem, DRSA presented in Greco et al.
(1998, 1999, 2001, 2005) and S"owiński et al. (2005, 2009). These
rules are called monotonic for their syntax of the form:

if evaluation of object a is greater (or smaller) than given
values of some condition attributes, then a belongs to at least
(at most) given class.

The above syntax takes into account that condition and
decision attributes are ordinal and monotonically related. In this
paper, we want to show that it is advantageous to use DRSA and
monotonic decision rules also in case of all remaining classifica-
tion problems ðaÞ2ðdÞ, after a non-invasive transformation of
classification data for these problems. In fact, DRSA was devel-
oped and applied in case of supposed monotonicity relationship
between values of condition and decision attributes. This is
exactly the case of the ðeÞ classification problem. In case of the
other classification problems, monotonic relationships are not
known a priori and may change from positive to negative in many
points of the range of variation of condition attributes, thus one
must be able to discover local monotonicity relationships. A local
monotonicity relationship becomes global if it is positive or
negative in the whole evaluation space. For example, considering
room temperature as condition attribute, and comfort as decision
attribute, instead of assuming that the higher (or the lower) the
room temperature, the higher the comfort, it is reasonable to
allow splitting this monotonicity relationship into two local
relationships: until some value of the temperature the monotonic
relationship is positive, and it is negative over this value. Even in
case of binary attributes, corresponding to presence/absence of a
property indicated by condition and decision attributes, the
concept of monotonicity makes sense, because the presence of
one property may be more credible when another property
holds, or vice versa. For example, considering weather condition
(sunny/rainy) as condition attribute, and playing golf (yes/no) as
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decision attribute, it is reasonable to expect that ‘‘yes’’ decision is
more credible under sunny than rainy weather, which corre-
sponds to monotonicity relationship among 0–1 coded condition
and decision attributes.

Adaptation of DRSA to discovery of local monotonicity rela-
tionships in classification problems ðaÞ2ðdÞ is the main contribu-
tion of this paper. Due to this adaptation, one can apply DRSA
without declaring a priori where are the turning points of the
monotonicity relationship in the condition attribute space,
because the proposed method is able to discover them by itself.
DRSA induction of decision rules with local monotonic relation-
ships has the following advantages over the use of specific
induction methods for problems ðaÞ2ðdÞ:
�
 it can handle monotonic relationships known a priori, as well
as monotonic relationships that are not known a priori and
have to be discovered,

�
 it can induce general laws involving local monotonicity rela-

tionships, i.e. it is able to discover decision rules with ‘‘inter-
val’’ elementary conditions: ‘‘attribute aiA ½r1

i ,r2
i �’’,
�
 it can handle ordinal and non-ordinal condition and decision
attributes,

�
 the non-ordinal attributes can be nominal, numerical or binary,

�
 it does not need transformation of the value sets (scales) of

condition attributes,

�
 it does not need discretization of numerical condition

attributes,

�
 it is able to discover rules with elementary conditions on

nominal attributes of the type: ‘‘attribute aiAfv1
i , . . . ,vk

i g’’,

�
 it can induce rules providing arguments pro and cons assign-

ment of an object to a given class,

�
 the monotonic rules, together with a specially proposed

classification scheme, have at least as good predictive ability
as other well known predictors, while they are much more
comprehensible than any other forms of relationships between
condition and decision attributes.

Adaptation of DRSA to classification problems ðaÞ2ðdÞ needs a
proper transformation of classification table. This transformation
is non-invasive, i.e. it does not bias the matter of discovered
relationships.

The intuition which stands behind this transformation is the
following. In case of ordinal condition attributes, for which the
presence and the sign of the monotonicity relationship between
values of condition and decision attributes is known a priori, no
transformation is required and DRSA can be applied directly. Each
non-ordinal condition attribute, for which the presence or absence
and the possible sign of the monotonicity relationship is not known
a priori, is doubled and for the first attribute in the pair it is
supposed that the monotonicity relationship is potentially positive,
while for the second attribute, that it is potentially negative. Due to
this transformation, using DRSA one will be able to find out if the
actual monotonicity is global or local, and if it is positive or
negative. The decision attributes are transformed such that:
�
 in case of a non-ordinal decision attribute, each value of this
attribute representing a given feature is replaced by a new
decision attribute with two values corresponding to the pre-
sence and absence of this feature, respectively,

�
 in case of an ordinal decision attribute, each value of interest t,

is replaced by a new decision attribute with two values
corresponding to original values smaller than t and greater
or qual to t, respectively.

More precisely, given a finite set of objects (universe) U

described by condition and decision attributes, we assume that
the decision attribute makes a partition of U into a finite set of
classes X1,X2, . . . ,Xn. To discover rules relating values of condition
attributes with class assignment, in case of non-ordinal classifica-
tion problems, we have to consider n ordinal binary classification
problems with two sets of objects: class Xt and its complement
:Xt , t¼ 1, . . . ,n, which are number-coded by 1 and 0, respec-
tively. We also assume, without loss of generality, that the value
sets of all non-ordinal condition attributes are number-coded.
While this is natural for numerical attributes, nominal attributes
must be binarized and get 0–1 codes for the absence or presence
of a given nominal value. In this way, the value sets of all non-
ordinal attributes get ordered (as all sets of numbers are ordered).
Now, to apply DRSA on a classification problem different from ðeÞ,
we transform the data table such that each number-coded
attribute is cloned (doubled). It is assumed that the value set of
each original number-coded attribute is positively monotonically
dependent on the decision, i.e. the greater the value of the
condition attribute, the higher the number code (rather 1 than
0) of the class assignment, and the value set of its clone is
negatively monotonically dependent on the decision, i.e. the
greater the value of the condition attribute, the lower the number
code (rather 0 than 1) of the class assignment. Then, using DRSA,
we get rough approximations of class Xt and its complement
:Xt , t¼ 1, . . . ,n. These approximations serve to induce ‘‘if...,
then...’’ decision rules recommending assignment to class Xt

(argument pros) or to its complement :Xt (argument cons). In
this way, any classification problem ðaÞ2ðdÞ can be transformed to
an ordinal classification problem with monotonicity constraints.
Due to cloning of attributes with opposite monotonicity relation-
ships, we can have rules that cover a subspace in the condition
attribute space, which is bounded from the top and from the
bottom. This leads (without discretization) to more synthetic
rules than those resulting from induction techniques specific to
classification problems ðaÞ2ðdÞ.

The plan of this paper is the following. In the next section, we
recall DRSA designed for classification problem ðeÞ. Section 3 is
devoted to transformation of classification table in case of the
remaining classification problems ðaÞ2ðdÞ. Then, in Section 4, we
present the classification scheme which says how to use decision
rules for ordinal and non-ordinal classification. In Section 5, we
give an illustrative example which permits to follow all steps of
the transformation of classification data, and shows the mono-
tonic rules obtained from DRSA applied on the transformed data.
Section 6 reports a computational experiment aiming at the
comparison of the proposed approach with other predictors of
classification. The last section includes conclusions and remarks
on future research.
2. Dominance-based rough set approach

This section reminds the main concepts of the Dominance-
based Rough Set Approach (DRSA) (for a more complete presenta-
tion see, for example, Greco et al., 1999, 2001, 2005, 2007;
S"owiński et al., 2005, 2009).

