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Abstract

We consider a problem of evaluating efficiency of Decision Making Units (DMUs) based on their

deterministic performance on multiple consumed inputs and multiple produced outputs. We apply

a ratio-based efficiency measure, and account for the Decision Maker’s preference information rep-

resentable with linear constraints involving input/output weights. We analyze the set of all feasible

weights to answer various robustness concerns by deriving: (1) extreme efficiency scores and (2)

extreme efficiency ranks for each DMU, (3) possible and necessary efficiency preference relations

for pairs of DMUs, (4) efficiency distribution, (5) efficiency rank acceptability indices, and (6) pair-

wise efficiency outranking indices. The proposed hybrid approach combines and extends previous

results from Ratio-based Efficiency Analysis and the SMAA-D method. The practical managerial

implications are derived from the complementary character of accounted perspectives on DMUs’

efficiencies. We present an innovative open-source software implementing an integrated framework

for robustness analysis using a ratio-based efficiency model on the diviz platform. The proposed

approach is applied to a real-world problem of evaluating efficiency of Polish airports. We consider

four inputs related to the capacities of a terminal, runways, and an apron, and to the airport’s

catchment area, and two outputs concerning passenger traffic and number of aircraft movements.

We present how the results can be affected by integrating the weight constraints and eliminating

outlier DMUs.

Key words: Data Envelopment Analysis, Ratio-based Efficiency, Robustness Analysis, Stochastic

Multicriteria Acceptability Analysis, Airport Efficiency, Software

1. Introduction

The framework of Data Envelopment Analysis (DEA) offers a variety of methods for evaluating

the relative efficiency of Decision Making Units (DMUs) which consume multiple inputs and produce
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multiple outputs [18, 38, 39]. Conceptually, efficiency is the ratio between virtual output and

virtual input, i.e., respectively, outputs or inputs aggregated using some weights assigned to these

factors [14]. Typically, DEA methods have been used to classify the DMUs into efficient and

inefficient ones. By definition, the former ones have an efficiency score equal to one, whereas for the

latter ones this measure is less than one. For the inefficient DMUs, such scores convey information

on how close to being efficient they are. Analysis of these measures may lead to formulating the

corrective actions, revealing an excess use of some inputs or shortfalls in the production of outputs,

as well as to indicating a reference set of some comparable DMUs.

1.1. Critical View on the Traditional Methods of Data Envelopment Analysis

Although DEA has proven its usefulness when applied to a variety of real-world problems (see,

e.g., [18, 23, 40]), some criticism has been leveled against its discriminative power and the way the

efficiency scores are computed. Firstly, the efficiency measures for each DMU are derived from the

analysis of the input/output weights which are the most favorable to it. However, a weight vector

for which a DMU attains its maximal efficiency is not unique [36]. Thus, choosing among them is

arbitrary to a large extent. Secondly, the underlying Linear Programming (LP) techniques require

some normalization of weights for each DMU individually. This implies that scaling affects the

optimal weights and a meaningful comparison of these weights across different DMUs is difficult.

Thirdly, the efficiency measures fail to reflect how the efficiencies of DMUs compare to each other

for other feasible weight vectors [53]. In fact, only extremely small share of feasible weights is taken

into account in the analysis, while others are neglected despite being equally desirable. Fourth, DEA

measures efficiency relative to the efficient frontier. This requires some assumptions about possible

returns to scale (e.g., constant or variable). These may be, however, difficult to formulate or justify.

Further, we may sometimes prefer a DMU judged as inefficient, which is dominated only by some

convex combination of other DMUs, but not by any existing DMU [36]. Moreover, an efficiency

frontier and, thus, the efficiency scores, vastly depend on the DMUs under consideration [58, 74].

The outcomes of DEA may be very sensitive even to the inclusion or removal of a single DMU. In

the same spirit, the outcomes of DEA can be interpreted only when the number of DMUs is large

enough in comparison with the number of inputs and outputs. Finally, while DEA is useful for

indicating which DMUs are efficient, it does not discriminate between them. In some real-world

situations, the share of efficient DMUs may be very large, and we may wish to identify among them

a small subset of the most distinguishing ones.

Several techniques have been proposed in the literature to address these drawbacks. In partic-

ular, preference information on the relative comparisons of inputs and/or outputs may be used to

reduce the space of feasible weight vectors [50, 63], and, thus, the conclusiveness of efficiency scores.

Further, the cross-efficiency methods exploit the space of feasible weights to derive for each DMU

an average efficiency obtained from the analysis of weights for which other DMU’s efficiency is max-

imal [22, 59]. Moreover, the super-efficiency discriminates the efficient DMUs by indicating for each

of them how much more efficient it can be relative to the remaining ones [2, 75]. Although following
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the right direction, these approaches do not address all aforementioned concerns comprehensively.

Doing so, requires incorporation of robustness analysis into the DEA framework.

1.2. Existing Approaches for Robustness Analysis in Data Envelopment Analysis

Robustness analysis accounts for the uncertainties which can be observed in the real-world

decision problems [33]. A conclusion is considered to be robust if it is true for all or for the most

plausible combinations of parameter values [52, 67]. As noted in [20], this type of analysis provides

information that may allow the users to avoid answering questions they find too demanding. It

may also guide them in revising or enriching the provided preference information, progressively

constraining the space of admissible values for the parameters of employed model. In the context

of DEA, robustness concern refers to the relative efficiencies of DMUs for all feasible input and

output weights or their representative sample. Advances in this regard, that we build on in this

paper, have been presented in [53] and [36].

On one hand, [53] consider the whole set of weights that are compatible with the preference in-

formation concerning input/output variables. The so-called Ratio-based Efficiency Analysis (REA)

does not make any assumptions in terms of the production possibilities beyond the set of DMUs that

are under comparison. To materialize the relations between the DMUs’ efficiencies, the method ex-

hibits three kinds of results derived from the analysis of the whole set of feasible weights: efficiency

bounds exposing the greatest and the least relative efficiencies of a DMU compared to a subset of

other DMUs, dominance relation indicating for a pair of DMUs if one of them dominates the other

in pairwise efficiency comparison, and ranking intervals indicating the range of efficiency ranks that

are attained by a DMU. All these results are derived from comparing DMUs’ efficiencies pairwise

rather than measuring their distance from an efficient frontier as in the traditional DEA models.

As a result, these outcomes are interpretable even if the set of DMUs is relatively small, being at

the same time less sensitive to the inclusion of DMUs whose input/output values are distant from

the performances of other units.

On the other hand, [36] apply simulation to provide stochastic indices which characterize the

possible outcomes of a decision problem. In Stochastic Multicriteria Acceptability Analysis for Data

Envelopment Analysis (SMAA-D), it is possible to handle imprecision and uncertainty regarding

the input/output weights and performances of DMUs. The method computes rank acceptability

indices which measure the variety of model variables that grant each DMU any rank from the best

to the worst. In particular, the best (most acceptable) DMUs are those with high acceptabilities

for the first rank. When compared with the basic DEA models, the stochastic measures originally

provided in SMAA-D have been found useful for making the efficient DMUs more comparable [36].

1.3. Aim of the Paper

The aim of this paper is fourth-fold. Firstly, from a methodological point of view, we extend

the range of outcomes considered in REA and SMAA-D. With respect to the robustness analysis,

we show how to determine the least efficiency measure for each DMU, i.e., what is the lower bound
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of the efficiency range when the whole set of DMUs (including the DMU under consideration) is

analyzed. When considering stability of the efficiency comparison for pairs of DMUs, we propose to

consider the necessary and possible efficiency preference relations instead of the dominance relation.

The necessary relation needs to be confirmed by all feasible weight vectors, while the possible one

has to be supported by at least one feasible weight vector. We show that taking into account these

results is more beneficial than analyzing the dominance relation because of their interpretability

and intuitive convergence with the growth of the preference information for input/output variables.

When it comes to SMAA-D, we significantly enrich the range of stochastic indices that can

be derived from the representative sample of weight vectors so that they additionally capture the

efficiency scores and pairwise efficiency relations. In particular, we analyze the extreme observed

efficiencies, the distribution of efficiency measures, and pairwise efficiency outranking (winning)

indices indicating the probability that one DMU has an efficiency at least as good (better) than

the other. In this way, we provide both exact and stochastic outcomes reflecting three different

perspectives on DMUs’ efficiency: scores, pairwise preference relations, and attained ranks.

Secondly, we clearly demonstrate the benefits of considering together the outcomes of thus

revised REA and SMAA-D. On one hand, with the necessary, possible, and extreme outcomes of

the revisited REA, we can analyze what happens for all, some, the most and the least advantageous

model parameters. However, the difference between extreme ranks and efficiencies may often be

very large, and in practical decision analysis the information on the sole possibility of attaining

a particular rank or an efficiency in a given subinterval may be insufficient. Similarly, REA leaves

incomparable the pairs of units which are possibly preferred to each other. In this perspective,

SMAA-D may enrich REA with answering questions on how probable are the possible efficiency

preference relations and what is the distribution of ranks or efficiencies between the best and the

worst ones. These results can be further exploited to indicate the expected rank (efficiency) for

a given DMU, the ranks (efficiencies) which are attained most often, and the probability of being

judged as efficient (obtaining the highest efficiency).

On the other hand, even though the stochastic indices can be estimated with high accuracy using

Monte Carlo simulation, they are not exact. In particular, it may be unlikely to hit the weight

vector corresponding to the extreme results. This, in turn, implies that such results would not

be reflected in the distribution of ranks or efficiency scores. For the same reason, an estimated

pairwise efficiency outranking index equal to one or zero does not, respectively, confirm the necessity

or exclude the possibility of one DMU being preferred over another. Still, all these input/output

weights whose indications are not reflected in the estimations of stochastic indices are feasible.

Thus, it is desirable to confront the indices derived from Monte Carlo simulation with the possible,

necessary, and extreme outcomes of exact robustness analysis conducted with LP techniques.

By combining REA and SMAA-D within an integrated framework incorporating robustness

and stochastic analysis, we provide a DEA-type variant of hybrid methods that have been recently

proposed in Multiple Criteria Decision Aiding (MCDA) [32, 33]. In this way, we tighten the inter-

relations between DEA and MCDA (for a comparison of these two methodological frameworks, see,
4



e.g., [3, 13, 17, 28, 29, 55, 61]).

The third contribution of this paper consists in presenting an open-source software implementing

the methods for robustness analysis using ratio-based data envelopment model. They are made

available in the form of independent software components on the diviz platform [42]. These modules

can be subsequently combined, using an intuitive user interface, to construct complex algorithmic

workflows. From a technological point of view, they are implemented as web-services, which read

the input formatted with respect to a well-defined XML-based standard. The basic components

we provide deliver either exact results using GLPK solver or stochastic indices using a Hit-And-

Run sampling procedure [62]. Apart from analyzing in this way three types of results concerning

efficiency scores, pairwise efficiency preference relations, and efficiency ranks, we enrich the range

of DEA-based tools that can be used within diviz by providing modules which derive, e.g., cross-

efficiency or super-efficiency scores. All implemented components allow incorporating linear weight

constraints.

Finally, we apply the presented methodological framework to the real-world problem of evalu-

ating efficiency of Polish airports. We take into account four inputs and two outputs. The inputs

are related to the capacities of a terminal, runways, and an apron, and to the airport’s catchment

area. The outputs concern passenger traffic and number of aircraft movements. By illustrating the

use of DEA-based robustness analysis for this particular problem, we prove the usefulness of the

proposed approach for studying the performances and measuring the efficiency of airports. This

type of research has aroused great interest in the recent years (see, e.g., [7, 24–26, 48, 70, 72]).

Nevertheless, the introduced framework should be perceived as more general one; its use is not

limited to this particular domain.

The remainder of this paper is organized as follows. Section 2 presents the new hybrid ap-

proach for DEA, combining and extending the ideas from REA and SMAA-D. We present how to

compute and interpret robust outcomes and stochastic indices. We also discuss the interdependen-

cies between these two types of results as well as the evolution of robust results with incremental

specification of weight constraints. Section 3 concerns an open-source software implementing the

proposed integrated framework for robustness analysis in DEA. Section 4 is devoted to the real-

world case study investigating efficiency of Polish airports. In Section 5, we focus on the practical

considerations. Section 6 concludes the paper.

