
Poznan University of Technology
Faculty of Computing

Institute of Computing Science

Bachelor’s thesis

Modular decision support system
for the PROMETHEE methods

Authors:
Magdalena Dzięcielska
Sebastian Pawlak
Mateusz Sarbinowski
Maciej Uniejewski

Supervisor:
Miłosz Kadziński, PhD

Poznań, 2017

Contents

1 Introduction 1

2 Description of methods implemented as algorithmic modules on the
diviz platform 4
2.1 Criteria Weights . 4

2.1.1 Surrogate Weighting Techniques 4
2.1.2 Simos-Roy-Figueira (SRF) . 5

2.2 Preference Indices . 7
2.2.1 Preference . 8
2.2.2 Preference with Reinforced Preference 11
2.2.3 Preference with interactions between criteria 13
2.2.4 Discordance . 15
2.2.5 Veto . 17
2.2.6 Overall preference index . 18

2.3 Outranking Flows . 18
2.4 Profiles of the Alternatives . 20
2.5 Ranking Problems . 21

2.5.1 Promethee I . 21
2.5.2 Promethee II . 22
2.5.3 Promethee III . 23
2.5.4 Net Flow Score . 24
2.5.5 GDSS Ranking . 25

2.6 Sorting Problems . 26
2.6.1 PromSort . 27
2.6.2 Promethee Tri . 29
2.6.3 FlowSort based on Promethee I 31
2.6.4 FlowSort based on Promethee II 34
2.6.5 FlowSort GDSS . 35
2.6.6 Group Class Acceptabilities . 40

2.7 Choice Problem . 41
2.8 Clustering . 42

2.8.1 Ordered clustering . 43
2.8.2 Promethee II Ordered Clustering 44
2.8.3 Promethee Cluster . 44

2.9 Visualization . 46
2.9.1 Graphical class assignment . 46
2.9.2 Latex table of class assignment 47

3 Construct Your Own Promethee Method in diviz 48
3.1 diviz . 48
3.2 Modules implementation . 48
3.3 Workflow Design . 48

I

4 Illustrative Case Studies 50
4.1 Multiple criteria ranking and choice - example 1 50
4.2 Multiple criteria sorting and clustering - example 2 58

5 Conclusions 66

6 Acknowledgments 67

References 68

II

1 Introduction

The analysis of real-world problems requires consideration of multiple conflicting points
of view that affect a decision. Nowadays, practically all decision situations involve
economic, environmental, and social criteria which describe diverse consequences of the
existing alternatives. A decision process needs to explore the conflicting character of
criteria by taking into account preferences of the Decision Maker (DM). To this end,
the field of Multiple Criteria Decision Analysis (MCDA) offers some tools that support
such process.

PROMETHEE is one of the prevailing families of MCDA methods [5]. Its usefulness
comes from the fact of combining advantages of various approaches. On one hand,
PROMETHEE uses an outranking-based preference model, thus, deriving its results
from comparing the alternatives pairwise. When implementing these comparisons, the
method tolerates imperfect knowledge of data, operates on heterogeneous scales (thus,
not demanding any prior normalization), and is capable of representing the situation
of weak preference. Moreover, to compare the alternatives consistently with the DM’s
value system, PROMETHEE requires her/him to provide some intuitive parameters
with a clear physical meaning. These concern relative importance or preference function
associated with each criterion.

On the other hand, PROMETHEE – similarly to value- or utility-based methods -
takes advantage of the comprehensive scores that are easier to understand for the DM.
These scores, called flows, can be perceived as measures of desirability indicating how
each alternative compares against all the remaining ones. Furthermore, PROMETHEE
umplementsg an analogy to voting procedures by taking into account the reasons for and
against a preference of one alternative over the others, which enhances its intuitiveness
and interpretability. Still, the comprehensive scores provided by PROMETHEE can be
used in a way that admits incomparability in the comparison of a pair of alternatives,
which, in turn, increases its flexibility in representing the DM’s preferences.