2.1. Data representation—classification table

Information about objects (classification examples) is repre-
sented in the form of an information table. The rows of the table
are labeled by objects, whereas columns are labeled by attributes
and entries of the table are attribute-values. Formally, an informa-

tion table (system) is the 4-tuple S¼/U,Q ,V ,fS, where U is a
finite set of objects, Q is a finite set of attributes, V ¼

S
qAQ Vq and

Vq is the value set of the attribute q, and f : U � Q-Vq is a total
function such that fðx,qÞAVq for every qAQ , xAU, called an
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information function. The set Q is, in general, divided into set C of
condition attributes and set D of decision attributes. When it is
the case, S is called a classification table. Furthermore, it is
supposed that the set of decision attributes D is a singleton {d}.

Condition attributes whose value sets are ordered are called
ordinal attributes. Without loss of generality, for ordinal attribute
qAC, f : U-R, for all objects x,yAU,fðxÞZfðyÞ means ‘‘x is
evaluated at least as high as y on ordinal attribute q’’, which is
denoted by xkqy. Therefore, it is supposed that kq is a complete
preorder, i.e. a strongly complete and transitive binary relation,
defined on U on the basis of evaluations fð�Þ. Ordinal attribute q

may have positive or negative monotonic relationship with the
decision attribute d (which is also ordinal). Positive relationship
means that the greater the value of the condition attribute the
higher the class label (i.e. the value of decision attribute), and
negative relationship means that the greater the value of condi-
tion attribute the lower the class label. For the sake of simplicity,
we assume that all condition attributes in set C are ordinal.

Furthermore, values of decision attribute d make a partition of U

into a finite number of decision classes, X¼ fXt ,t¼ 1, . . . ,ng, such
that each xAU belongs to one and only one class Xt AX. It is
supposed that the classes are ordered, i.e. for all r, sAf1, . . . ,ng,
such that r4s, the objects from Xr are in higher class than the
objects from Xs. More formally, if k is a comprehensive weak order

relation on U, i.e. if for all x, yAU, xky means ‘‘x is ranked at least
as high as y’’, it is supposed: [xAXr ,yAXs,r4s� ) ½xky and
not ykx]. The above assumptions are typical for consideration of
ordinal classification problems with monotonicity constraints, also
called multiple criteria sorting problems.

2.2. Rough approximations

The sets to be approximated are called upward union and
downward union of classes, respectively:

XZ

t ¼
[

sZ t

Xs, Xr
t ¼

[

sr t

Xs, t¼ 1, . . . ,n: ð1Þ

The statement xAXZ

t means ‘‘x belongs to at least class Xt’’, while
xAX r

t means ‘‘x belongs to at most class Xt’’. Let us remark that
XZ

1 ¼ X r
n ¼U, XZ

n ¼ Xn and X r
1 ¼ X1. Furthermore, for t¼2,y,n,

Xr
t ¼U�XZ

t�1 and XZ

t�1 ¼U�Xr
t : ð2Þ

The key idea of the rough set approach is representation
(approximation) of knowledge generated by decision attributes,
using ‘‘granules of knowledge’’ generated by condition attributes.
In DRSA, where condition attributes are ordinal and decision
classes are ordered, the represented knowledge is a collection of
upward and downward unions of classes and the ‘‘granules of
knowledge’’ are sets of objects defined using a dominance relation.
Dominance relation is defined with respect to PDC. x dominates y,
denoted by xDy, if for every ordinal attribute qAP, fðx,qÞZfðy,qÞ.
The relation of dominance is reflexive and transitive, that is it is a
partial preorder.

Given a set of ordinal attributes PDC and xAU, the ‘‘granules
of knowledge’’ used for approximation in DRSA are:
�
 a set of objects dominating x, called dominating set,
Dþ ðxÞ ¼ fyAU : yDxg,

�
 a set of objects dominated by x, called dominated set,

D�ðxÞ ¼ fyAU : xDyg.
Remark that the ‘‘granules of knowledge’’ defined above have
the form of upward (positive) and downward (negative) dom-

inance cones in the evaluation space.
Let us recall that the dominance principle (or Pareto principle)

requires that an object x dominating object y on all considered
ordinal attributes (i.e. x having evaluations at least as high (good)
as y on all considered attributes) should also dominate y on the
decision (i.e. x should be assigned to at least as high (good)
decision class as yÞ.

Violation of the dominance principle leads to inconsistency

w.r.t. dominance. Given PDC, the inclusion of an object xAU to
the upward union of classes XZ

t , t¼2,y,n, is inconsistent w.r.t.
dominance if one of the following conditions holds:
�
 x belongs to class Xt or higher but it is dominated by an object
y belonging to a class lower than Xt, i.e. xAXZ

t but
Dþ ðxÞ \ X r

t�1a|,

�
 x belongs to a lower class than Xt but it dominates an object y

belonging to class Xt or higher, i.e. x=2X Z

t but D�ðxÞ \ X Z

t a|.

If, given a set of ordinal attributes PDC, the inclusion of xAU

to XZ

t , where t¼ 2, . . . ,n, is inconsistent w.r.t. dominance, then x

belongs to XZ

t with some ambiguity. Thus, x belongs to XZ

t without

any ambiguity if xAXZ

t and there is no inconsistency w.r.t.
dominance. This means that all objects dominating x belong to
XZ

t , i.e. Dþ ðxÞDX Z

t .
Furthermore, x possibly belongs to XZ

t if one of the following
conditions holds:
�
 according to decision attribute d, x belongs to XZ

t ,

�
 according to decision attribute d, x does not belong to XZ

t , but it is
inconsistent w.r.t. dominance with an object y belonging to XZ

t .