2. Integrated Framework for Robustness Analysis Using Ratio-based Efficiency Mea-

sure

2.1. Notation and Basic Concepts

The following notation is used in the paper:

• D = {DMU1, . . . , DMUK} – the set of considered DMUs; thus, K is the number of compared

DMUs (K = |D|);
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• xm – m-th input, m ∈ {1, . . . ,M};

• yn – n-th output, n ∈ {1, . . . , N};

• xmo – an amount of m-th input consumed by DMUo ∈ D;

• yno – an amount of n-th output produced by DMUo ∈ D;

• v = {v1, . . . , vm} – a vector of input weights;

• u = {u1, . . . , um} – a vector of output weights;

• Sv = {v = (v1, . . . , vM)T 6= 0|v ≥ 0, Avv ≤ 0} and Su = {u = (u1, . . . , uN)T 6= 0|u ≥ 0, Auu ≤
0} – a space of feasible input and output weights, respectively; Av and Au are matrices of

coefficients derived from linear constraint on weights representing the user’s (Decision Maker’s)

preference information.

To measure the efficiency of each DMUo ∈ D, we apply the ratio of virtual output for u ∈ Su and

virtual input for v ∈ Sv, defined as follows:

Eo(v, u) =

N∑
n=1

unyno

M∑
m=1

vmxmo

. (1)

For all feasible weights, the virtual inputs and outputs need to be strictly positive. For conditions

satisfying this assumption, see [53].

Referring to the set of feasible weight vectors (v, u) ∈ (Sv, Su), robustness of the efficiency anal-

ysis may concern three points of view: efficiency scores, pairwise efficiency preference relations, and

efficiency ranks. In this section, we discuss in detail two complementary ways for conducting such

analysis. On one hand, LP techniques are employed to determine in an exact way: extreme efficien-

cies and ranks for each DMU as well as verifying the truth of the necessary and possible efficiency

preference relations. On the other hand, Monte Carlo simulation algorithms are used to compute

stochastic indices based on a representative sample of feasible weight vectors. The latter approach

is based on normalizing input and output weights so that the following constraint is respected:

N∑
n=1

un =
M∑

m=1

vm = 1.

This normalization makes the space of feasible weights bounded. Then, a Hit-And-Run method is

used to efficiently sample weights from the convex space of feasible weights [62, 66]. For this purpose,

some probability distribution with joint density function in the feasible weight space needs to be

assumed. Such distribution constitutes a form of partial preference information provided by an
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analyst. In general, our approach can work with any arbitrarily provided distribution. However, in

most decision situations, its specification would be rather challenging. Thus, following SMAA-D [36]

and MCDA-based Stochastic Ordinal Regression (SOR) [32, 33], when other weight distribution is

not exogenously given, we use a uniform one. In this way, each weight vector has equal chances

(= 1/vol(W ), where vol(W ) is the volume of the feasible weight space) to be considered within

a sample of weights. This assumption is also in line with the spirit of robustness analysis, where

each individual feasible weight vector is equally authorized to make some outcome non-necessary

or possible, or shift the extreme bounds.

For each sampled input/output weight vector, we compute efficiency scores for all DMUs, and

then normalize them by the maximal obtained efficiency. In this way, the final efficiency measures

are in the interval between zero and one as in the traditional DEA methods. Such results are

analyzed to derive estimates of the shares of feasible weight vectors for which: a DMU attains an

efficiency score in some pre-defined efficiency subinterval or a specific rank, and for which some

DMU is preferred to another.

When it comes to weight restrictions, as noted in [49], typical examples of such constraints are

absolute weight bounds (e.g., 2 ≤ v1 ≤ 5), bounds on virtual inputs or outputs (e.g., 5v1 + v2 ≥ 1

or 2u1 + 3u2 ≤ 1), and bounds on the ratio of two weights (e.g., 0.5 ≤ u1/u2 ≤ 2 =⇒ 0.5u2 ≤
u1 ≤ 2u2). All these forms are admitted within the proposed framework.

2.2. Efficiency Scores

In this section, we discuss the measures that are useful for analysis of efficiency scores attained

by the DMUs across all feasible weight vectors. When compared to REA, we additionally discuss

how to determine the lower bound of the efficiency range when the whole set of DMUs (including the

DMU under consideration) is analyzed. When compared to SMAA-D, we propose to consider the

efficiency acceptability interval indices which capture the distribution of efficiency scores attained

by each DMU.

2.2.1. Extreme Efficiency Scores

For each DMUo ∈ D, the best E∗o and the worst Eo,∗ efficiencies attained in the set of feasible

weight vectors (Sv, Su) may be computed using LP. The following program needs to be solved to

determine E∗o :

max E∗o =
N∑

n=1

unyno

subject to:
M∑

m=1

vmxmo = 1,

N∑
n=1

unynk ≤
M∑

m=1

vmxmk, k = 1, . . . , K,

(v, u) ∈ (Sv, Su).

(2)
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The idea underlying problem (2) consists in finding the most advantageous feasible weight vector

(v, u) ∈ (Sv, Su) for DMUo in terms of its efficiency score. Note that E∗o is equivalent to the efficiency

originally proposed in the CCR model [14]. Thus, if E∗o = 1, DMUo is efficient; otherwise, it is

inefficient. The worst efficiency Eo,∗ can be determined with the following LP:

min Eo,∗ =
N∑

n=1

unyno

subject to:
M∑

m=1

vmxmo = 1,

N∑
n=1

unynk ≥
M∑

m=1

vmxmk − C(1− bk), k = 1, . . . , K,

∑K
k=1 bk ≥ 1,

bk ∈ {0, 1}, k = 1, . . . , K,

(v, u) ∈ (Sv, Su).

(3)

In the above problem, we adapt a more general technique for dealing with inconsistency in LP

which is called “The Big-M (or Big-C) method” or “Exact Big-M MIP Formulation” [15, 43]. To

prevent undesired compensations, this technique assumes that the value assigned to constant C is

great enough. In our context, it is sufficient if:

C > maxDMUo,DMUk∈D{maxm=1,...,M{xmk/xmo} −minn=1,...,N{ynk/yno}}.

For all values of C satisfying this condition, we are guaranteed to obtain the same results.

To find the least advantageous feasible weight vector (v, u) ∈ (Sv, Su) for DMUo in terms of its

efficiency score, we need to minimize its efficiency while ensuring that some DMUk ∈ D is efficient.

To guarantee that an efficiency score of some DMU is not less than one, we use binary variables bk,

k = 1, . . . , K. If bk = 1, then C(1−1) = 0 and
N∑

n=1

unynk ≥
M∑

m=1

vmxmk; thus, Ek(v, u) ≥ 1. Since we

require that
∑K

k=1 bk ≥ 1, this condition needs to be satisfied for at least one DMUk, k = 1, . . . , K.

Otherwise, if bk = 0, the use of C prevents constraint violation. The minimization of Eo,∗ in the

objective function implies that a solver will assign ones to the binary variables so that to implement

the least advantageous scenario for DMUo.

2.2.2. Efficiency Distribution

For each DMUo ∈ D, an efficiency acceptability interval index EAII(DMUo, bi) is the share of

feasible weight vectors (v, u) ∈ (Sv, Su) for which DMUo attains an efficiency score in the interval

bi ⊂ [0, 1] (i = 1, . . . , B, where B is the number of subintervals (buckets)). Let us denote with bi,∗

and b∗i the extreme values of the subinterval bi. Thus, bi = (bi,∗, b
∗
i ] with the proviso that b1 is also

left-closed (i.e., b1 = [b1,∗ = 0, b∗1]. The buckets are constructed in the following way:
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B⋃
i=1

bi = [0, 1], bi ∩ bj = ∅, i 6= j, and b∗i − bi,∗ = b∗i+1 − bi+1,∗, for i = 1, . . . , B − 1.

While this is a default setting, in general, it is possible to construct buckets with different amplitudes

so that b∗i − bi,∗ 6= b∗i+1 − bi+1,∗, for i ∈ {1, . . . , B − 1}.
In the following we consider estimations EAIIs′ of efficiency acceptability interval indices de-

rived with Monte Carlo simulation. The same remark applies to pairwise efficiency outranking

indices PEOIs and efficiency rank acceptability indices ERAIs defined in Sections 2.3.2 and 2.4.2,

respectively.

Proposition 2.1. For each DMUo ∈ D,
∑B

i=1EAII ′(DMUo, bi) = 1.

To enrich the view on the efficiency scores obtained in the representative sample (Sv, Su)S of

weight vectors (Sv, Su), we provide the following measures:

• the extreme efficiencies E∗
′

o and E
′
o,∗ observed in (Sv, Su)S ⊂ (Sv, Su) for each DMUo ∈ D;

• an estimate of the expected efficiency EE
′
o =

∑
(v,u)∈(Sv ,Su)S

Eo(v, u)/W , where W is the

number of weight vectors in (Sv, Su)S.

2.3. Pairwise Efficiency Preference Relations

In this section, we present the outcomes which materialize the outcomes of robustness analysis

while referring to pairwise comparisons of DMUs. When compared to REA, we propose to consider

a pair of efficiency preference relations instead of a single dominance relation. When compared

to SMAA-D, we additionally analyze the pairwise efficiency outranking indices which indicate the

probability that one DMU attains an efficiency at least as good as the other.

2.3.1. Possible and Necessary Efficiency Preference Relations

Applying all feasible weight vectors (v, u) ∈ (Sv, Su), we define two efficiency preference relations

in the set of DMUs D:

• Possible efficiency preference relation, %P
E, which is verified for a pair of DMUs (DMUo, DMUk) ∈

D ×D, in case Eo(v, u) ≥ Ek(v, u) holds for at least one (v, u) ∈ (Sv, Su);

• Necessary efficiency preference relation, %N
E , which is verified for a pair of DMUs (DMUo, DMUk) ∈

D ×D, in case Eo(v, u) ≥ Ek(v, u) holds for all (v, u) ∈ (Sv, Su).

The following LP needs to be considered to assess whether these relations hold:

min/max Eo =
N∑

n=1

unyno

subject to:
M∑

m=1

vmxmo = 1,

N∑
n=1

unynk =
M∑

m=1

vmxmk,

(v, u) ∈ (Sv, Su).

(4)
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If Emax
o = max Eo obtained in problem (4) is not less than one, there exists some (v, u) ∈ (Sv, Su)

for which Eo(v, u) ≥ Ek(v, u), and, thus, DMUo %P
E DMUk. If Emin

o = min Eo obtained in

problem (4) is greater or equal to one, there is no feasible weight vector (v, u) ∈ (Sv, Su) for which

Ek(v, u) > Eo(v, u), and, thus, DMUo %N
E DMUk.

In [53], the robustness analysis for pairs of DMUs is materialized with the efficiency dominance

relation �E. It holds for (DMUo, DMUk) if DMUo necessarily attains the efficiency not less than

DMUk, while attaining strictly greater efficiency for some feasible weight vector. Thus, DMUo �E

DMUk iff DMUo %N
E DMUk and ¬(DMUk %N

E DMUo). We consider a separate consideration

of %N
E and %P

E (rather than aggregating these two results into �E) more beneficial for the three

following reasons:

• in case DMUo �E DMUk, we may indicate whether DMUk is possibly weakly preferred

to DMUo or not (i.e., whether Eo(v, u) > Ek(v, u) for all (v, u) ∈ (Sv, Su), or for some

(v′, u′) ∈ (Sv, Su), Eo(v
′, u′) = Ek(v′, u′));

• in case ¬(DMUo �E DMUk) and ¬(DMUk �E DMUo), we may indicate if DMUo and

DMUk are related by the necessary indifference or necessary incomparability; in the former

case, for all (v, u) ∈ (Sv, Su), Eo(v, u) = Ek(v, u); in the latter case, for some (v′, u′) ∈ (Sv, Su),

Eo(v
′, u′) > Ek(v′, u′) and for some (v′′, u′′) ∈ (Sv, Su), Ek(v′′, u′′) > Eo(v

′′, u′′);

• the possible and necessary efficiency preference relations converge with the growth of weight

constraints provided by the Decision Maker (DM) (see Appendix C), while the dominance

relation does not [53].