Being simple, clear, and stable method, PROMETHEE has been applied in a
variety of complex decision problems [19, 24, 12]. Its main application areas involve
environmental and water management, finance, chemistry, logistics, transportation,
manufacturing, and energy sector [2]. The exemplary real-world studies concern tree-
harvesting in Malaysia [19], business and conferring financial support for firms [24], or
scoring hospital services [12].

PROMETHEE has been originally designed to deal with the ranking problems
(see, e.g., PROMETHEE I, II and III), and subsequently adapted to choice (e.g.,
PROMETHEE V), sorting (e.g., PromSort, PROMETHEE TRI, or FlowSort), and
clustering (e.g., Promethee II Ordered Clustering or PROMETHEE Cluster). All
PROMETHEE methods can be perceived as sequences of the elementary well-defined
steps which implement in a specific way some general framework that is peculiar to
this approach. Within this framework, all ordered pairs of objects (alternatives and/or
class profiles) are first compared pairwise. Then, the outcomes of such comparisons are
aggregated into flows, which offer a more comprehensive perspective on the desirability
of each object. Finally, the flows are used to deliver recommendation in function of the
specific problem to solve.

1

Obviously, each PROMETHEE method is distinguished by its unique exploitation
phase which decides upon the rank of each alternative, its presence in the subset of the
most preferred options, its assignment into one of pre-defined and ordered classes, or
separation of the alternatives into different groups. Instead, the phase of construction
of a preference relation in PROMETHEE has been implemented in the same way in all
PROMETHEE methods. It consists in computing a degree indicating a joint strength
of all preferentially independent criteria for which one object is preferred to the other.
Conversely, in the ELECTRE methods, the phase of construction of an outranking
relation can be conducted in various ways, and it seems reasonable to adapt some of
these ideas to the context of PROMETHEE.

Overall, while phases of construction and exploitation of the preference structure are
independent, a new PROMETHEE approach can be obtained each time when coupling
together specific implementations of these two stages. Unfortunately, such flexibility is
not offered neither by the existing approaches nor by the available software. Indeed,
the existing PROMETHEE tools poorly expose the sequential character of the method,
sticking to a rather univocal implementation of the elementary procedures. Moreover,
many PROMETHEE approaches mentioned in the previous paragraph are not available
in any software package. As a result, their use for practical decision analysis is restrained.
In the same spirit, the selection of methods offered by the existing software pieces is
rather scarce (see, e.g., Promethee MD [16] which offers Promethee I and II). Finally, the
commercial software packages which implement a few PROMETHEE methods, such as
Visual Promethee [23] or D-sight [17], cost hundreds of euro. Unlikely, the functionality
of their respective free trial versions is seriously limited.

To address all aforementioned concerns, in this contribute to the development of
diviz [25] with a focus on the development of PROMETHEE methods. In general, the
platform postulates implementation of each elementary computation or visualization
procedure as a separate software module. These modules can be chained in diviz to
build complex MCDA algorithmic workflows. In this way, the users can rebuild the
existing approaches, but also construct new ones. This way of proceeding increases the
flexibility in adjusting decision aiding methods to the specific problem. It also enhances
their transparency by exhibiting all partial results and encouraging users to analyze
them. Moreover, diviz is an open-source tool which not only makes its use cost-free,
but also supports potential contributors to enriching a variety of available algorithmic
modules by implementing some new procedures by analogy to the existing ones.