In terms of ambiguity, x possibly belongs to XZ

t , if x belongs to
XZ

t with or without any ambiguity. Due to the reflexivity of the
dominance relation, the above conditions can be summarized as
follows: x possibly belongs to class Xt or higher, if among the
objects dominated by x there is an object y belonging to class Xt or
higher, i.e. D�ðxÞ \ X Z

t a|.
The lower approximation of XZ

t , denoted by X Z

t
, and the upper

approximation of X Z

t , denoted by X
Z

t , are defined as follows
ðt¼ 1, . . . ,nÞ:

X Z

t
¼ fxAU : Dþ ðxÞDXZ

t g, ð3Þ

X
Z

t ¼ fxAU : D�ðxÞ \ XZ

t a|g: ð4Þ

Analogously, one can define the lower approximation and the
upper approximation of X r

t as follows ðt¼ 1, . . . ,nÞ:

X r
t
¼ fxAU : D�ðxÞDXr

t g, ð5Þ

X
r
t ¼ fxAU : Dþ ðxÞ \ Xr

t a|g: ð6Þ

The lower and upper approximations so defined satisfy the
following properties for all PDC:

X Z

t
DXZ

t DX
Z

t

and

X r
t

DXr
t DX

r
t , t¼ 1, . . . ,n,

X Z

t
¼U�X

r
t�1

and

X
Z

t ¼U�X r
t�1

, t¼ 2, . . . ,n,

X r
t
¼U�X

Z

tþ1

and

X
r
t ¼U�X Z

tþ1
, t¼ 1, . . . ,n�1:
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2.3. Variable consistency rough approximations

In DRSA, lower approximation of a union of ordered classes
contains only consistent objects. This definition of the lower
approximation appears to be too restrictive in practical applica-
tions. In the consequence, lower approximations may be even
empty, preventing generalization of data in terms of decision
rules. This observation has motivated research on generalizations
of definition of lower approximation.

One of the possibilities is a generic definition of extended
lower approximation, which is defined as Variable Consistency
Dominance-based Rough Set Approach (VC-DRSA) (B"aszczyński
et al., 2009; Greco et al., 2000b). This definition allows to include
the lower approximation objects with sufficient evidence for
membership to approximated union of decision classes. The
evidence is quantified by consistency measures. In B"aszczyński
et al. (2009), we distinguished gain-type and cost-type consis-
tency measures, and we specified conditions that must be
satisfied by these measures. For PDC,yAU, given a gain-type
(resp. cost-type) object consistency measure YðyÞ and a gain-
threshold (resp. cost-threshold) y, the lower approximation of
XZ

t , and the lower approximation of Xr
t are defined as

X Z

t
¼ fyAXZ

t : YX Z

t
ðyÞpyX Z

t
g, ð7Þ

X r
t
¼ fyAXr

t : YX r
t
ðyÞpyX r

t
g,

where p denotes Z in case of a gain-type object consistency
measure and a gain-threshold, or r for a cost-type object
consistency measure and a cost-threshold. In the above definition,
yX Z

t
A ½0,AX Z

t
�, and yX r

t
A ½0,AX r

t
� are technical parameters indicat-

ing a limit degree of consistency of objects belonging to the
corresponding lower approximation.

2.4. Decision rules induced from rough approximations

The lower approximations of upward and downward unions of
classes can serve to induce ‘‘if..., then...’’ decision rules. In DRSA,
such rules are called certain because their credibility is full. In
VC-DRSA, decision rules induced from lower approximations are,
in general, not fully credible, so they are characterized by a
consistency measure. Using DRSA or VC-DRSA, one can induce
decision rules with the following syntax:

if qi1 ðxÞkti14 � � �4qip ðxÞktip , then xAXZ

t , ð8Þ

if qi1 ðxÞkti14 � � �4qip ðxÞktip , then xAXr
t , ð9Þ

where qi1 , . . . ,qip denote ordinal attributes, and tij denotes a value
taken from the value set of attribute qij , ijAfi1, . . . ,ipgDf1, . . . ,9C9g.
We use symbols k and k to indicate weak order relation and
inverse weak order relation w.r.t. the specified ordinal attribute,
respectively.

Induction of decision rules is a complex problem and many
algorithms have been introduced to solve it. Algorithms proposed
specifically for DRSA and VC-DRSA have been described in Greco
et al. (2000a), Blaszczyński and Slowiński (2003), and
B"aszczyński et al. (2011).

Once the rules are induced, they can be used to classify
objects. The standard classification method used with DRSA and
VC-DRSA has been presented in Greco et al. (2002). In this
procedure, an object covered by a set of rules is assigned to a
class (or a set of contiguous classes) resulting from intersection of
unions of decision classes suggested by the rules. In Blaszczyński
et al. (2007), we presented a new classification method for DRSA
and VC-DRSA. It is based on a notion of a class score coefficient
associated with a set of rules covering the classified object. The
object is assigned to a class getting the highest score.
3. Transformation of classification table

The transformation method which is described below allows
application of DRSA to classification problems ðaÞ2ðdÞ. It should
also be applied to all non-ordinal condition attributes present in
classification problem ðeÞ.

We assume, without loss of generality, that the value sets of
both decision attribute (class labels) and condition attributes are
number-coded. As in classification problems ðaÞ,ðbÞ the complete
ordering of classes X1,X2, . . . ,Xn induced by number-coded class
labels is not entering, in general, into some monotonic relation-
ships with value sets of condition attributes, we have to consider
n binary ordinal classification problems with two sets of objects:
class Xt and its complement :Xt , t¼ 1, . . . ,n, which are number-
coded by 1 and 0, respectively. This means that in the t-th ordinal
binary classification problem, set Xt is interpreted by DRSA as
union XZ

1 and set :Xt as union Xr
0 , t¼ 1, . . . ,n. Classification

problems ðgÞ, ðdÞ and ðeÞ can be handled by DRSA without altering
the original number codes of the class labels. In case of any
classification problem (ordinal or not) with two classes only
ðX1,X2, n¼ 2Þ, we consider it as an ordinal binary classification
problem, where union X Z

1 is composed of all objects belonging to
X1, and union Xr

0 is composed of all objects belonging to X2.
As to non-ordinal condition attributes, we have to distinguish

two kinds of them: numerical and nominal. While numerical
attributes are obviously number coded, nominal condition attri-
butes must be binarized and get 0–1 codes that represent absence
or presence of a given nominal value.

To allow discovery of some local monotonic relationships
between the values of condition attributes and the assignment of
objects to union X Z

1 or to union X r
0 , we clone each of the number-

coded condition attribute. Every cloned attribute is supposed to
enter into one of the two possible monotonicity relations with the
class assignment: positive or negative. Positive relationship means
that the greater the value of the condition attribute, the higher the
number code (rather 1 than 0) of the class assignment, and
negative relationship means that the greater the value of the
condition attribute, the lower the number code (rather 0 than 1)
of the class assignment. As a result, we get pairs of number-coded
attributes with supposed inverse monotonic relationships to the
class assignment. The redundancy in description of objects by
attributes is necessary because it is the monotonic rules that are to
discover the correct direction of the monotonicity relationship.

Formally, the original classification table S including set U of
objects described by set A of attributes is transformed into
classification table S0 including number-coded and cloned (possi-
bly binarized) non-ordinal condition attributes. In case of classi-
fication problems ðgÞ, ðdÞ, and ðeÞ, S0 is handled by DRSA without
altering the original number codes of the class labels. In case of
classification problems ðaÞ and ðbÞ, classification table S0 under-
goes one more transformation: it is replaced by n classification
tables St0,t¼ 1, . . . ,n, that represent each of the binary ordinal
classification problems resulting from transformation of the
original decision attribute.