2.3.2. Pairiwse Efficiency Outranking Indices

For a pair of DMUs, (DMUo, DMUk) ∈ D×D, a pairwise efficiency outranking index PEOI(DMUo,

DMUk) is the share of feasible weight vectors for which DMUo is not worse than DMUk in terms

of the efficiency score, i.e., Eo(v, u) ≥ Ek(v, u).

Proposition 2.2. For DMUo ∈ D, PEOI(DMUo, DMUo) = 1.

Proposition 2.3. For DMUo, DMUk ∈ D, 1 ≤ PEOI(DMUo, DMUk) + PEOI(DMUk, DMUo) ≤
2.

The pairwise efficiency winning index PEWI(DMUo, DMUk) is the share of feasible weight

vectors for which Eo(v, u) is strictly better than Ek(v, u).

Proposition 2.4. For DMUo, DMUk ∈ D, PEWI(DMUo, DMUk) = 1− PEOI(DMUk, DMUo).

In the following we consider estimations of the pairwise efficiency indices PEOI ′ and PEWI ′ which

are computed with Monte Carlo simulation.

2.4. Efficiency Ranks

In this section, we discuss a set of results clearly indicating how the DMUs’ efficiency ranks vary

across the entire space of feasible weights. When compared to REA, to enhance understanding
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of the underlying logic, we discuss alternative formulations of linear programs for identifying the

extreme ranks. When compared to SMAA-D, we propose to aggregate the rank acceptability indices

into the estimates of expected efficiency rank for each DMU.

2.4.1. Extreme Efficiency Ranks

The rank of DMUo relative to all DMUs in D is defined with the ranking function:

Ro(v, u) = 1 +
∑

DMUk∈D\{DMUo}

h(o, k, (v, u)), where (5)

h(o, k, (v, u)) =

1, if Ek(v, u) > Eo(v, u)

0, otherwise.
(6)

To identify the best R∗o = min(v,u)∈(Sv ,Su) Ro(v, u) efficiency rank that DMUo ∈ D can attain, the

following Mixed-Integer Linear Programming (MILP) model needs to be considered [53]:

min R∗o = 1 +
K∑

k=1,k 6=o

bk

subject to:
N∑

n=1

unyno =
M∑

m=1

vmxmo = 1,

[∗]
N∑

n=1

unynk ≤
M∑

m=1

vmxmk + Cbk (k = 1, . . . , K, k 6= o),

bk ∈ {0, 1} (k = 1, . . . , K, k 6= o),

(v, u) ∈ (Sv, Su),

(7)

where C is a large positive constant. In the above problem, it is sufficient if:

C > maxDMUo,DMUk∈D{maxn=1,...,N{ynk/yno} −minm=1,...,M{xmk/xmo}}.

In problem (7), we identify the feasible weight vector (v, u) ∈ (Sv, Su) for which the number of DMUs

with efficiency better than Eo(v, u) is minimal. If
N∑

n=1

unynk cannot be less or equal to
M∑

m=1

vmxmk for

some particular weight vector, a binary variable bk corresponding to DMUk, k 6= o, is instantiated

with one. Then, being multiplied by a large positive constant C, bk = 1 prevents violation of

constraint [∗] for the respective k. This scenario occurs only if Ek(v, u) =
N∑

n=1

unynk/
M∑

m=1

vmxmk > 1,

(i.e., if
N∑

n=1

unynk −
M∑

m=1

vmxmk > 0) while Eo(v, u) = 1. Then, Ek(v, u) > Eo(v, u), and each

bk = 1 identifies a unit ranked better than DMUo. Otherwise, i.e., when Ek(v, u) ≤ Eo(v, u), bk is

instantiated with zero (then, Cbk = 0). Since the objective function is minimized, the solver tries

to assign as many zeros as possible to bk, k = 1, . . . , K, k 6= o, thus, minimizing the cardinality of

the set of DMUs which are ranked better than DMUo. As a result, the sum of binary variables bk,
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k = 1, . . . , K, k 6= o, increased by one is equal to the best (highest) rank of DMUo. For example,

in case there are three units simultaneously ranked better than DMUo, R
∗
o = 3 + 1 = 4.

The worst efficiency rank of DMUo, Ro,∗ = max(v,u)∈(Sv ,Su)Ro(v, u), is obtained as the optimum

of the following MILP problem:

max Ro,∗ = 1 +
K∑

k=1,k 6=o

bk

subject to:
N∑

n=1

unyno =
M∑

m=1

vmxmo = 1,

[∗]
M∑

m=1

vmxmk ≤
N∑

n=1

unynk + C(1− bk) (k = 1, . . . , K, k 6= o),

bk ∈ {0, 1} (k = 1, . . . , K, k 6= o),

(v, u) ∈ (Sv, Su).

(8)

To prevent undesired compensations in the above problem, it is sufficient if:

C > maxDMUo,DMUk∈D{maxm=1,...,M{xmk/xmo} −minn=1,...,N{ynk/yno}}.

In problem (8), we identify the feasible weight vector (v, u) ∈ (Sv, Su) for which the number of

DMUs with efficiency not worse than Eo(v, u) is maximal. If Ek(v, u) ≥ Eo(v, u), a binary variable

bk is instantiated with one. Thus, the sum of binary variables bk, k = 1, . . . , K, k 6= o, is equal to

the number of DMUs simultaneously ranked not lower than DMUo. When increased by one, this

number indicates the worst rank of DMUo.

To enhance understanding of the underlying reasoning, in Appendix A we present alternative

formulations of the above MILPs.

2.4.2. Efficiency Rank Acceptability Indices

For DMUo ∈ D and rank k = 1, . . . , K, the efficiency rank acceptability index ERAI(DMUo, k) ∈
[0, 1], is the share of feasible weight vectors that grant DMUo rank k.

Proposition 2.5. For each DMUo ∈ D,
∑K

k=1 ERAI(DMUo, k) = 1.

In what follows, we consider Monte Carlo estimations of the efficiency rank acceptability indices

ERAI ′. They can be used to compute an estimate of the expected rank for DMUo ∈ D:

ER
′

o =
K∑
k=1

k · ERAI ′(DMUo, k).

In the Appendix, we provide additional relevant information concerning different types of discussed

results. In Appendix B, we present the interdependencies between robust results and stochastic

indices, thus, proving how they complement each other. In Appendix C, we elaborate on the
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evolution of results with incremental specification of weight constraints. Finally, in Appendix D,

we discuss the impact of removing some DMUs from the considered set of units on the results.

3. Implementation on the Diviz Platform

3.1. Diviz

Diviz is an open-source software which allows to design, execute, and share complex work-

flows implementing procedures of decision analysis [42]. Even though it was originally designed

for MCDA, its characteristics are general enough to account for methods of DEA. The software

infrastructure consists of:

• a Java client for algorithmic workflow design and visual analysis of the outcomes,

• distant servers for executing the workflows, i.e., computing the results.

Decision analysis procedures as well as visualization or reporting tools are available in diviz via

XMCDA web-services. They need to read inputs and write outputs formatted using the XMCDA

standard. In this way, the web-services can interoperate and be combined into complex workflows.

3.2. Implemented Methods for Robustness Analysis Using Ratio-based Efficiency Measure

Methods for robustness analysis using ratio-based data envelopment model have been imple-

mented and made available on diviz as a collection of individual components (modules). They

can be subsequently used to construct complex algorithmic workflows. Each module requires three

input files specifying, respectively, the list of DMUs, sets of inputs and outputs, and performance

matrix. The linear weight constraints may be optionally provided in yet another input file. The

modules implementing stochastic analysis need to be additionally provided with the number of

weight vectors that should be sampled to compute the stochastic indices. The list of implemented

modules is the following:

• DEACCREfficiency (computes E∗o and Eo,∗ for each DMUo ∈ D),

• DEACCRPreferenceRelations (verifies the truth of %P
E and %N

E for all pairs of DMUs),

• DEACCRExtremeRanks (computes R∗o and Ro,∗ for each DMUo ∈ D),

• DEASMAACCREfficiencies (computes EAIIs′, E∗
′

o , E
′
o,∗, and EE ′o for each for DMUo ∈ D;

it requires specification of the number of efficiency subintervals (buckets) B and number of

samples used in the Hit-And-Run algorithm),

• DEASMAACCRPreferenceRelations (computes PEOIs′ for all pairs of DMUs; it requires

specification of the number of samples), and

• DEASMAACCRRanks (computes ERAIs′ for all DMUs and ranks; it requires specification

of the number of samples).
13



To enrich the arsenal of methods that can be used to investigate efficiency of DMUs, we pro-

vide the following additional components: CCRSuperEfficiency (computes super-efficiency for each

DMU [2]), CCRCrossEfficiency (computes cross-efficiency of each DMU either with an aggressive

or benevolent approach [22, 59]), and CCREfficiencyBounds (computes four types of results: the

minimal and maximal ratios of each DMU’s efficiency and the best or the worst efficiency of any

DMU [53]). Thanks to this, the practitioners can easily compare results of different methods, while

teachers can present a wide spectrum of approaches to their students using the same data for-

mat and user interface. Moreover, all available DEA components in diviz are open-source, which

enhances the addition of yet other methods by the researchers.

The structures of two exemplary modules, DEACCREfficiency and DEASMAACCREfficiencies,

are presented in Figures 1 and 2. They exhibit the required inputs, provided outputs, possible

parametrization, and computation procedures.

DEACCREfficiencyin1: units

in2 : inputs and outputs

in3: performance table

in4 (opt) : linear constraints 

on weights

out1: minimal efficiency

computation procedure: 

- Eo,* for all DMUo 

- Eo
* for all DMUo

out2: maximal efficiency

param1: with weight

constraints

(by default: no)

Figure 1: Structure of diviz module which computes the extreme efficiency scores for each DMU using LP.

DEASMAACCREfficiencies

in1: units

in2 : inputs and outputs

in3: performance table

in4 (opt) : linear constraints 

on weights

out1: efficiency acceptability

interval indices

computation procedure: 

- EAIIs’ for all DMUo

- Eo
*’ for all DMUo

- Eo,*
’ for all DMUo

- EEo
’ for all DMUo

out2: maximal efficiency

in the sample

param2: number of samples 

(input/output weights)

out3: minimal efficiency

in the sample

out4: expected efficiency

param3: number of

efficiency buckets

param1: with weight constraints 

(by default: no)

Figure 2: Structure of diviz module which computes the efficiency acceptability interval indices, observed extreme
efficiency scores, and expected efficiency for each DMU using Monte Carlo simulation.

3.3. Workflow Design

The design of decision analysis workflows in diviz is performed via an intuitive graphical user

interface. Each component is represented by a box which can be linked to data files or other
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computation modules. Thus, the design of the workflow does not require any programming skills,

but rather understanding the role of each module [42]. To construct a workflow, the user chooses

the modules (s)he is interested in from the list of available elements. Using a “drag-and-drop”

function, (s)he adds them to the workspace along with the data files. Subsequently, the inputs

and outputs of different components can be linked using connectors to define the structure of the

workflow. In this way, the analysts may experiment with their own creations, suitably adjusting

the arsenal of employed DEA methods to their own needs, while the researchers may design new

software components that would built on the results delivered within our framework.

Once the design is finished, it is possible to execute the workflow. As already mentioned, the

underlying calculations are performed on computing servers through the use of the XMCDA web-

services. Thus, diviz requires connection to the Internet. From the point of view of practitioners,

this allows to avoid performing heavy calculations on their local computers. The possibly multiple

outcomes can be viewed either in diviz or in an external web-browser. The software maintains the

history of all the past executions, which - in the context of efficiency analysis - is useful for studying

the impact of additional weight constraints or removing the outlier DMUs on the results.