This thesis contributes to the development of PROMETHEE in various ways. From
the methodological viewpoint, we postulate greater flexibility in constructing PROME-
THEE methods so that they can be appropriately adjusted to the characteristic of a
specific decision problem. In this regard, we show how to combine different implemen-
tations of the construction and exploitation phases within a common methodological
framework. At this point, we also significantly enrich a variety of algorithmic procedures
that can be applied in the context of PROMETHEE. When it comes to the software de-
velopment, we show how the postulate of flexibility can be realized in practice. This has
been achieved by implementing several PROMETHEE-based components and making
them available at diviz. These modules are highly parameterized and designed to inter-
operate, which makes them suitable for designing advanced MCDA methods. In what

2

follows, we discuss the procedures we account for at different stages of PROMETHEE.
At the stage of construction of a preference structure, we consider a variety of

procedures for computing comprehensive preference degrees. As far as criteria weights are
concerned, we take advantage of a few surrogate weighting procedures (e.g., Rank Order
Centroid or the revised Simos procedure). When it comes to preference degrees, apart
from considering an original proposal postulated in PROMETHEE that incorporates six
pre-defined shapes of the preference functions, we additionally extend PROMETHEE
for dealing with the effect of reinforced preference, discordance (veto) against preference,
and interactions between criteria. Although these have been originally proposed in the
context of ELECTRE, we adapt them to PROMETHEE as they vastly increase the
flexibility of preference modeling, making the methodology more suitable for various
decision contexts. Then, the preference degrees can be aggregated to derive positive,
negative, and comprehensive flows. The diviz modules for computing both preference
degrees and flows are universal in a sense of admitting the comparison of each alternative
either against all remaining ones or with boundary or characteristic class profiles. In
this way, their results can be subsequently exploited in function of different problems
types.

At the stage of exploitation of a preference structure in PROMETHEE, we consider
the following methods:

• PROMETHEE I, II and III that exploit the preference flows, and the Net Flow
Scores procedures that exploit the preference degrees to rank the alternatives from
the best to the worst;

• PROMETHEE V to select a subset of the most preferred options while taking
into account some additional constraints (e.g., concerning the available budget);

• FlowSort, PromSort, and Promethee TRI that assign the alternatives to some pre-
defined and ordered classes by comparing them against boundary or characteristic
profiles for the a

• Promethee II Ordered Clustering, Promethee Cluster, and other clustering algo-
rithms to divide a set of alternatives into a number of groups;

• Promethee Group, FlowSort GDSS, and procedures for deriving some group class
acceptability indices that can be used for group decision making.

Additionally, we have implemented some visualization components that can be used to
present the recommendation in a comprehensible way. Overall, taking advantage of the
constructed modules, the user may construct her/his own PROMETHEE method in
a few minutes without any programming skills. For this purpose, it is just enough to
combine the components in one of several hundred admissible ways.
When conducting the thesis, the tasks were distributed in the following way:

• Magdalena Dzięcielska was responsible for creating modules M11 - M16 and M22,

• Sebastian Pawlak prepared modules M1 - M10,

3

• Mateusz Sarbinowski have done modules M23 - M26,

• Maciej Uniejewski prepared modules M17 - M21 and M27 - M28.

Moreover, all members of the group contributed equally to the text of this thesis.

2 Description of methods implemented as algorithmic
modules on the diviz platform

2.1 Criteria Weights

Defining criteria weights is one of the most important MCDA processes. In this section,
we review different techniques for deriving criteria weights. We discuss two modules we
have implemented. To facilitate further reference to these modules, we denote them by
M1 and M2.

2.1.1 Surrogate Weighting Techniques

In surrogate weighting techniques, the list of weights has certain characteristics [27]. All
weights are constant values and are greater than or equal to zero. Additionally, the sum
of all criteria weights is equal to one.

In surrogate weighting techniques we can note several methods for deriving weights
of criteria:

• Equal Weights

ll weights have the same value, so all criteria are deemed as equally important.
This rule is presented by Equation 1:

wi(EW) =
1

n
, (1)

where n is the number of criteria.