In classification problems of type ðaÞ2ðdÞ each one of the
condition attributes has to be transformed. In case of classifica-
tion problem ðeÞ, only non-ordinal condition attributes are to be
transformed.

The transformation of each non-ordinal condition attribute
from A is made individually, depending on its type:
(1)
 numerical (number-coded),

(2)
 nominal.
Each numerical (number-coded) attribute ai is represented in
S0 (or in St 0,t¼ 1, . . . ,nÞ, as a pair of ordinal attributes q0i, and q00i .
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The first one in the pair, q0i, is set to have positive monotonic
relationship with (possibly transformed) decision attribute, while
the second one, q00i , is set to have negative monotonic relationship
with the decision attribute, i.e. the second one gets the opposite
ordering. In other words, evaluation of each object xAU by
numerical attribute ai is repeated twice in S0, and the first
evaluation ai(x) is renamed to q0iðxÞ, while the second evaluation
ai(x) is renamed to q00i ðxÞ.

Illustration of the transformation of a numerical attribute is
presented in Fig. 1. Note that the transformation does not
introduce inconsistency w.r.t. dominance. For each object x, and
set of transformed ordinal attributes P0DC0, the dominance cones
Dþ ðxÞ, and D�ðxÞ are composed of x and all objects that have
exactly the same description by P0 as x. Still, object x may be
inconsistent w.r.t. dominance if there are some other objects that
have the same description by P0 as x and at least one of them has a
different class label than x. Nevertheless, such inconsistency is
also present in the original classification table S.

Each nominal attribute aj that has value set composed of k

distinct values is binarized, such that the presence or absence of
the l-th value of this attribute is coded by a new ordinal attribute
qjl taking value 1 or 0, respectively, l¼ 1, . . . ,k. Then, the binary
attribute qjl is represented in S0 (or in St 0,t¼ 1, . . . ,nÞ, by a pair of
binary ordinal attributes, q0jl and q00jl, l¼ 1, . . . ,k. The first one in
each of the pairs, q0jl, is set to have positive monotonic relationship
with the decision attribute, while the second one, q00jl, is set to have
negative monotonic relationship with the decision attribute. In
other words, evaluation of each object xAU by nominal attribute
aj, denoted by aj(x), is first described by k binary attributes qjl,
Fig. 1. Illustration of transformation of numerical attribute a1.

Fig. 2. Illustration of transforma
such that qjlðxÞ ¼ 1 if l¼ ajðxÞ, and qjlðxÞ ¼ 0 otherwise, l¼ 1, . . . ,k.
Then, each binary evaluation qjl(x) is repeated twice in S0, and the
first one is renamed to q0jlðxÞ, while the second one is renamed to
q00jlðxÞ.

Illustration of the transformation of a nominal attribute is
presented in Fig. 2. The transformation of the nominal attribute
does not introduce new inconsistency w.r.t. dominance.
4. Classification

In case of binary classification problems ðaÞ and ðbÞ, and
classification problems ðgÞ, ðdÞ, and ðeÞ, the assignment of a
(new) object x by a set of monotonic decision rules induced by
DRSA or VC-DRSA from the transformed classification table S0, is
performed according to the scheme presented in Blaszczyński
et al. (2007). The classification scheme needs to be updated in
case of transformed classification problems of type ðaÞ and ðbÞ, if
the number of decision classes n42. In this section, we present
the updated scheme.

We consider a (new) object x to be assigned to Xt (considered
as union X Z

1 Þ or to :Xt (considered as union Xr
0 Þ by decision rules

induced from St 0
ðtAf1, . . . ,ngÞ. The classification scheme is based

on a notion of class score coefficient associated with a set of rules
covering the object to be classified. Let us remind three situations
that may occur in case of classification by a given set of rules:
1.
tion
None of the rules cover object x.

2.
 Exactly one decision rule covers object x.

3.
 Several rules cover object x.
Situation 1 results in object x being assigned to all considered
decision classes.

Situation 2 is relatively simple. The classification involves
calculation of a score coefficient that reflects relevance between
rules and the suggested class assignment. For rule rXt

covering

object x and having decision part ‘‘then xAX Z

1 ’’, a value of

scorerXt
ðXt ,xÞ is calculated as

scorerXt
ðXt ,xÞ ¼

9:FrXt
: \ Xt9

2

9:FrXt
:99Xt9

, ð10Þ

where :FrXt
: denotes the set of objects verifying the condition

part of rule rXt
, and 9:FrXt

:9, 9Xt9 and 9:FrXt
: \ Xt9 denote

cardinalities of the corresponding sets: the set of objects verifying
FrXt

, the set of objects belonging to class Xt, and the set of objects

verifying FrXt
and belonging to class Xt. Note that scorerXt

ðXt ,xÞ is
of nominal attribute a2.



Table 1
Set of patients after radical prostatectomy.

Id Age Gleason PSA Volume Recurrence

1 60 10 2.0 large other

2 20 7 1.2 large local

3 40 4 0.1 medium local

4 45 2 0.8 medium no

5 50 3 0.3 small local

6 50 3 0.3 small no

7 40 7 0.5 small no

8 25 5 0.4 small no

9 25 2 0.5 small no

10 40 4 0.5 small no
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a product of confidence and coverage of all rules matching the
description of object x and suggesting its assignment to class Xt.
From probabilistic point of view, coefficient scorerXt

ðXt ,xÞ can be

presented as a product of two conditional probabilities. The first

conditional probability (coverage), Prð:FrXt
:9XtÞ, says what is the

probability of covering object x by a rule suggesting assignment to
Xt, given that object x belongs to Xt. The second one (confidence),

PrðXt9:FrXt
:Þ, says what is the probability that object x belongs to

Xt, given x is covered by a rule suggesting assignment to Xt. Thus,

coefficient scorerXt
ðXt ,xÞ can be rewritten as Prð:FrXt

: \ XtÞ
2=

Prð:FrXt
:ÞPrðXtÞ. Note that Prð:FrXt

: \ XtÞ ¼ Prð:FrXt
:ÞPrðXtÞ when

the two events: covering of object x by a rule suggesting assign-
ment to Xt and object x belongs to Xt are independent. Coefficient
scorerXt

ðXt ,xÞ is thus measuring the relevance between these two

events.
Analogously, for rule r:Xt

matching x and having decision part
‘‘then xAXr

0 ’’, a value of scorer:Xt
ð:Xt ,xÞ is calculated as

scorer:Xt
ð:Xt ,xÞ ¼

9:Fr:Xt
: \ :Xt9

2

9:Fr:Xt
:99:Xt9

: ð11Þ

If object x is covered by a rule suggesting the classification
decision ‘‘then xAXZ