The diviz software enables to export any workflow as an archive (i.e., single file containing all

necessary information including input data). This archive can be subsequently shared with other

users, who can then import it (by loading the archive) into their software and execute it on the

original data or continue the workflow’s development. This is useful for the researchers for both

dissemination and reproducibility of their results as well as for collaborative work on a particular

case study.

Figure 3 presents the workflow for our case study concerning analysis of efficiency of Polish

airports, whose results are discussed in Section 4. Each module delivers different results based

on the input data concerning the DMUs (DEA-unit.xml), definition of inputs and outputs (DEA-

inOut.xml), and underlying performances (DEA-performanceTable.xml). Note that, e.g., to draw

the graph of necessary efficiency preference relation, the appropriate output of the DEACCRPref-

erenceRelations module is provided as the input for plotAlternativesHasseDiagram module.

4. Application to Efficiency Analysis of Polish Airports

4.1. Review of Airport Efficiency Applications

As noted in [70], continuous improvement of airports’ competitiveness greatly affects economic

development of countries. Over the last twenty years DEA has proven its usefulness for studying the

performance and measuring the efficiency of airports. Such examination is important from several

points of view [70]. Firstly, governments or private owners can verify that the resources available to

the airport are used as effectively as possible. Secondly, airlines and passengers want to use efficient

airports. Thirdly, managers can improve the competitiveness of the airports by following the best

policy based on the competitors’ performances.
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Figure 3: Algorithmic workflow for the efficiency analysis of Polish airports.

The literature concerning DEA application to measuring the efficiency and productivity of the

airports can be viewed from a few perspectives:

1. Employed model:

• CCR or BCC model for measuring airports’ efficiency in a single year or season (e.g.,

[1, 26, 46–48, 56, 57, 71]);

• DEA coupled with Malmquist productivity index to measure the airports’ efficiency

change over a few year period (e.g., [9, 25, 27, 44]);

• DEA two-stage model, which first examines efficiency of the airports, and then uses

a procedure to bootstrap DEA scores with a regression model for explanatory purpose

(e.g., [7, 8]).
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2. Type of considered inputs:

• inputs related to the terminal services (e.g., number of check-in desks, gates, baggage

collection belts, or parking spots, and terminal or baggage claim area) used, e.g., in

[1, 8, 24–27, 47, 48, 56, 57, 71];

• inputs related to the movement model (e.g., airport area, apron area, aircraft parking

positions, numbers of runways and air routes connecting with other airports, runway

length) used, e.g., in [26, 27, 48, 72];

• monetary inputs (e.g., operational costs, labor costs, capital invested, capital stock, and

airport charge) used, e.g., in [8, 44, 46, 56, 57, 71];

• inputs related to the labor (e.g., number of employees) used, e.g., in [44, 46, 56, 57];

• inputs related to the airport’s localization (e.g., distance to the nearest city centre) used,

e.g., in [1].

3. Type of considered outputs:

• outputs related to the terminal services (e.g., number of passengers, cargo throughput,

and mail tonnes) used, e.g., in [8, 25–27, 44, 46–48, 56, 71, 72]);

• outputs related to the movement model (e.g., aircraft movement, commuter movements,

and number of air carrier operations) used, e.g., in [8, 25–27, 47, 48, 71, 72];

• monetary outputs (e.g., total revenue, operational revenue, sales to plane, sales to pas-

sengers, commercial revenue, handling revenue, and non-aeronautical fee) used, e.g., in

[8, 56, 57].

4. Geographical scope:

• single country (e.g., Argentina [8], Brazil [24], China [25], Italy [8], Japan [71], Spain [41,

44], Turkey [35], United Kingdom [9, 46], or United States [26, 56, 57]);

• continental or intercontinental scope (e.g., Europe [1, 47, 48] or Asia-Pacific region [65,

70]).

4.2. Data Description

We analyze data concerning performances of 11 Polish airports. The geographical distribution

of the airports is presented in Figure 4. Instead of the traditionally used basic inputs, such as

the number of gates, aircraft parking positions, or runway length, we refer to more general and

aggregated data on capacities of a terminal, runways, and an apron. These are derived from the

report prepared by the world-wide leading consultancy companies [51] (see Table 1). As mentioned

in [51], the values for i1 − i3 have been obtained directly from the airports. Additionally, we take

into account a catchment area of each airport. The values for i4 can be easily obtained from the

Polish central statistical office. Detailed description of the four inputs is as follows:
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Warsaw

Gdansk

Szczecin

Zielona Gora

Poznan

Wroclaw

Katowice

Cracow

Rzeszow

Bydgoszcz

Lodz

Figure 4: Geographical distribution of Polish airports.

i1: an annual capacity of a terminal defined as a passenger flow that an airport can accommodate

without serious inconvenience (in million passengers per year); it takes into account limits on

the traffic related to the terminal area, the numbers of gates and check-in counters, as well

as severe congestion in access facilities;

i2: a maximal throughput capacity defined as an average number of movements (arrivals and/or

departures) that can be performed on the airport’s runways (in number of movements per

hour); it accounts for the configuration of runways, taxiways, waiting areas, and high speed

exits, air traffic flow in the runway area (including an average runway occupancy time), and

air traffic delays to the landing and takeoff moments;

i3: a dynamic apron capacity defined as an average number of planes that can be served by the

airport (in number of planes per hour); it is derived from the number and configuration of

stands and ramps as well as an average stand occupancy time;

i4: a catchment area of an airport defined as the number of inhabitants living within the range

of 100 kilometers from the airport (in million inhabitants); it reflects the airport’s potential

for attracting the surrounding population.

When it comes to the outputs, we focus on the two primary indicators related to the terminal

services and movement model, defined in the following way:

o1: passengers traffic measured by the total number of passengers served by the airport (in million

passengers per year);

o2: number of aircraft movements (one total movement is a landing or takeoff of an aircraft) (in

thousand movements per year).
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The outputs are derived from the statistical data provided by the Civil Aviation Authority (CAA)

in Poland [16] (see Table 1, columns o1− o2). Let us emphasize that we have carefully selected the

inputs and outputs so that they harmonize. Indeed, the inputs of each airport reflect its individually

judged potential, whereas the outputs indicate the degree to which this potential is used in practice.

Table 1: Input and output performances for the problem of efficiency examination of Polish airports (all analyzed
values concern 2009)

City Short name i1 i2 i3 i4 o1 o2

Warsaw WAW 10.5 36 129.4 7.0 9.5 129.7
Cracow KRK 3.1 19 31.6 7.9 2.9 31.3
Katowice KAT 3.6 32 57.6 10.5 2.4 21.1
Wroclaw WRO 1.5 12 18.0 3.0 1.5 18.8
Poznan POZ 1.5 10 24.0 4.0 1.3 16.2
Lodz LCJ 0.6 12 24.0 3.9 0.3 4.2
Gdansk GDN 1.0 15 42.9 2.5 2.0 23.6
Szczecin SZZ 0.7 10 25.7 1.9 0.3 4.2
Bydgoszcz BZG 0.3 6 3.4 1.2 0.3 4.2
Rzeszow RZE 0.6 6 11.3 2.7 0.3 3.5
Zielona Gora IEG 0.1 10 63.4 3.0 0.005 0.61

4.3. Results

In this section, we discuss results derived from robustness and stochastic analysis of efficiency

of Polish airports. As proven in the review presented in Section 4.1, such comprehensive analysis

has never been conducted for any airport efficiency application. Moreover, while there exist some

reports on measuring the efficiency of airports in many other countries, this aims to be the first

comprehensive study for Poland.

First, we focus on the efficiency scores; then, we elaborate on the efficiency ranks; we conclude

with the efficiency preference relations. All stochastic results presented in this section were derived

from the analysis of 10000 input and output weights obtained with a Hit-And-Run algorithm. Then,

we illustrate the impact of considering weight constraints and eliminating some outlier DMU.

For this purpose, we have constructed dedicated diviz workflows which are available online1:

• DEAPolishAirports.dvz for results presented in Sections 4.3.1, 4.3.2, and 4.3.3 without con-

sidering weight constraints;

• DEAPolishAirportsWithConstraints.dvz for results discussed in Section 4.3.4 when considering

weight constraints;

• DEAPolishAirportsWithoutOutlier.dvz for results discussed in Section 4.3.5 when considering

the set of airports without WAW.

1http://www.cs.put.poznan.pl/mkadzinski/diviz/efficiency/ - when correcting the proofs, we will make
the workflows available on the official website of diviz
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These workflows can be used to reproduce the results discussed in this section. For this purpose:

1) download diviz 2, 2) launch it, 3) import the workflow (“Workflow - Import as new”), 4) run it

on diviz (“Execution - Run”), and 5) view the results of interest by selecting a particular module’s

output. Moreover, they illustrate how to prepare the input data so that they can be later easily

adapted to other problems.

4.3.1. Efficiency Distribution and Extreme Efficiencies

Table 2 (columns E∗o and Eo,∗) shows the best and the worst efficiency scores for each DMU ,

DMUo ∈ D. Five airports with E∗o = 1 (WAW, KRK, WRO, GDN, and BZG) are deemed as

efficient. Among the six inefficient airports with E∗o < 1, POZ and IEG have, respectively, the

least and the greatest gap that needs to be covered for reaching efficiency. Their maximal efficiency

scores are equal to 0.799 and 0.258, respectively. The minimum efficiencies Eo,∗ for all airports are

less than 0.5. This means that for the least advantageous weight vector for each DMU, it is at least

twice less efficient than another DMU. Interestingly, when taking into account the worst efficiency

scores, POZ (judged inefficient) compares positively to KRK and BZG (judged efficient).

Table 2: Extreme efficiency scores (E∗o and Eo,∗), cross-efficiency (CEo) and super-efficiency (SEo) measures, extreme

efficiencies observed in the sample (E∗
′

o and E
′

o,∗), and estimate of the expected efficiency (EE′o) for each DMUo

Short name E∗o Eo,∗ CEo SEo E∗
′

o E
′

o,∗ EE′o

WAW 1.000 0.452 0.773 2.277 1.000 0.560 0.944
KRK 1.000 0.213 0.689 1.123 1.000 0.257 0.664
KAT 0.591 0.108 0.362 0.591 0.519 0.131 0.281

WRO 1.000 0.338 0.731 1.039 0.991 0.387 0.702
POZ 0.799 0.218 0.551 0.799 0.732 0.258 0.533
LCJ 0.300 0.057 0.203 0.300 0.255 0.068 0.133

GDN 1.000 0.302 0.793 2.000 1.000 0.310 0.531
SZZ 0.271 0.089 0.193 0.271 0.265 0.092 0.145

BZG 1.000 0.184 0.849 1.745 1.000 0.196 0.726
RZE 0.409 0.069 0.275 0.409 0.359 0.085 0.221
IEG 0.258 0.001 0.016 0.258 0.051 0.001 0.010

The efficiency acceptability interval indices are provided in Table 3. We used 10 efficiency

buckets with the same amplitude of 0.1. While for some airports the vast majority of attained

efficiency scores is concentrated within a single bucket (e.g., for WAW in (0.9, 1.0], or LCJ and SZZ

in (0.1, 0.2]), for some other airports the distribution of scores is more balanced. In particular, for

BZG the probability of attaining efficiency in seven different ranges between (0.3, 0.4] and (0.9, 1.0]

is greater than 8%. Analogously, for WRO three out of ten different EAIIs′ are greater than 20%.