• Rank-Sum

This rule takes into account the ranking of criteria. The first position indicates
the most important criterion. Less important criteria have further positions. This
technique is expressed by Equation 2:

wi(RS) =
2(n+ 1− i)
n(n+ 1)

(2)

where i is the criterion’s position in the ranking provided by the DM

• Reciprocal of the Ranks

4

This technique has an other approach in using criteria ranking. It divides each
reciprocal of rank by the sum of these reciprocals for all criteria. This rule is
expressed by Equation 3:

wi(RR) =
1
i
n∑
j=1

1
j

. (3)

• Rank-Order Centroid

The weights in this method reflect the centroid of the simplex defined by ranking
of the criteria [28]. It is expressed by Equation 4:

wi(ROC) =
1

n

n∑
j=i

1

j
(4)

Module M1. SurrogateWeights. This module computes weights of criteria using
surrogate weighting techniques wi() (out1). Its structure is presented in Figure 2.1. It
requires the user to specify criteria ranking (in1). In this ranking, each criterion is
associated with a unique position. The same position for more than one criterion is not
permitted. The first position in the ranking indicates the most important criterion. The
user has to choose a method to calculate weights (param1). All techniques mentioned
in Section 2.1.1 are supported.

Figure 2.1: Structure of module M1 which computes weights of criteria using surrogate
weights techniques .

2.1.2 Simos-Roy-Figueira (SRF)

The revised Simos’ procedure proposed by Figueira and Roy [15] is much more flexible
than methods mentioned in Section 2.1.1. In this approach the DM has m cards with
the criteria names, and a set of white cards. (S)he must sort out cards in order of
importance. Criteria with the same importance should be grouped together. The DM

5

can control the intensity of preference between the subsets of criteria by inserting white
cards between them. This method requires the user additionally to specify the ratio
between the weights of the first and last criteria in ranking.

The algorithm of SRF consists of several steps:

• Calculating non-normalized weights

To show this step we use the notation proposed by Corrente et al. [7] (see Equation
5):

w
′

j = 1 +

(z − 1)[l(j)− 1 +
l(j)−1∑
s=1

es]

v − 1 +
v−1∑
s=1

es

, (5)

where:

j is the criterion’s index,

z is the ratio between weights of first (the least important) and last (the most
important) criteria in the ranking,

l(j) is the position in ranking,

v is the position in ranking of the most important criterion,

es is the number of white cards between subsets on position s and s+ 1.

• Calculating normalized weights

The normalized weight is expressed by Equation 6 [7]:

wj =
w
′
j

m∑
k=1

w
′
k

, (6)

• Rounding off the numerical values

Full algorithm SRF assumes that weights of criteria have numerical values rounded
to specified number of decimal places (0-2) [15]. Moreover, the sum of the weights
is equal to 100. To meet these demands, SRF splits the set of criteria into two
subsets. The weights are multiplied by 100. After that, weights in one subset are
rounded upwards, while weights in the second subset are rounded downwards.

Module M2. SRFWeights. This module computes weights of criteria wj() (out1)
using the revised Simos (or Simos-Roy-Figueira; SRF) method. These weights are
normalized, but in this case the sum of all values is equal to 100. The structure of this
module is presented in Figure 2.2.

The SRF module requires the user to specify criteria ranking (in1). This input file
must meet certain rules:

6

• Order

The first position in ranking indicates the least important criterion, whereas the
last position in ranking indicates the most important criterion.

• Grouping

The SRF method allows to group criteria with the same importance. To define
group of criteria with the same importance in “criteria ranking” file, the user has
to assign criteria the same position in ranking.

• White Cards

Blank position in ranking (position in the ranking has not assigned criterion) is
reflection of “white card” in the SRF method.

• Weight Ratio

The user has to specify the ratio (param1) between weights of the most and the
least important criteria. This value is required by the SRF procedure. It is the
real number denoting the ratio z from Equation 5.

• Precision

The user must specify the number of decimal places (param2) for the weights
calculated by the SRFWeights module.

Figure 2.2: Structure of module M2 which computes weights of criteria using SRF
method.

2.2 Preference Indices

In this section we discuss different methods for calculating preference indices. In
PROMETHEE, such calculation is based on pairwise comparisons. First step is to
calculate deviation between evaluations of two alternatives (or alternative and profile)

7

on each criterion. We present six functions which are used to compute preference index
on some criterion (generalised criterion). Finally, we discuss how this partial preferences
are aggregated into a global value. We consider here also an overall preference index
which accounts for veto, preference index and discordance index.