1 ’’, the final score for class Xt and object x is

scoreðXt ,xÞ ¼ scorerXt
ðXt ,xÞ, ð12Þ

If, however, object x is covered by a rule suggesting the classifica-
tion decision ‘‘then xAXr

0 ’’, the final score for class Xt and object
x is

scoreðXt ,xÞ ¼�scorer:Xt
ð:Xt ,xÞ: ð13Þ

Situation 3 requires that we divide the set of rules covering
object x into two subsets: those that suggest assignment of x to Xt

and those that suggest assignment of x to :Xt . Then, we calculate
the value of score coefficient scoreþrXt

ðXt ,xÞ for rules covering object
x and having decision part ‘‘then xAX Z

1 ’’:

scoreþrXt
ðXt ,xÞ ¼

9ð:F1: \ XtÞ [ � � � [ ð:Fk: \ XtÞ9
2

9:F1: [ � � � [ :Fk:99Xt9
: ð14Þ

We also calculate the value of score coefficient score�r:Xt
ðXt ,xÞ for

rules covering object x and having decision part ‘‘then xAX r
0 ’’:

score�r:Xt
ðXt ,xÞ ¼

9ð:F1: \ :XtÞ [ � � � [ ð:Fl: \ :XtÞ9
2

9:F1: [ � � � [ :Fl:99:Xt9
: ð15Þ

The value of the final score for class Xt and object x is

scoreðXt ,xÞ ¼ scoreþrXt
ðXt ,xÞ�score�r:Xt

ðXt ,xÞ: ð16Þ

Let us observe, that analogously to (14) and (15), we can
calculate the score coefficients for the complement of class Xt:

scoreþr:Xt
ð:Xt ,xÞ ¼

9ð:F1: \ :XtÞ [ � � � [ ð:Fl: \ :XtÞ9
2

9:F1: [ � � � [ :Fl:99:Xt9
, ð17Þ

score�rXt
ð:Xt ,xÞ ¼

9ð:F1: \ XtÞ [ � � � [ ð:Fk: \ XtÞ9
2

9:F1: [ � � � [ :Fk:99Xt9
: ð18Þ

The value of the final score for class :Xt is calculated
analogously to (16):

scoreð:Xt ,xÞ ¼ scoreþr:Xt
ð:Xt ,xÞ�score�rXt

ð:Xt ,xÞ: ð19Þ

Let us observe that, taking into account (14), (15), (17), (18),
the following properties hold:

scoreþrXt
ðXt ,xÞ ¼ score�rXt

ð:Xt ,xÞ, ð20Þ

scoreþr ð:Xt ,xÞ ¼ score�r ðXt ,xÞ: ð21Þ

:Xt :Xt
Moreover, according to definition (16), properties (20) and
(21), we get

scoreðXt ,xÞ ¼ scoreþrXt
ðXt ,xÞ�score�r:Xt

ðXt ,xÞ

¼ score�r:Xt
ð:Xt ,xÞ�scoreþr:Xt

ð:Xt ,xÞ

¼�scoreð:Xt ,xÞ:

When classifying object x, the final score scoreðXt ,xÞ is calcu-
lated for each class Xt , t¼ 1, . . . ,n. If for at least one of the classes,
classification situation is different from situation 1, and at least
one of the final scores is positive, the class with the highest value
of the score is selected for the final assignment of x. Otherwise,
the classification result is unknown for x.
5. Illustrative example

Let us consider the following illustrative classification problem,
which is described by non-ordinal attributes only (classification
problem of type ðaÞÞ. The objects are patients after radical prosta-
tectomy, and the decision attribute specifies if there is recurrence of
the disease or not. Moreover, in case of recurrence it may be local
(return of the cancer in the same place) or not (occurrence of the
cancer in other places). Thus, the values of decision attribute
Recurrence are: ‘‘no’’, ‘‘local’’, and ‘‘other’’. Condition attributes that
describe patients are the following. The first two are integer valued
attributes: Age and Gleason score. Tumor Volume is a nominal
attribute with value set composed of three values: ‘‘small’’, ‘‘med-
ium’’, and ‘‘large’’. The values of PSA are continuous. Classification
table with the exemplary set of patients after radical prostatectomy
is presented in Table 1. Observe that there are two patients in the
table, whose description is inconsistent. Patient 5 and patient 6 have
the same description by condition attributes, yet the first one had
local recurrence, while the second one did not have.

To apply DRSA or VC-DRSA to this classification table, we need to
transform Table 1 using the methodology presented in Section 3.
The classification tables resulting from this transformation are
presented in Tables 2–4. Table 2 concerns classification of objects
into two ordered classes: ‘‘no’’ and ‘‘: no’’, i.e. to ‘‘no’’, or to ‘‘local’’ or
‘‘other’’. The two classes are coded by 1 and 0, respectively, which
corresponds to their order. Similarly, Tables 3 and 4, concern binary
classification with ordered classes ‘‘local’’ and ‘‘: local’’, and ‘‘other’’
and ‘‘: other’’, which are also coded by 1 and 0, respectively.

The inconsistencies found in Table 1 are also present in
Tables 2 and 3. This is not surprising because the inconsistencies
in Table 1 have been stated for objects belonging to class ‘‘no’’ and
to class ‘‘local’’. It is worth stressing that no new inconsistent
objects occur after the transformation. As no inconsistencies
existed for objects belonging to class ‘‘other’’, Table 4 continues
to be composed of consistent objects only. This means that the
transformation has been non-invasive.

The set of transformed attributes P0 ¼ fAge0,Age00,Gleason0,
Gleason00,PSA0, PSA0,V-s0,V-s00,V-m0,V-m00,V-l0,V-l00g includes binary



Table 2
Transformed set of patients after radical prostatectomy—binary classification into ‘‘no’’ and ‘‘: no’’.

Id Age0 Age00 Gleason0 Gleason00 PSA0 PSA00 V-s0 V-s00 V-m0 V-m00 V-l0 V-l00 R-no

m k m k m k m k m k m k m

1 60 60 10 10 2.0 2.0 0 0 0 0 1 1 0

2 20 20 7 7 1.2 1.2 0 0 0 0 1 1 0

3 40 40 4 4 0.2 0.2 0 0 1 1 0 0 0

4 45 45 2 2 0.8 0.8 0 0 1 1 0 0 1

5 50 50 3 3 0.3 0.3 1 1 0 0 0 0 0

6 50 50 3 3 0.3 0.3 1 1 0 0 0 0 1

7 40 40 7 7 0.6 0.6 1 1 0 0 0 0 1

8 25 25 5 5 0.4 0.4 1 1 0 0 0 0 1

9 25 25 2 2 0.5 0.5 1 1 0 0 0 0 1

10 40 40 4 4 0.5 0.5 1 1 0 0 0 0 1

Table 3
Transformed set of patients after radical prostatectomy—binary classification into ‘‘local’’ and ‘‘: local’’.