It is worthwhile analyzing the EAIIs′ along with the extreme efficiencies observed in the sample

(see columns E∗
′

o and E
′
o,∗ in Table 2). For most airports these differ from the true extreme

efficiency scores computed with LP. In particular, for RZE, E∗RZE = 0.409 > E∗
′

RZE = 0.359

and ERZE,∗ = 0.069 < E
′
RZE,∗ = 0.085, whereas for IEG, E∗IEG = 0.258 > E∗

′
IEG = 0.051. Such

2http://www.decision-deck.org/diviz/download.html
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Table 3: Efficiency acceptability interval indices (in %)

[0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

WAW 0.00 0.00 0.00 0.00 0.00 0.76 5.15 7.35 7.81 78.93
KRK 0.00 0.00 0.13 1.64 8.95 18.52 31.02 27.07 9.94 2.73
KAT 0.00 5.00 61.98 29.75 3.23 0.04 0.00 0.00 0.00 0.00

WRO 0.00 0.00 0.00 0.05 6.43 14.32 24.53 31.21 21.16 2.30
POZ 0.00 0.00 0.15 3.08 28.43 50.18 18.07 0.09 0.00 0.00
LCJ 4.39 95.02 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GDN 0.00 0.00 0.00 5.97 21.50 60.17 9.48 1.91 0.61 0.36
SZZ 0.94 97.68 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BZG 0.00 0.04 1.59 11.35 11.10 11.73 10.35 8.93 8.78 36.16
RZE 0.14 28.16 70.31 1.39 0.00 0.00 0.00 0.00 0.00 0.00
IEG 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

analysis allows to identify the ranges of scores which are attained only for marginal share of feasible

weight vectors. In this perspective, the estimates of EAIIs derived from Monte Carlo simulation

may be equal to 0.0, while there exists some feasible input/output weight vector (not included in

the sample) for which a DMU would attain efficiency contained in the underlying bucket (see, e.g.,

EAII(WAW,(0.4, 0.5]) or EAII(IEG,(0.1, 0.2])).

Finally, the estimates of expected efficiency EE
′
o (see column EE

′
o in Table 2) may be used to

rank the airports. In this case, WAW significantly outperforms other cities with EE
′
WAW = 0.944,

and IEG is placed at the very bottom with EE
′
IEG = 0.010. When compared to cross-efficiencies

(see column CEo in Table 2), the advantage of using expected efficiencies consists in more in-

depth exploitation of the space of feasible weights. In our case, EE
′
o is derived from the analysis

of 10000 uniformly distributed weight vectors, whereas for each DMUo ∈ D, CEo is based only

on 10 arbitrarily selected vectors for which the efficiency of some other DMU is maximal. This

arbitrariness may lead to results which are surprising when compared with the indications of larger

subset of feasible weights. For example, CEWAW = 0.773 < CEBZG = 0.849, while the outcomes of

stochastic analysis are more favorable for WAW than BZG. In particular, EAII ′(WAW, (0.9, 1.0]) =

78.93 > EAII ′(BZG, (0.9, 1.0]) = 36.16, and EE
′
WAW = 0.944 > EE

′
BZG = 0.726. Additionally,

when compared with super-efficiencies (see column SEo in Table 2), EEs′ enrich the conclusions

that can be derived from the traditional efficiency analysis for all airports, including both the

efficient and inefficient ones. Let us remind that for the inefficient DMUs, E∗o = SEo. Instead, EE ′o

indicates an average performance of DMUo, which is, in general, unique for each individual unit

and different than E∗o , Eo,∗, CEo, and SEo. Thus, by indicating which units perform well subject

to different preferences, EEs′ make them more comparable.

4.3.2. Efficiency Rank Acceptability Indices and Extreme Ranks

Table 4 (columns R∗o and Ro,∗) shows the extreme ranks of each DMU, DMUo ∈ D, for all

possible weight vectors. Obviously, the airports identified as efficient are potential top DMUs, i.e.,

the best rank for WAW, KRK, WRO, GDN, and BZG is one. BZG is more sensitive to the choice

of a weight vector than other efficient DMUs, because its rank may drop to 8, while, e.g., WAW and
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WRO are ranked fifth in the worst case. Among the inefficient airports, POZ is possibly ranked

third, whereas no other inefficient airport is placed in top 5. KAT, LCJ, SZZ, RZE, and IEG are

the least ranked DMUs though only the latter two are possibly ranked at the very bottom. The

average width of the rank interval for the analyzed airports is four, and the least variation of the

attained positions is observed for IEG, POZ, LCJ, and SZZ.

Table 4: Extreme ranks and efficiency rank acceptability indices (in %)

R∗o Ro,∗ ER′o 1 2 3 4 5 6 7 8 9 10 11

WAW 1 5 1.3534 70.70 24.59 3.38 1.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KRK 1 6 3.5354 0.54 16.17 19.85 56.50 6.53 0.41 0.00 0.00 0.00 0.00 0.00
KAT 6 10 6.9947 0.00 0.00 0.00 0.00 0.00 0.58 99.37 0.05 0.00 0.00 0.00

WRO 1 5 2.7192 0.04 32.08 64.22 3.36 0.33 0.00 0.00 0.03 0.00 0.00 0.00
POZ 3 6 5.0994 0.00 0.00 0.13 9.89 69.89 20.09 0.00 0.00 0.00 0.00 0.00
LCJ 7 10 9.7795 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.05 77.95 0.00

GDN 1 6 5.0322 0.19 9.67 5.42 11.11 18.67 54.94 0.00 0.00 0.00 0.00 0.00
SZZ 7 10 9.1935 0.00 0.00 0.00 0.00 0.00 0.00 0.05 2.60 75.40 22.05 0.00

BZG 1 8 3.2662 28.56 17.49 7.00 17.81 4.58 23.98 0.58 0.00 0.00 0.00 0.00
RZE 7 11 8.0265 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.35 2.65 0.00 0.00
IEG 8 11 11.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0

The rank acceptability indices are presented in Table 4 (columns 1− 11). Although WAW may

be ranked in positions between 1 and 5, for over 70% of weight vectors it is ranked at the top

(thus, attaining the best result among the efficient DMUs), and only for less than 5% it is ranked

outside top two. Further, BZG is ranked first for over 28% weight vectors, while for the remaining

efficient DMUs the probability of attaining the greatest efficiency is less than 1%. All airports

but BZG attain a particular rank for the prevailing share of weight vectors. When it comes to

the potentially efficient DMUs, e.g., WRO, KRK, and GDN are most often ranked third, fourth,

and sixth, respectively. As for the inefficient airports, the indication of the most probable rank is

even more clear. For the vast majority of weight vectors the ranks between 7 and 11 are attained

by, respectively, KAT (7), RZE (8), SZZ (9), LCJ (10), and IEG (11). From another perspective,

analysis of rank acceptability indices exhibits the range of ranks most often attained by the DMUs.

For example, for over 99% (97%) of weight vectors, KRK (SZZ) is ranked between 2 and 5 (9 and

10), whereas, in general, its rank interval is [1, 6] ([7, 10]). Finally, six airports have some rank

acceptability indices equal to 0.0, even though analysis of the exact extreme results indicates that

they may be possibly attained for at least one weight vector ((WAW, 5), (KAT, 9 − 10), (LCJ,

7−8), (BZG, 8), (RZE, 8, 10−11), (IEG, 8−10)). For each airport, ERAIs’ can be aggregated into

the estimates of an expected rank (see Table 4, column ER′o). The airports with low ERs′ (e.g.,

WAW, WRO, and KRK) are average good performers, while the units with high ERs′ (e.g., RZE,

SZZ, LCJ, and IEG) are on average far from being efficient, being ranked lower than the majority

of airports.
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4.3.3. Pairwise Efficiency Outranking Indices and Necessary/Possible Efficiency Preference Rela-

tions

The necessary and possible preference relations are provided in Table 5. Obviously, the truth

of necessary efficiency relation implies the truth of a less demanding possible relation (for clarity,

in Table 5 we list only these possible relations which are not necessary at the same time). There

are 32 pairs of airports (DMUo, DMUk) ∈ D ×D, o 6= k, related by the necessary preference. For

example, WAW and BZG are necessarily preferred to, respectively, six and four other airports.

Table 5: Necessary and possible efficiency preference relations

Necessary preference Additional possible preference
WAW KAT, POZ, LCJ, SZZ, RZE, IEG WAW KRK, WRO, GDN, BZG
KRK KAT, LCJ, SZZ, RZE, IEG KRK WAW, WRO, POZ, GDN, BZG
KAT RZE KAT LCJ, SZZ, BZG, IEG
WRO KAT, LCJ, SZZ, RZE, IEG WRO WAW, KRK, POZ, GDN, BZG
POZ KAT, LCJ, SZZ, RZE, IEG POZ KRK, WRO, GDN, BZG
LCJ IEG LCJ KAT, SZZ, RZE
GDN KAT, LCJ, SZZ, RZE, IEG GDN WAW, KRK, WRO, POZ, BZG
SZZ SZZ KAT, LCJ, RZE, IEG
BZG LCJ, SZZ, RZE, IEG BZG WAW, KRK, KAT, WRO, POZ, GDN
RZE RZE LCJ, SZZ, BZG, IEG
IEG IEG KAT, SZZ, RZE

The graph of necessary efficiency relation, subject to a transitive reduction, is illustrated in

Figure 5. When analyzing this graph, the efficient airports are confirmed to be the best DMUs,

because there is no other airport which is necessarily preferred to them. Note, however, than the

inverse implication is not true, i.e., there may exist some inefficient DMU such that there is no

other DMU necessarily preferred to it. Among the inefficient airports, POZ confirms its necessary

superiority over the five remaining inefficient DMUs. Further, IEG, RZE, and SZZ should be viewed

as the worst airports, because they are not necessarily preferred to any other airports.

The analysis of the diagram may be enriched with the view on the possible relations. For

example, on one hand, LCJ is not possibly preferred to BZG, which means that the efficiency of

BZG is always strictly greater than that of LCJ. On the other hand, although BZG is necessarily

preferred to RZE, the latter is possibly preferred to the former. This means that there is at least

one weight vector for which efficiencies of these two airports are equal.

Furthermore, it is interesting to analyze the graph of the necessary relation in the context of

extreme ranks. Some of the observed interdependencies are straightforward. For example, while

GDN (LCJ) is necessarily preferred to five (by six) other airports, its worst (best) rank is 11−5 = 6

(1 + 6 = 7). However, some other results are not that obvious. For example, POZ is necessarily

preferred only by WAW, but its best rank is 3, whereas SZZ is not necessarily preferred to any

other airport, but it is not ranked at the very bottom in the worst case.

Finally, let us note that the nodes which are not related by an arc in the diagram, indicate the

airports which are incomparable in terms of %N
E (e.g., (WAW,BZG), (POZ,WRO), (BZG,KAT), or
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Figure 5: The necessary efficiency preference relation.

(LCJ,RZE)). For such pairs, one of the airports is possibly (for some weight vector) more efficient

than the other, and vice versa. When considering the outcomes of the traditional robustness

analysis, these pairs are left incomparable (no additional information is given). Instead of leaving

the analyst only with information that the possible preference relations are observed for at least

one weight vector, out approach provides estimates of the shares of weight vectors confirming these

outcomes.

In Table 6, we present pairwise efficiency outranking indices for all DMUs. Obviously, for pairs of

airports related by the necessary relation (e.g., (WAW,KAT) or (GDN,RZE)), the respective PEOI ′

is 100%, while for pairs not related by the possible relation (e.g., (KAT,KRK) or (SZZ,WRO)),

PEOI ′ is 0%. When it comes to pairs related by the necessary incomparability, for some of

them one airport is more efficient than the other for the vast majority of weight vectors. In

particular, for (WAW,KRK) PEOI ′(WAW,KRK) = 98.01% and PEOI ′(KRK,WAW) = 1.99%,

and for (WRO,POZ), PEOI ′(WRO,POZ) = 99.58% and PEOI ′(POZ,WRO) = 0.42%. As for the

efficient airports, analysis of the pairwise efficiency outranking indices supports WAW in comparison

with KRK, WRO, GDN, and BZG. For some pairs of airports, indicating the more advantageous

one on the basis of PEOIs is not possible. For example, for (WRO,BZG), PEOI ′(WRO,BZG) =

53.25% and PEOI ′(BZG,WRO) = 46.75%. Finally, although PEOI ′ for (RZE,BZG) is equal to

0%, the possible efficiency relation for this pair holds, whereas even though PEOI ′ for (SZZ,IEG)

is equal to 100%, the necessary preference relation for this pair does not hold.