Simultaneously, we present the functionality of several modules we have created.
They are available on diviz platform. In most cases, it is possible to control the processing
of modules be it’s parameters. The modules returns a single or multiple outputs, which
can be used as input to others. Each presented module has its own number to simple
identification (M3 - M8)

2.2.1 Preference

Deviations. As it was mentioned earlier, the preference index in PROMETHEE is
based on pairwise comparisons [4]. To compare two alternatives on a specified criterion
the deviation in evaluations are considered. It is expressed in Equation 7.

dj(a, b) = gj(a)− gj(b) (7)

where:

a, b are the alternatives

dj(a, b) is the deviation between evaluations on criterion j

gj(a), gj(b) are evaluations of alternatives on criterion j

This deviation is used to calculate preference of a over b when criterion j is maximized.
If criterion is minimized the sign of deviation should be reversed. (Equation 8)

dj(a, b) = −dj(a, b) (8)

Partial Preference Indices. For small deviations a small preference is allocated. If
deviation is negligible, alternative a is not preferred over b. The greater deviation, the
greater the preference. This preferences are real numbers in range from 0 to 1. Decision
maker has a special function Fj for each criterion. (Equation 9)

Pj(a, b) = Fj[dj(a, b)],∀a, b ∈ A (9)

where:

Pj(a, b) is preference a over b on criterion j

for which:
0 ≤ Pj(a, b) ≤ 1 (10)

Pj(a, b) > 0⇒ Pj(b, a) = 0 (11)

Preference function can take any form. Brans and Mareschal have definded a
generalised criterion , which is the pair {gj(·), Pj(a, b)} associated for each criterion [4].
They proposed six types of preference functions. It is presented in Table 2.1.

8

Table 2.1: Types of generalised criteria(P(d):Preference function)
Generalised criterion Definition Parameters
Type 1: Usual Criterion

P (d) =

{
0 d ≤ 0
1 d > 0

-

Type 2: U-shape Criterion

P (d) =

{
0 d ≤ q
1 d > q

q

Type 3: V-shape Criterion

P (d) =


0 d ≤ 0
d
p

0 ≤ d ≤ p

1 d > p

p

Type 4: Level Criterion

P (d) =


0 d ≤ q
1
2

q < d ≤ p
1 d > p

p,q

Type 5: V-shape with indifference Criterion

P (d) =


0 d ≤ q
d−q
p−q q < d ≤ p

1 d > p

p,q

Type 6: Gaussian Criterion

P (d) =

{
0 d ≤ 0

1− e−
d2

2s2 d > 0
s

9

Parameters present in third column have to be defined for criterion which are
associated with this generalised criterion.

This paremeters are:

q is a threshold of indifference. It is the biggest deviation which is considered as
insignificant by the decision-maker.

p is a threshold of strict preference. It is the smallest deviation which is considered as
sufficient to generate a full preference.

s is an intermediate value between q and p. It defines the inflection point of the
preference function.

Aggregated Preference Indices. Preferences of all criteria are aggregated as it is
presented on Equation 12. 

π(a, b) =
k∑
j=1

Pj(a, b)wj,

π(b, a) =
k∑
j=1

Pj(b, a)wj

(12)

where:

π(a, b) is showing with witch degree a is preferred to b over all criteria,

wj are criteria weights,

k is the number of criteria.

Aggregated preference indices are usually positive because in most cases there are
criteria for which a is better than b and other criteria for which b is better than a. This
preferences have the following properties for all (a, b) ∈ A:

π(a, a) = 0,
0 ≤ π(a, b) ≤ 1,
0 ≤ π(b, a) ≤ 1,
0 ≤ π(a, b) + π(b, a) ≤ 1

(13)

Global preference a over b is weak when π(a, b) is equal to 0 and it is strong when is
equal to 1.