Id Age0 Age00 Gleason0 Gleason00 PSA0 PSA00 V-s0 V-s00 V-m0 V-m00 V-l0 V-l00 R-local

m k m k m k m k m k m k m

1 60 60 10 10 2.0 2.0 0 0 0 0 1 1 0

2 20 20 7 7 1.2 1.2 0 0 0 0 1 1 1

3 40 40 4 4 0.2 0.2 0 0 1 1 0 0 1

4 45 45 2 2 0.8 0.8 0 0 1 1 0 0 0

5 50 50 3 3 0.3 0.3 1 1 0 0 0 0 1

6 50 50 3 3 0.3 0.3 1 1 0 0 0 0 0

7 40 40 7 7 0.6 0.6 1 1 0 0 0 0 0

8 25 25 5 5 0.4 0.4 1 1 0 0 0 0 0

9 25 25 2 2 0.5 0.5 1 1 0 0 0 0 0

10 40 40 4 4 0.5 0.5 1 1 0 0 0 0 0

Table 4
Transformed set of patients after radical prostatectomy—binary classification into ‘‘other’’ and ‘‘: other’’.

Id Age0 Age00 Gleason0 Gleason00 PSA0 PSA00 V-s0 V-s00 V-m0 V-m00 V-l0 V-l00 R-other

m k m k m k m k m k m k m

1 60 60 10 10 2.0 2.0 0 0 0 0 1 1 1

2 20 20 7 7 1.2 1.2 0 0 0 0 1 1 0

3 40 40 4 4 0.2 0.2 0 0 1 1 0 0 0

4 45 45 2 2 0.8 0.8 0 0 1 1 0 0 0

5 50 50 3 3 0.3 0.3 1 1 0 0 0 0 0

6 50 50 3 3 0.3 0.3 1 1 0 0 0 0 0

7 40 40 7 7 0.6 0.6 1 1 0 0 0 0 0

8 25 25 5 5 0.4 0.4 1 1 0 0 0 0 0

9 25 25 2 2 0.5 0.5 1 1 0 0 0 0 0

10 40 40 4 4 0.5 0.5 1 1 0 0 0 0 0
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ordinal attributes V-s0,V-s00,V-m0,V-m00,V-l0,V-l00 resulting from
transformation of nominal attribute Volume. For Table 2,
X r

0
¼ f1;2,3g, while X Z

1
¼ f4;7,8;9,10g.

Two decision rules induced from P0-lower approximations of
X Z

1
and X r

0
using DRSA are sufficient to cover all consistent

objects from Table 2. These rules are:

1 : if Gleason00Z4 and V-s0 r0, then R-nor0,

2 : if PSA0 Z0:4 and PSA00 r0:8, then R-no Z1:

The first rule covers all objects from X r
0

, while the second rule
covers all objects from X Z

1
. Remark that elementary condition

V-s0 r0 from the first rule can be read as ‘‘Volume is not small’’.
Thus, this elementary condition can be expressed in terms of the
original attribute as: VolumeAfmedium,largeg. Moreover, in the
second rule, the elementary conditions based on the cloned
numerical attribute, PSA0 Z0:4 and PSA00 r0:8, can be synthe-
sized into an interval condition expressed in terms of the original
attribute as: PSA A ½0:4,0:8�. In consequence of this synthesis, the
rules become more readable:

1 : if Gleason Z4 and Volume Afmedium, largeg,

then Recurrence is :no,

2 : if PSA A ½0:4,0:8�, then Recurrence is no:

For Table 3, X r
0
¼ f1;4,7;8,9;10g, while X Z

1
¼ f2;3g. Two

decision rules are also sufficient to cover all consistent objects
from Table 3. These rules are

3 : if Age00 Z25 and PSA00 Z0:4, then R-local r0,

4 : if Age00r40 and V-s000 r0, then R-local Z1:

The first rule covers all objects from X r
0

, while the second rule
covers all objects from X Z

1
. The rules can be expressed in terms of

the original attributes as

3 : if Age Z25 and PSA Z0:4, then Recurrence is :local,

4 : if Age r40 and Volume Afmedium,largeg, then

Recurrence is local:

For Table 4, X r
0
¼ f2;3,4;5,6;7,8;9,10g, while X Z

1
¼ f1g.



Table 5
Patient to be classified.

Id Age0 Age00 Gleason0 Gleason00 PSA0 PSA00 V-s0 V-s00 V-m0 V-m00 V-l0 V-l00

m k m k m k m k m k m k

11 30 30 2 2 0.6 0.6 1 1 0 0 0 0

Table 6
Characteristics of data sets.

Data set Objects Attributes Classes

Arythmia 452 280 13

Autos 205 26 7

Breast-cancer 286 10 2

Bupa 345 6 2

Credit-g 1000 20 2

crx 690 16 2

Dermatology 366 35 6

Diabetes 768 8 2

Ecoli 336 7 8

Glass 214 9 7

Heart-c 303 14 2

Hypothyroid 3772 30 4

Page-blocks 5473 11 5

Pima 768 8 2

Sonar 208 60 2

Soybean 683 36 19

Spambase 4601 58 2

Vehicle 846 18 4

Vowel 990 14 11

Wine 178 14 3
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Two decision rules are, as well, sufficient to cover all consis-
tent objects from Table 4. These rules are

5 : if PSA0r1:2, then R-otherr0,

6 : if PSA0 Z2, then R-other Z1:

The first rule covers all objects from X r
0

, while the second rule
covers all objects from X Z

1
. The rules can be expressed in terms of

the original attributes as

5 : if PSA r1:2, then Recurrence is:other,

6 : if PSA Z2, then Recurrence is other:

Note that the rules include elementary conditions of the type
‘‘attribute aiA ½r1

i ,r2
i �’’ and ‘‘attribute aiAfv1

i , . . . ,vk
i g’’. It was possi-

ble to discover such rules by DRSA due to the presented trans-
formation of the classification table.

Let us suppose that a new patient (Id¼11) is classified by the
discovered rules. Description of patient 11 in terms of the
transformed attributes from P0 is presented in Table 5.

Patient 11 is covered by the following rules:
�
 rule 2, suggesting assignment to class ‘‘no’’,

�
 rule 3, dissuading assignment to class ‘‘local’’ (i.e. suggesting

assignment to ‘‘: local’’),

�
 rule 5, dissuading assignment to class ‘‘other’’ (i.e. suggesting

assignment to ‘‘: other’’).