As justified in Section 2.1, when conducting Monte Carlo simulation, we assumed a uniform

weight distribution for the space of feasible weights. Let us emphasize that with other exogenously

given distribution the values of efficiency acceptability indices could be different. This is partially

illustrated in Section 4.3.4, when a value of a density function assigned to some weight vectors is

zeroed, because they are excluded from the feasible space by the provided weight constraints.

4.3.4. Incremental Specification of Weight Constraints

For illustrative purpose, in this section, we assume that the following set of linear weights

constraints has been provided by the DM:
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Table 6: Pairwise efficiency outranking indices (in %)

WAW KRK KAT WRO POZ LCJ GDN SZZ BZG RZE IEG

WAW 100.0 98.01 100.0 95.41 100.0 100.0 99.84 100.0 71.37 100.0 100.0
KRK 1.99 100.0 100.0 18.35 99.56 100.0 83.45 100.0 43.53 100.0 100.0
KAT 0.00 0.00 100.0 0.00 0.00 100.0 0.00 99.97 0.56 100.0 100.0

WRO 4.59 81.65 100.0 100.0 99.58 100.0 89.13 100.0 53.25 100.0 100.0
POZ 0.00 0.44 100.0 0.42 100.0 100.0 62.51 100.0 26.86 100.0 100.0
LCJ 0.00 0.00 0.00 0.00 0.00 100.0 0.00 22.29 0.00 0.00 100.0

GDN 0.16 16.55 100.0 10.87 37.49 100.0 100.0 100.0 31.53 100.0 100.0
SZZ 0.00 0.00 0.03 0.00 0.00 77.71 0.00 100.0 0.00 2.82 100.0

BZG 28.63 56.47 99.44 46.75 73.14 100.0 68.47 100.0 100.0 100.0 100.0
RZE 0.00 0.00 0.00 0.00 0.00 100.00 0.00 97.18 0.00 100.0 100.0
IEG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0

• input weights: v1 ≥ 3v3, v1 ≥ 5v3, v2 ≥ 2v3, and v2 ≥ 5v4;

• output weights: u1 ≥ 5u2.

In Table 7, we provide extreme efficiency scores and ranks in two iterations, i.e., when considering

the weight space without (1) and with (2) the above specified constraints. These illustrate that

the ranges of efficiencies and ranks become more precise when preference information is taken into

accounted. In particular, KRK, WRO, and BZG become not efficient. Their best efficiency score

is less than one (E∗o,2 < 1 and E∗o,1 = 1) and they are ranked second in the best case (R∗o,2 = 2

and R∗o,1 = 1). This implies that only WAW and GDN remain efficient. Constraining the weight

space is neither advantageous for IEG. Its best efficiency score drops from 0.258 to 0.188, while the

best rank decreases from 8 to 11. As a result, IEG is ranked at the very bottom for all feasible

weight vectors. Furthermore, with limited weight space, GDN attains the best lowest efficiency

score (EGDN,∗,2 = 0.455 > EWAW,∗,2 = 0.452), while for KRK and POZ the increase of the worst

efficiency is greater than 0.2. Even though their lowest scores are much better now, their least ranks

remain unchanged. On the contrary, RZE (KAT) is now ranked 9 (8) for the least advantageous

weight vector, while it was ranked 11 (10) without weight constraints.

Table 7: Extreme efficiency scores and ranks without (1) and with (2) weight constraints

Short name E∗o,1 Eo,∗,1 E∗o,2 Eo,∗,2 R∗o,1 Ro,∗,1 R∗o,2 Ro,∗,2

WAW 1.000 0.452 1.000 0.452 1 5 1 5
KRK 1.000 0.213 0.962 0.439 1 6 2 6
KAT 0.591 0.108 0.554 0.210 6 10 6 8

WRO 1.000 0.338 0.922 0.445 1 5 2 5
POZ 0.799 0.218 0.779 0.433 3 6 3 6
LCJ 0.300 0.057 0.282 0.094 7 10 7 10

GDN 1.000 0.302 1.000 0.455 1 6 1 6
SZZ 0.271 0.089 0.260 0.113 7 10 9 10

BZG 1.000 0.184 0.954 0.189 1 8 2 8
RZE 0.409 0.069 0.383 0.169 7 11 7 9
IEG 0.258 0.001 0.188 0.001 8 11 11 11
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In Figure 6, we depict the graph of the necessary efficiency preference relation derived from

the analysis of constrained weight space. This graph is enriched when compared with the one

presented in Figure 5. Precisely, there are five pairs for which the necessary relation has become

true: (KAT,RZE), (KAT,IEG), (SZZ,IEG), (RZE,SZZ), and (RZE,IEG). Interestingly, even though

KRK, WRO, and BZG are not efficient and ranked second in the best case, there is no other airport

that would be necessarily preferred to them. This confirms the benefits of joint consideration of

the three outcome perspectives: scores, ranks, and preference relations.

WAW KRK WRO BZGGDN

POZ

SZZ

LCJKAT

IEG

RZE

Figure 6: The necessary preference relation when accounting for the weight constraints.

To illustrate the effect of incorporating weight constraints on the acceptability indices, in Table 8

we present EAIIs′, ERAIs′, and PEOIs′ for BZG without and with weight constraints. The most

evident effect of integrating these constraints into the efficiency model is that for the vast majority

of feasible weight vector (about 97%) BZG attains efficiency scores in the range (0.2, 0.6] and ranks

6 − 7, while previously it attained the best efficiency scores ((0.9, 1.0]) and ranks on the podium

(1 − 3) for, respectively, over 35% and 50%. Moreover, BZG is now far less advantageous when

compared with WAW, KRK, WRO, POZ, and GDN.

4.3.5. Elimination of Outlier DMUs

For illustrative purpose, in this section, we investigate the impact of removing some outlier

airports on the obtained results. We refer to the backward approach presented in [6], and eliminate

the units with super-efficiency greater than 2.0. Subsequently, we compare the original results from

Sections 4.3.1-4.3.3 with the ones obtained while neglecting WAW3. Note that WAW is the largest

3In diviz, elimination of some DMU from the analysis can be conducted easily by setting a unit-specific attribute
“active” to “false”.
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Table 8: Efficiency acceptability interval indices (in %), rank efficiency acceptability indices (in %), and pairwise
efficiency outranking indices (in %) for BZG without (1) and with (2) weight constraints

[0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

EAII
′

1 0.00 0.04 1.59 11.35 11.10 11.73 10.35 8.93 8.78 36.16

EAII
′

2 0.00 0.00 16.04 40.99 26.75 12.75 2.97 0.40 0.10 0.00

1 2 3 4 5 6 7 8 9 10− 11

ERAI
′

1 28.56 17.49 7.00 17.81 4.58 23.98 0.58 0.00 0.00 0.00

ERAI
′

2 0.00 0.01 0.07 0.40 1.22 84.45 13.85 0.00 0.00 0.00

WAW KRK KAT WRO POZ LCJ GDN SZZ RZE IEG

PEOI
′

1 28.63 56.47 99.44 46.75 73.14 100.0 68.47 100.0 100.0 100.0

PEOI
′

2 0.02 0.20 85.65 0.06 1.25 100.0 0.06 100.0 100.0 100.0

and busiest airport in Poland, which also proved to be the best in terms of robustness analysis in

our results.

In Table 9, we provide the extreme efficiency scores and ranks as well as the estimates of expected

efficiencies and efficiency ranks for the set of airports with (D1) and without (D2) considering WAW.

For all airports, the extreme efficiency scores are not worse when WAW is neglected. Precisely, for

POZ and SZZ the best efficiencies have been improved. In fact, POZ is the greatest beneficiary

of removing WAW from the analysis (E∗,D2

POZ = 0.989 > E∗,D1

POZ = 0.799). Furthermore, the worst

efficiencies have been improved significantly for all airports (e.g., E∗,D2

WRO = 0.5 > E∗,D1

WRO = 0.338)

but GDN, SZZ, and IEG. When it comes to the extreme ranks, all airports have improved their

worst ranks by one (e.g., RD2
BZG,∗ = 7 < RD1

BZG,∗ = 8). The same holds for the non-efficient airports

in terms of their best ranks (e.g., R∗,D2

POZ = 2 < R∗,D1

POZ = 3). This confirms the robustness of the

ranking intervals, which change at most by one when a single unit is removed or introduced.

As far as the expected efficiency scores and ranks are concerned, the estimates of these measures

obtained from the Monte Carlo simulation after removing WAW indicate a clear improvement

(i.e., greater expected efficiency and less expected rank) for all airports (e.g., EE
′D2
KRK = 0.854

> EE
′D1
KRK = 0.664 and ER

′D2
KRK = 2.5769 < ER

′D1
KRK = 3.5354).

In Figure 7, we depict the graph of the necessary efficiency preference relation and pairwise

efficiency outranking indices derived from the analysis neglecting WAW. For all pairs of airports,

the truth or falsity of %N
E as well as the values of PEOIs are the same as in Figure 5 and Table 6,

respectively4. This confirms that the removal of some outlier DMUs does not influence the pairwise

one-on-one results for the remaining units.

Finally, let us remind that the convergence of results with the removal/introduction of some

unit cannot be predicted in case of efficiency acceptability interval indices and efficiency rank

acceptability indices. To illustrate this phenomenon, in Table 10, we present the EAIIs′ and

4In general, the estimates of the pairwise efficiency outranking indices may differ slightly from one Monte Carlo
simulation to another because there is no guarantee that the sets of feasible weight vectors sampled in these simula-
tions are the same.
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Table 9: Extreme efficiency scores and ranks, estimates of expected efficiencies and efficiency ranks with (D1) and
without (D2) considering WAW

Short name E∗,D1
o ED1

o,∗ E∗,D2
o ED2

o,∗ EE
′D1
o EE

′D2
o R∗,D1

o RD1
o,∗ R∗,D2

o RD2
o,∗ ER

′D1
o ER

′D2
o

WAW 1.000 0.452 - - 0.944 - 1 5 - - 1.3534 -
KRK 1.000 0.213 1.000 0.420 0.664 0.854 1 6 1 5 3.5354 2.5769
KAT 0.591 0.108 0.591 0.220 0.281 0.362 6 10 5 9 6.9947 5.9953

WRO 1.000 0.338 1.000 0.500 0.702 0.901 1 5 1 4 2.7192 1.7638
POZ 0.799 0.218 0.989 0.370 0.533 0.699 3 6 2 5 5.0994 4.1006
LCJ 0.300 0.057 0.300 0.095 0.133 0.174 7 10 6 9 9.7795 8.7795

GDN 1.000 0.302 1.000 0.302 0.531 0.707 1 6 1 5 5.0322 4.0201
SZZ 0.271 0.089 0.274 0.089 0.145 0.192 7 10 6 9 9.1935 8.1943

BZG 1.000 0.184 1.000 0.312 0.726 0.891 1 8 1 7 3.2662 2.5440
RZE 0.409 0.069 0.409 0.137 0.221 0.286 7 11 6 10 8.0265 7.0305
IEG 0.258 0.001 0.258 0.001 0.010 0.014 8 11 7 10 11.000 10.000

KRK WRO BZGGDN POZ

SZZ KATLCJ

IEGRZE

KRK WRO BZGGDN POZ

SZZ KATLCJ

IEGRZE

37.49

62.51

0.44

99.56

18.35

81.65

53.25

46.75

16.55 0.42 43.53

83.45 99.58 56.47

10.87 26.86

89.13 73.14

31.53

68.47

22.29

77.71

0.03

99.97

0.56 99.44

2.82
0.0

100.0
97.18 0.0

100.0

100.0

0.0

a) b)

Figure 7: The necessary preference relation (a) and pairwise efficiency outranking indices (b) without considering
WAW.

ERAIs′ for BZG obtained with and without considering WAW. The share of compatible weight

vectors for which BZG attains the most advantageous efficiency scores ((0.9, 1.0]) and rank (1) has

now increased, but for the remaining stochastic results one cannot observe any regularities except

the ones already captured with the expected efficiency scores and ranks.