Thus, according to the procedure described in Section 4,
patient 11 is assigned to class ‘‘no’’. This is because the three
matching rules produce the following scores:

scorerno ðno,x11Þ ¼
52

5� 5
¼ 1,

scorer:local
ð:local,x11Þ ¼

62

6� 6
¼ 1,

scorer:other
ð:other,x11Þ ¼

92

9� 9
¼ 1,

which leads to the following final score:

scoreðno,x11Þ ¼ 1,

scoreðlocal,x11Þ ¼�1,

scoreðother,x11Þ ¼ �1:

6. Results of a computational experiment

The main goal of the computational experiment was to assess
the predictive accuracy of the rule classifier presented in Section 4
when applied to non-ordinal classification problems transformed
according to the method described in Section 3. All experiments
were carried out on 20 data sets from the UCI repository.1

Characteristics of all these data sets are given in Table 6. The sets
of rules used in classification were induced using VC-DomLEM
1 See http://www.ics.uci.edu/�mlearn/MLRepository.html.
algorithm (B"aszczyński et al., 2011). VC-DomLEM is a sequential
covering rule induction algorithm proposed for DRSA and
VC-DRSA. Rough membership measure (Wong and Ziarko, 1987,
and Pawlak and Skowron, 1994) was used with VC-DomLEM. The
following non-ordinal classifiers were included in the compar-
ison: support vector machine (SVM) with linear kernel (Platt,
1998), decision rule classifier RIPPER (Cohen, 1995), and decision
tree classifier C 4.5 (Quinlan, 1992). Moreover, MODLEM
(Stefanowski, 1998) was included. MODLEM is a rule classifier
induced by sequential covering algorithm developed within the
classical rough set approach.

The classification accuracy was estimated by the stratified
10-fold cross-validation, which was repeated five times to get
reproducible results. Table 7 presents the average classification
accuracy and its standard deviation for each data set and each
classifier. Moreover, for each data set, we calculated the rank of the
result obtained by a classifier in comparison with other classifiers.
The rank is presented in brackets (the smaller the rank, the better).
We show these ranks because they are used in statistical tests
described further. The last row of each table shows the average rank
obtained by a given classifier. Moreover, for each data set, the best
value of the predictive accuracy measure, and those values which
are within standard deviation of the best value, are marked as bold.

We used statistical tests to compare differences in predictive
accuracy between considered classifiers. First, we applied Friedman
test to globally compare performance of six different classifiers on
multiple data sets (Demsar, 2006; Kononenko and Kukar, 2007). The
null-hypothesis in this test was that all compared classifiers perform
equally well in terms of average classification accuracy. Unfortu-
nately, we were not able to reject this hypothesis. This is mostly due
to the fact that we applied the weak and conservative nonpara-
metric test. The difference in ranks must be very high in order to
conclude by this test that one classifier is better than another.

We continued our experimental comparison with examination
of importance of the difference in average classification accuracy

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


Table 7
Percentage of correct classifications in repeated 10-fold cross validation.

Data set VC-DomLEM Naive Bayes SVM RIPPER C4.5 MODLEM

Arrhythmia 71.73 (1) 62.17 (6) 71.15 (2) 69.82 (3) 65.8 (5) 66.02 (4)
þ
� 0:9428 þ

� 0:7664 þ
� 0:8916 þ

� 1:150 þ
� 1:361 þ

� 1:424

Autos 78.34 (3) 56 (6) 71.71 (5) 72.68 (4) 79.9 (2) 81.27 (1)
þ
� 1:004 þ

� 2:783 þ
� 1:195 þ

� 1:272 þ
� 1:961 þ

� 1:561

Breast-cancer 70.42 (5) 72.45 (2) 70.77 (4) 71.61 (3) 75.03 (1) 68.32 (6)
þ
� 2:283 þ

� 0:5139 þ
� 1:119 þ

� 1:457 þ
� 0:5233 þ

� 1:923

Bupa 69.28 (1) 55.48 (6) 57.97 (5) 66.84 (3) 66.26(4) 68.7 (2)
þ
� 1:335 þ

� 0:8715 þ
� 0:1833 þ

� 0:6507 þ
� 1:830 þ

� 1:729

Credit-g 71.8 (4) 74.98 (2) 75.42 (1) 72.52 (3) 71.78 (5) 71.68 (6)
þ
� 0:938 þ

� 0:4167 þ
� 0:3487 þ

� 0:4578 þ
� 0:7414 þ

� 1:107

crx 82.84 (5) 78.14 (6) 84.75 (3) 85.45 (1) 85.3 (2) 84.09 (4)
þ
� 0:7252 þ

� 0:05797 þ
� 0:1085 þ

� 0:9374 þ
� 0:4546 þ

� 1:01

Dermatology 95.96 (3) 97.54 (1) 96.28 (2) 88.42 (6) 93.66 (4) 92.68 (5)
þ
� 0:4372 þ

� 0:1728 þ
� 0:5354 þ

� 0:4764 þ
� 0:5573 þ

� 0:8536

Diabetes 74.01 (4) 75.5 (2) 76.82 (1) 74.84 (3) 73.88 (5) 72.73 (6)
þ
� 0:5741 þ

� 0:29 þ
� 0:1426 þ

� 0:5487 þ
� 1:493 þ

� 0:966

Ecoli 83.93 (2) 85.9 (1) 83.63 (3) 81.13 (5) 82.02 (4) 80.18 (6)
þ
� 1:048 þ

� 0:7192 þ
� 0:6787 þ

� 0:7669 þ
� 0:7669 þ

� 0:9336

Glass 69.07 (3) 48.04 (6) 57.94 (5) 65.89 (4) 69.16 (2) 70.37 (1)
þ
� 1:855 þ

� 1:733 þ
� 0:9802 þ

� 0:6608 þ
� 2:999 þ

� 2:890

Heart-c 79.54 (4) 82.64 (2) 83.43 (1) 80.26 (3) 76.04 (6) 78.35 (5)
þ
� 1:287 þ

� 0:3960 þ
� 0:5678 þ

� 1:343 þ
� 2:225 þ

� 0:7976

Hypothyroid 98.94 (4) 95.36 (5) 93.57 (6) 99.38 (2) 99.55 (1) 99.33 (3)
þ
� 0:05141 þ

� 0:04436 þ
� 0:03968 þ

� 0:06138 þ
� 0:05661 þ

� 0:04242

Page-blocks 96.63 (4) 90.12 (6) 92.86 (5) 97.04 (1) 96.85 (2) 96.66 (3)
þ
� 0:09216 þ

� 0:1146 þ
� 0:06638 þ

� 0:07525 þ
� 0:1582 þ

� 0:1860

Pima 74.17 (5) 75.73 (2) 76.88 (1) 74.97 (4) 75 (3) 72.42 (6)
þ
� 0:6619 þ

� 0:55 þ
� 0:2116 þ

� 0:7699 þ
� 1:633 þ

� 1:357

Sonar 75.29 (4) 68.17 (6) 78.37 (1) 75.87 (3) 72.6 (5) 76.83 (2)
þ
� 0:6521 þ

� 0:1923 þ
� 1:138 þ

� 1:193 þ
� 2:803 þ

� 1:757

Soybean 92.06 (4) 92.12 (3) 92.91 (1) 91.86 (5) 92.83 (2) 91.54 (6)
þ
� 0:4079 þ

� 0:1707 þ
� 0:3773 þ

� 0:4304 þ
� 0:5857 þ

� 0:5106

Spambase 93.44 (2) 79.63 (6) 90.4 (5) 92.63 ð3:5Þ 92.63 ð3:5Þ 93.82 (1)
þ
� 0:2583 þ

� 0:08908 þ
� 0:05252 þ

� 0:1457 þ
� 0:3583 þ

� 0:3538

Vehicle 75.2 (1) 45.15 (6) 74.09 (2) 68.65 (5) 73.03 (3) 71.4 (4)
þ
� 0:4693 þ

� 0:4547 þ
� 0:6092 þ

� 1:578 þ
� 1:682 þ

� 1:028

Vowel 82.5 (1) 63.11 (6) 71.35 (4) 70.36 (5) 79.8 (2) 76.77 (3)
þ
� 0:7182 þ

� 0:4444 þ
� 0:5481 þ

� 1:130 þ
� 1:026 þ

� 0:667

Wine 97.2 (3) 97.42 (2) 98.76 (1) 93.48 ð4:5Þ 92.92 (6) 93.48 (4.5)
þ
� 0:7106 þ

� 0:762 þ
� 0:2247 þ

� 0:5729 þ
� 0:8408 þ

� 1:491

Avg. rank 3.15 4.10 2.9 3.55 3.38 3.92
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for each pair of classifiers. We applied Wilcoxon test (Kononenko
and Kukar, 2007) with null-hypothesis that the medians of results
on all data sets of two compared classifiers are equal. Let us
remark that in the paired test, ranks are assigned to values of
differences in average classification accuracy between two com-
pared classifiers. We observed significant difference (p-values
smaller than 0.05) between Naive Bayes and any other classifier,
and between VC-DomLEM and MODLEM.

Although statistical significance could not be confirmed, it
follows from the results of the experiment that VC-DomLEM is at
least comparable to the other classifiers. When we consider the
value of the average rank observed in our experiments,
VC-DomLEM is better than any other classifier, except SVM.
However, according to the results of Friedman test the observed
differences in ranks, calculated between all the classifiers, are not
significant. On the other hand, the results of Wilcoxon test show
that any classifier is performing better than Naive Bayes and that
VC-DomLEM is performing better than MODLEM.

Another issue is the matter of comprehensibility of discovered
classification patterns (laws). Remark that monotonic decision rules
induced using our approach have the interesting property of
showing pros and cons for assignment of an objet to each of the
considered classes. This is because for each class, there are two
kinds of rules: rules suggesting assignment to this class, and rules
making an opposite suggestion (assignment to a complement of
this class). These positive and negative arguments for the assign-
ment give a better insight into the classification decision for domain
experts. On the other hand, the number of induced rules may be too
high to be read together. This may be avoided, however, since only
a small subset of rules is usually covering a classified object and
thus its analysis does not need a big cognitive effort.

Finally, as it was already mentioned in Section 3, monotonic
rules induced using our approach can cover multiple values of an
attribute. For example, let us consider the set of the decision rules
induced for the breast cancer data set from the University Medical
Center, Institute of Oncology, Ljubljana (which is labeled ‘‘Breast-
cancer’’ in Tables 6 and 7). For these data, the goal is to classify a
patient into one of two classes ‘‘no recurrence events’’ or ‘‘recur-
rence events’’. In the set of rules induced by VC-DomLEM from the
transformed classification table, one can find the following rule:

if tumor size =2½45;49�

and malignant degree¼ 1

and breast quadrant Afcentral,right-low, right-upg,

then no recurrence events:
This rule is showing a set of possible conditions for no

recurrence events. It is like a scenario or a law for no occurrence
events. It says that if the tumor size attribute takes a value from
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outside the interval [45, 49], and the malignity degree is equal to
1, and the breast quadrant is central, right-low or right-up, then
there is no recurrence event. The condition on the tumor size
attribute shows two regions of local monotonicity: below 45
(negative) and above 49 (positive). Such a rule could not be
induced by VC-DomLEM from the original breast-cancer data set.
The two regions of local monotonicity were discovered by this
algorithm due to the transformation proposed in this paper.
7. Conclusions

In this paper, we proposed a new approach to induction of
laws from data in which we make use of the concept of mono-
tonic relationships between values of condition and decision
attributes, without assuming its direction a priori and allowing
local monotonicity relationships in subregions of the evaluation
space. Indeed, our method is able to discover local and global
monotonicity relationships existing in data. The relationships are
represented by monotonic decision rules which can be read as
laws describing the analyzed phenomena. To enable the discovery
of monotonic rules, we propose a non-invasive transformation of
the input data, and a way of structuring them into consistent and
inconsistent parts using the dominance-based rough set approach
(DRSA) or its extension called VC-DRSA. The rule induction
algorithm operates on this structure. The monotonic decision
rules thus induced put in evidence easily understandable rela-
tionships between values of condition and decision attributes that
cannot be discovered by traditional data mining methodologies.

The distinctive features of the proposed approach which count
for its advantage over other existing methods include:
�
 it accepts numerical, nominal and binary condition attributes,
and does not need any discretization of numerical attributes,
which is always arbitrary to some extend,

�
 it can be used for ordinal and non-ordinal decision attributes,

�
 it accepts ordinal and non-ordinal condition attributes, and

does not need to transform the ordinal scales into cardinal
ones, which would claim to say more than the data,

�
 it discovers regions of local monotonicity relationship between

values of condition and decision attributes, i.e. decision rules
involve ‘‘interval’’ elementary conditions: ‘‘attribute aiA ½r1

i ,r2
i �’’,
�
 it is able to discover rules with elementary conditions on
nominal attributes of the type: ‘‘attribute aiAfv1

i , . . . ,vk
i g’’,
�
 due to the capacity of discovering local monotonicity and
elementary conditions concerning subsets of nominal attribute
values, the monotonic rules are compact and relatively stron-
ger than traditional rules,

�
 it can induce rules providing arguments pros and cons a given

decision.

�
 the monotonic rules, together with a specially proposed

classification scheme, have at least as good predictive ability
as other well known predictors, while they are much more
comprehensible than any other forms of relationships between
condition and decision attributes.

Thus, one can conclude that the presented approach provides a
very general framework for inducing laws from heterogeneous
data. Our future research will be focused on handling missing
values of condition attributes, and on generation of the most
attractive monotonic rules from the point of view of some
pertinent interestingness measures.
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B"aszczyński, J., S"owiński, R., Szeląg, M., 2011. Sequential covering rule induction
algorithm for variable consistency rough set approaches. Inf. Sci. 181 (5),
987–1002.

Cohen, W.W., 1995. Fast effective rule induction. in: Proceedings of the Twelfth
International Conference on Machine LearningMorgan Kaufmann,
pp. 115–123.

Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. J.
Mach. Learn. Res. 7, 1–30.
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