5. Practical Consideration

5.1. In what contexts is the proposed framework relevant?

The proposed integrated framework for robustness analysis should be used when facing at least one

of the following characteristics:

1. The management wishes to investigate the performance of DMUs for all feasible input/output

weights and/or their significant share. It is desirable, because the feasible weight vectors

reflect relevant preference information and represent the full spectrum of priorities that can
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Table 10: Efficiency acceptability interval indices (in %) and rank efficiency acceptability indices (in %) for BZG
with (D1) and without (D2) considering WAW

[0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

EAII
′D1 0.00 0.04 1.59 11.35 11.10 11.73 10.35 8.93 8.78 36.16

EAII
′D2 0.00 0.00 0.00 0.11 0.54 2.58 9.08 13.90 14.53 59.26

1 2 3 4 5 6 7 8 9 10

ERAI
′D1 28.56 17.49 7.00 17.81 4.58 23.98 0.58 0.00 0.00 0.00

ERAI
′D2 46.38 7.25 17.23 4.41 24.19 0.54 0.00 0.00 0.00 0.00

be assigned to different inputs and outputs. This allows to judge the goodness of DMUs as

overall performers in a more reliable way that in the traditional DEA approaches, which take

into account only extremely small share of feasible weights.

2. The analyst does not want or know how to formulate, or is not able to justify the assumptions

about possible returns to scale. In the proposed framework, the production possibilities are

defined only by the considered DMUs, and the results are derived from pairwise comparisons

among the existing units rather than measuring efficiency relative to the efficient frontier.

This makes the results more reliable and less sensitive to changing the set of DMUs.

3. The number of compared DMUs is relatively small. Indeed, our framework can be used with

any number of DMUs, even if it is not large enough compared to the overall number of inputs

and outputs as required for the interpretability of traditional DEA outcomes (e.g., maximal

efficiency scores, cross-efficiencies, or super-efficiencies). In our case study, the number of

analyzed airports (11) is not significantly greater than the number of inputs and outputs

(6). Nonetheless, the proposed approach can still provide interpretable and valuable results

derived from the one-on-one comparisons of airports.

4. The management is interested in an in-depth analysis that would concern at least one of the

following perspectives on DMUs’ efficiency: scores, ranks, or preference relation. Firstly, the

scores determine how much worse is a given DMU than the most efficient unit. Secondly,

the ranks indicate how many DMUs are better/worse than a given DMU in terms of their

efficiency ratio. Thirdly, the preference relation offers a unique one-on-one perspective for the

efficiency analysis instead of one-against-all viewpoint being more typical for DEA.

These three prespectives are complementary, and the results offered by one of them, in general,

cannot be derived from the analysis of another. Let us provide some examples supporting

this claim:

• if there is no unit that would be necessarily preferred to a given DMU, it may still be

not efficient, thus, attaining an efficiency score less than one in the best case (see, e.g.,

the case of POZ in Section 4.3.5 which is not necessarily preferred by any other airport,

but attains E∗,D2

POZ = 0.989 < 1);

• if the intersection of the ranges of possible efficiency ranks for a pair of DMUs is non-

empty, one of them may be still necessarily preferred to another (see, e.g., the case of KAT
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and RZE in Section 4.3.5 with KAT %N,D2

E RZE and [R∗,D2

KAT , R
D2
∗,KAT ]∩ [R∗,D2

RZE, R
D2
∗,RZE] =

[6, 9]); furthermore, the pairwise outranking index may indicate that the vast majority of

feasible weights ranks higher a DMU with less advantageous ranking interval (see, e.g.,

the case of SZZ and RZE in Sections 4.3.1-4.3.3, where R∗SZZ ≤ R∗RZE and R∗,SZZ ≤
R∗,RZE, but PEOI ′(RZE,SZZ) = 97.18%);

• if the least efficiency indicates a significantly worse performance of a given DMU when

compared to the most efficient unit, it can be still better that the vast majority of other

DMUs as proven by its worst possible rank (see, e.g., the case of GDN in Section 4.3.5

with ED2
GDN,∗ = 0.302, thus, being over 3 times less efficient than the most efficient airport,

while still being ranked better than 5 out of 9 other airports (RD2
GDN,∗ = 5)).

Nonetheless, in practical efficiency analysis, one can use only a small subset of results that

may be delivered within the proposed framework.

5.2. How to interpret different robust results and which managerial concerns they address?

Traditionally, DEA has been used for indicating which DMUs are efficient and inefficient, thus dis-

criminating only between these two groups. In some real-world situations, the shares of efficient or

inefficient DMUs may be very large, and the management may wish to identify a small subset of the

most distinguishing ones among them. In their work, Tsou and Huang [64] discuss several ranking

methods that have been proposed to improve the discrimination power of DEA. Our framework

derives from the fact that each feasible weight vector provides a basis for the performance com-

parison, thus, offering greater discrimination among DMUs. The robust results which synthesize

the outcomes obtained for different weight vectors can be used for answering the following relevant

questions (we will provide the exemplary answers to these questions while referring to the results

of our case study presented in Sections 4.3.1-4.3.3):

1. Which efficient DMUs perform well compared to other DMUs? For the efficient DMUs with

E∗o = 1 and R∗o = 1, one should consider how frequently they attain the best ranks and

efficiency scores and how bad they can be at worst (i.e., E∗,o and R∗,o). This allows to

distinguish the overall good performers exhibiting more universal good practices to follow

from the more niche DMUs which are efficient only under very specific conditions, while

being far from efficiency for the vast majority of feasible weights. In our study, the best

examples of the former group are WAW and BZG, while GDN is the most representative

for the latter group. Following these conclusions, WAW and BZG are advised to be used

for benchmarking. Such discrimination between the efficient DMUs may also stimulate data

mining to generate hypotheses about the drivers of strong or weak efficiency.

2. Which inefficient DMUs do not perform significantly worse compared to other DMUs? For

the inefficient DMUs with E∗o < 1 and R∗o < 1, one should analyze how good they can be at

best (i.e., E∗o and R∗o) as well as how often they attain their worst ranks and efficiency scores.

This allows to discriminate between the inefficient DMUs which have the greatest potential
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for becoming efficient and these for which attaining efficiency would be most challenging.

The management may decide to implement the corrective actions for the former group in the

first order, while the latter group seems to be crucial in terms of reducing the performance

gap between the best and worst performers. In our study, the most advantageous inefficient

airport is POZ, while KAT, RZE, SZZ, LCJ, and IEG require considerable improvement in

their efficiency ratios, which is confirmed by a large spectrum of priorities that can be assigned

to the inputs and outputs.

3. Which DMUs are the average good or bad performers? Irrespective of their efficiency status, all

DMUs can be ranked from the best to the worst based on their average efficiency scores (EEo)

or ranks (ERo). These results compare the DMUs using a large number of weight vectors,

clearly exhibiting which units perform good for different priorities that can be assigned to

inputs and outputs. In some situations, the expected efficiency scores or ranks can prove that

inefficient DMUs are on average better than some efficient ones, thus, indicating the need for

possible corrective actions also in the context of the efficient units. In our study, this is the

case of GDN, since the comparison of expected efficiencies of POZ (deemed inefficient) and

GDN (judged efficient) indicates that EE ′POZ > EE ′GDN . Although in general we built on

the rankings and scores that DMUs can attain for the entire set of feasible weight vectors,

these two measures can be used alike the existing DEA ranking methods for assigning a single

efficiency score or position to each DMU.

4. For which DMUs the relative efficiency scores and ranks vary much in the set of feasible

weights? For this purpose, one should analyze the difference between the extreme efficiency

scores and ranks as well as the distribution of these measures across all feasible weights. High

dispersion of scores and ranks indicates that the priorities of DMUs differ significantly. In

some decision contexts, this should prompt investigation as to whether the guidelines for

standard practice can be used as a tool to reduce variance in management. In our study, the

best example of an airport for which such investigation should be conducted is BZG, which

apart from being efficient in the best case, attains efficiency scores lower than 0.5 and ranks

in the bottom half for about 25% of feasible weight vectors.

5. How DMUs perform in one-on-one comparisons? Traditionally, DEA referred to the effi-

ciency scores and/or ranks. Although these two perspectives are deepened in the proposed

framework, the necessary/possible efficiency preference relations and pairwise efficiency out-

ranking indices offer a yet different one-on-one perspective, which is not influenced by the

remaining DMUs. Indeed, the analyst may be sometimes more interested in the peer com-

parison. This is particularly useful if (s)he knows some units better. Then, they can be used

as fixed benchmarks for the remaining DMUs. In our study, an expert interested, e.g., in

the performance of SZZ and knowing POZ quite well, would get to know that POZ - despite

being inefficient overall - is more efficient than SZZ for all possible priorities assigned to the

inputs and outputs.

The necessary preference relation may be very useful also in terms of formulating the corrective
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actions for the inefficient units. For such units, the efficient ones being necessarily preferred

to them represent their hypothetical comparison units (HCUs). Differences in inputs and

outputs between DMU and thus identified HCUs clearly indicate the productivity gaps and

improvement potential. Moreover, when analyzing the graph of necessary efficiency preference

relation, one can think of applying the step-wise benchmarking based on the specification of

short-, medium-, and long-term targets. This requires identification of the paths that originate

in the node representing some inefficient DMU and finish in one of the nodes corresponding

to the efficient unit having no predecessors. In case there are multiple such paths, one may

compare the underlying strategies to be potentially adopted. In our study, since GDN %N
E

KAT %N
E RZE and BZG %N

E RZE, the exemplary recommendation for RZE may be either to

follow the example of BZG, or to focus first on reaching the efficiency level of KAT and only

then following the practice of GDN.

The robust results can be also applied in other contexts which are important from the managerial

perspective:

1. Specification of performance targets [31, 53]. In the traditional DEA methods, one investigated

only the improvement that needs to be made to become efficient (i.e., to be ranked first or

to attain the greatest efficiency score for some feasible weight vector). On the contrary, when

referring to the robust results, the management may formulate more detailed and diverse ques-

tions. In the context of our study, they may concern, e.g., the improvement of performances

that warrants that WRO is ranked at worst third for all feasible weights (while currently

RWRO,∗ = 5 > 3), or that BZG is necessarily preferred to KAT (while currently not(BZG %N
E

KAT) and PEOI ′(BZG,KAT) = 99.44%), or that the efficiency of WAW is worse at most

twice than that of the most efficient unit (while currently EWAW,∗ = 0.452 < 0.5). The an-

swers to these questions can be obtained with LP [53], directly indicating to the management

how the DMU’s performances should be bettered to attain the desired target.

2. Identification of outlier DMUs. The high values for the first rank efficiency acceptability

indices and/or efficiency acceptability interval indices for the best scores can be used for de-

tection of the outlier DMUs, similarly as super-efficiencies greater than a pre-defined threshold

in a backward approach discussed in [6]. An obvious example of such an outlier in our study

is WAW for which EAII ′(WAW, (0.9, 1.0]) = 78.93% and ERAI ′(WAW, 1) = 70.70%.

3. Adding discrimination among the DMUs by introducing the restrictions on the relative values

among different outputs and inputs which represent relevant managerial constraints. This is

enhanced by the desirable evolution of the robust results with an incremental specification of

weight constraints as discussed in Appendix C.

6. Conclusions

We have proposed an integrated framework for robustness analysis using a data envelopment

model. While referring to a ratio-based measure, we considered three different viewpoints on the
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efficiency of Decision Making Units in the set of feasible input/output weights. Precisely, we eval-

uated the units’ performance in terms of attained efficiency scores, pairwise preference relations,

and ranks. On one hand, we assessed the extreme (in case of scores and ranks), necessary and

possible (in case preference relations) performance of units using Linear Programming techniques.

On the other hand, we used Monte Carlo simulation to enrich these exact outcomes with stochastic

indices. The latter provide estimates of probability of attaining some result as well as some aggre-

gated measures (e.g., expected efficiency score or efficiency rank) derived from a large set of feasible

input/output weights. Apart from the complementary characteristics of the considered results, the

discussed algorithms compare positively to the traditional techniques of efficiency analysis in terms

of requiring less arbitrary assumptions, being less sensitive to a set of considered units, and offering

greater discriminative power.

All these benefits have been illustrated on the problem of assessing efficiency of Polish airports.

We took into account four inputs (i.e., capacities of a terminal, runways, and an apron, and a

catchment area) and two outputs (i.e., passenger traffic and number of aircraft movements) related

to the terminal services and movement model. Nevertheless, the scope of problems in which an-

swering similar questions may be of interest to the analyst is very broad. Indeed, our approach

can be used in a variety of efficiency analysis problems concerning, e.g., agricultural farms [4],

banks [5, 34, 37, 68], container ports and terminals [19, 69], courts [54], local governments [21],

shipping companies [45], urban rail firms [30], or transportation networks [73].

To support the applicability of our results in other decision contexts, we implemented an open-

source software distributed as a part of the diviz platform. Apart from providing the modules

for both robustness and stochastic analysis, we accounted for the well-known procedures of data

envelopment analysis such as super-efficiency or cross-efficiency.

We envisage the following future developments:

• accounting for the hierarchical structure of inputs and outputs [60];

• admitting imprecise performance values;

• extension of the range of considered efficiency preference relations derived from robustness

analysis, and studying their properties in terms of transitivity, completeness, reflexivity, con-

tinuity, and non-triviality;

• adapting the proposed framework to other data envelopment models such as additive DEA [28,

29];

• application to different decision problems in transport, medicine, environmental management,

and education.
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A. Alternative Fomulation of the MILPs for Computation of Extreme Efficiency Ranks

To enhance understanding of the underlying reasoning, in this section we present alternative

formulations of the MILPs for computation of the extreme efficiency ranks presented in Section 2.4.1.

Instead of minimizing the number of DMUs that can be simultaneously better than DMUo, R
∗
o can

be obtained while subtracting from K the cardinality of the maximal subset of DMUs that are at

the same time at most as good as DMUo. For this purpose, the objective function in (7) should be

replaced with:

min R∗o = K −
K∑

k=1,k 6=o

bk,

while constraint [∗] needs to be substituted with:

N∑
n=1

unynk ≤
M∑

m=1

vmxmk + C(1− bk) (k = 1, . . . , K, k 6= o).

Furthermore, instead of maximizing the number of DMUs that are simultaneously not worse than

DMUo, R∗,o can be obtained while subtracting from K the cardinality of the minimal subset of

DMUs that are at the same time worse than DMUo. Then, the objective function in (8) should be

replaced with:

max R∗,o = K −
K∑

k=1,k 6=o

bk,
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while constraint [∗] needs to be substituted with:

M∑
m=1

vmxmk ≤
N∑

n=1

unynk + Cbk (k = 1, . . . , K, k 6= o).

B. Interdependencies Between Robust Results and Stochastic Indices

The extreme, necessary, and possible results determined with LP influence the stochastic indices

in the following way:

Remark B.1. For DMUo, DMUk ∈ D:

1. i : {bi,∗ > E∗o ∨ b∗i < Eo,∗} ⇒ EAII ′(DMUo, bi) = 0 (i.e., for the efficiency subintervals

outside the range delimited by the extreme efficiencies, the efficiency acceptability interval

indices are 0, because a unit does not attain such efficiency scores for any feasible weight

vector, including these sampled in the Monte Carlo simulation);

2.
∑

i:bi,∗≤E∗o∧b∗i≥Eo,∗
EAII ′(DMUo, bi) = 1 (i.e., the sum of EAIIs′ corresponding to the effi-

ciency intervals with non-empty intersection with [Eo,∗, E
∗
o ], is equal to one (see Proposition 2.1

and point 1));

3. DMUo %N
E DMUk ⇒ PEOI ′(DMUo, DMUk) = 1 (if the necessary efficiency relation was

valid, this needs to be confirmed by all feasible weight vectors, including these sampled in the

simulation, and, thus, PEOI ′(DMUo, DMUk) is equal to one);

4. ¬(DMUo %P
E DMUk) ⇒ PEOI ′(DMUo, DMUk) = 0 (i.e., if the possible efficiency relation

was false, the truth of efficiency preference relation is not confirmed by any feasible weight

vector, and, thus, PEOI ′(DMUo, DMUk) = 0);

5. l : {l < R∗o ∨ l > Ro,∗} ⇒ ERAI ′(DMUo, l) = 0 (i.e., for the ranks outside the interval

delimited by the extreme ones, the efficiency rank acceptability indices are 0);

6.
∑Ro,∗

l=R∗o
ERAI ′(DMUo, l) = 1 (i.e., the sum of ERAIs′ for the ranks between the extreme

ones, is equal to one (see Proposition 2.5 and point 5)).

Note that the inverse implications or relations are not necessarily true. In particular, the

ranges of efficiencies or ranks determined exactly with LP may be wider than the respective ranges

observed in the Monte Carlo sample of weight vectors. Consequently, the estimates EAII ′ and

ERAI ′ may be equal to 0, whereas the true EAII and ERAI are greater than 0. Further,

PEOI ′(DMUo, DMUk) = 1 (PEOI ′(DMUo, DMUk) = 0) does not imply that DMUo %N
E DMUk

(¬(DMUo %P
E DMUk)) since the set of sampled weight vectors might not contain some feasible

weights (v, u) ∈ (Sv, Su) such that Ek(v, u) > Eo(v, u) (Eo(v, u) ≥ Ek(v, u)). The only valid in-

terdependencies between the estimates of stochastic indices and extreme, necessary, and possible

outcomes are the following:

Remark B.2. For DMUo, DMUk ∈ D:
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1. EAII ′(DMUo, bi) > 0 ⇒ bi,∗ ≤ E∗o ∧ b∗i ≥ Eo,∗ (i.e., when an efficiency acceptability interval

index is positive, there is at least one feasible weight vectors for which a unit attains efficiency

in the respective interval; this implies that the true best efficiency E∗o of a unit is greater than

the lower bound bi,∗ of the interval and its worst efficiency Eo,∗ is less than the upper bound b∗i );

2. PEOI ′(DMUo, DMUk) > 0⇒ DMUo %P
E DMUk (i.e. when the pairwise efficiency outrank-

ing index is greater than 0, the efficiency preference has been observed for at least one weight

vector in the sample, and, thus, the possible efficiency preference relation holds);

3. PEOI ′(DMUo, DMUk) = 0 ⇒ ¬(DMUo %N
E DMUk) (i.e. when the pairwise efficiency

outranking index is 0, the efficiency preference has not been observed for any weight vector in

the sample, and, thus, it certainly does not hold for all feasible weight vectors; this, in turn,

implies that the necessary efficiency preference relation is not valid);

4. ERAI ′(DMUo, l) > 0⇒ R∗o ≤ l and l ≤ Ro,∗ (i.e., when an efficiency rank acceptability index

for rank l is positive, there is at least one feasible weight vector for which a unit attains l-th

position; this implies that the true best efficiency rank R∗o of the unit and its worst rank Ro,∗

are, respectively, not greater and not less than l).

C. Evolution of Robust Results with Incremental Specification of Weight Constraints

In this section, we consider a specification of weight constraints in the following iterations of

DM’s interaction with the proposed framework. We denote with A1
v ⊆ A2

v ⊆ . . . ⊆ As
v nested sets of

weight constraints provided by the DM. These sets At
v, t = 1, . . . , s, generate the respective sets of

feasible weight vectors (Sv, Su)t. These are incrementally constrained, i.e., (Sv, Su)1 ⊇ (Sv, Su)2 ⊇
. . . ⊇ (Sv, Su)s. For each iteration t = 1, . . . , s, the following results can be derived:

• extreme efficiencies E∗,to and Et
o,∗,

• possible %P,t
E and necessary %N,t

E efficiency preference relations,

• extreme efficiency ranks R∗,to and Rt
o,∗.

The evolution of the robust results with the increase of weight constraints is summarized in Propo-

sition C.1.

Proposition C.1. For DMUo ∈ D and t = 1, . . . , s− 1:

• E∗,to ≥ E∗,t+1
o and Et

o,∗ ≤ Et+1
o,∗ (i.e., in the following iteration, when the space of feasible

weights is more constrained, the ranges of attained efficiencies may be narrowed down);

• %N,t
E ⊆%N,t+1

E and %P,t
E ⊇%P,t+1

E (i.e., the necessary and possible relations may be, respectively,

enriched and impoverished);

• R∗,to ≤ R∗,t+1
o and Rt

o,∗ ≥ Rt+1
o,∗ (i.e., the ranking intervals may become narrower, but not

wider).
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D. Impact of Removing/Introducing Outlier DMUs on Robust Results

Traditionally, DEA methods have been focused on identifying the efficient frontier on which the

DMUs are considered efficient. In this regard, much attention has been paid to identification of

atypical DMUs that may greatly influence the frontier’s shape [11, 74]. In general, there exist two

basic approaches for detection of such outlier DMUs. On one hand, in a backward approach [6],

DMUs with super-efficiencies greater than a pre-defined threshold are identified as outliers. On the

other hand, in the forward search procedure [11], the subjectivity of using some arbitrary threshold

can be avoided by using a dedicated distance function (see also [10, 12]).

In this subsection, we discuss the impact of removing/introducing some (outlier) DMUs on

the robust results. In this perspective it is important to remind that all our results are derived

from comparing DMUs’ efficiencies pairwise rather than measuring their distance from an efficient

frontier as in the traditional DEA models.

Let us consider the following subsets of DMUs: D′ ⊂ D′′ ⊆ D. Thus, D′′′ = D′′ \ D′ contains

the DMUs removed from D′′/introduced to D′. We will denote the results obtained when analyzing

a given subset of DMUs by using its symbol in the superscript (e.g., %N,D′
E indicates the necessary

efficiency preference relation obtained for D′). Then, the following proposition summarizes the

interdependencies between the outcomes that can be obtained for D′ and D′′.

Proposition D.1. For DMUo, DMUk ∈ D′ ⊂ D′′ ⊆ D:

• EED
′

o ≥ EED
′′

o (i.e., for each feasible weight an efficiency attained by DMUo in D′ is not

worse than its respective efficiency in D′′; thus, after removing some DMUs, the expected

efficiency EE of DMUo cannot be deteriorated);

• E∗,D
′

o ≥ E∗,D
′′

o and ED
′

o,∗ ≥ ED
′′

o,∗ (i.e., the extreme efficiency scores of each DMU obtained

within the constrained set D′ are not less than its respective scores within D′′);

• PEOID
′
(DMUo, DMUk) = PEOID

′′
(DMUo, DMUk) (although the absolute efficiency scores

attained by DMUo and DMUk may change after removing/introducing some other DMUs,

the order between these scores remains the same for all feasible weight vectors; consequently,

the value of pairwise efficiency outranking index for a given pair of DMUs does not depend

on the remaining units, being the same in both D′ and D′′);

• DMUo %
N,D′′
E DMUk ⇔ DMUo %

N,D′
E DMUk (the above justification proves that the status

of %N
E for a given pair of DMUs does not depend on other units; as a result, for all pairs of

units contained in D′ ×D′, the truth or falsity of %N
E is the same in both D′ and D′′);

• 0 ≤ ERD
′′

o −ERD
′

o ≤ |D′′′| (i.e., for each feasible weight vector DMUo is ranked not worse in

D′ than in D′′; in fact, it can be ranked better by at most |D′′′|, which is the cardinality of the

removed subset of DMUs; thus, after removing some DMUs from D′′, the expected rank ER

of DMUo cannot be deteriorated, being at most by |D′′′| better (lower) in D′ than in D′′);
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• 0 ≤ R∗,D
′′

o − R∗,D
′

o ≤ |D′′′| and 0 ≤ RD
′′

o,∗ − RD
′

o,∗ ≤ |D′′′| (i.e., after removing |D′′′| units from

D′′, the extreme ranks of DMUo in D′ cannot be deteriorated, being at most by |D′′′| better

in D′ than in D′′).

Since the efficiency acceptability interval indices EAIIs and efficiency rank acceptability indices

ERAIs depend on the entire set of DMUs and all feasible sets of weights, one cannot formulate

any general remarks for their evolution after removing/introducing some DMUs.
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