Module M3. PrometheePreference. Structure of this module is shown in Figure 2.3.
It computes aggregated preference indices π(a, b) (out1) and partial preference indices
Pj(a, b) (out2).

The module requires the user to specify an alternatives to consider (in1), a set
of criteria together with the comparison thresholds and directions of preference (in3),
performances of the alternatives(in4) and criteria weights (in6).

The user has to parameterize the module (param1) to compare alternatives with each
other, with boundary class profiles or characteristic class profiles. If comparison with

10

some profiles is selected then a set of categories profiles (in2) and their performances (in5)
is required. In this mode alternatives are compared with class profiles and additionaly
class profiles are compared with each other.

Next parameter is generalised criterion (param2). If “specified” option is selected here
then generalised criteria are required (in7). This input specifies generalised criterion (one
of six defined types 1-6) for each criterion. Of course, each criterion can be assigned to
other generalised criterion. The user may use simpler option and specify one generalised
criterion for all criteria. Then (s)he can set option 1-6 on generalised criterion parameter
(param2) and additional input is not needed.

Figure 2.3: Structure of module M3 which computes Preference Indices

2.2.2 Preference with Reinforced Preference

Decision maker may want to take into account additional aspect in calculating preference
indices. If a is preferred over b on specific criterion there may exist a small (e.g. the same
as preference threshold) or a huge (e.g. several times more) difference in evaluations of
these alternatives. The idea is to give some bonus for this huge difference in evaluations.
We use reinforced preference threshold rpj(·) to check if difference in evaluations is
considered to be large by the decision maker [30]. When this threshold is crossed then
preference index calculated in normal way is multiplied by reinforcement factor ωj . This
coefficient needs to be specified for each criterion, which takes the reinforced preference
effect into account. Its value has to be greater than one (ωj > 1). Upper limit is not

11

specified, but we recommend value in the range

1− 2

. The set of criteria for which dj(a, b) > rpj is denoted in Equation 14.

FRP (a, b) = {j : aRPjb⇔ dj(a, b) > rpj} (14)
where:

aRPjb is reinforced preference a over b on criterion j

rpj is the reinforced preference threshold on criterion j

To calculate partial preference indices we use Equation 15.

PRP
j (a, b) =

{
Fj[dj(a, b)] dj(a, b) ≤ rpj

ωj dj(a, b) > rpj
(15)

where:

Fj is the function calculating preference (equation 9),

ωj is the reinforcement factor of criterion j.

Aggregated preference index which includes reinforced preference effect is defined in
Equation 16.

πRP (a, b) =

∑
j∈FRP (a,b)wjωj +

∑
j∈F\FRP (a,b)wj · Pj(a, b)∑

j∈FRP (a,b)wjωj +
∑

j∈F\FRP (a,b)wj
(16)

where:

F is the set of all criteria.

Module M4. PrometheePreferenceReinforcedPreference. This module com-
putes aggregated preference indices with reinforced preference effect πRP (a, b) (out1)
and partial preference indices also with reinforced preference effect PRP

j (a, b) (out2). Its
structure is presented in Figure 2.4.

This module is very similar to module M3. It computes preference indices with
reinforced preference effect which requires additional data inputs. The user has to
specify reinforcement factors ωj (in8). All criteria with reinforcement factors require
reinforced preference thresholds rpj (in3).

This module does not support Gaussian generalised criterion (type 6) and reinforced
preference effect specified in the same criterion. Gaussian function can be listed in
generalised criteria (in7), but in these criteria reinforcement factor is forbidden. User
cannot choose Gaussian criterion in generalised criterion parameter (param2). Crite-
ria thresholds also should not include “sigma” and “reinforced preference” thresholds
simultaneously.

The remaining inputs are the same as in module M3. Parameters are also the same
as in module M3 except of type 6 generalised criterion which is not available. This
module requires at least one criterion with reinforced preference effect (reinforcement
factor and reinforced preference threshold specified).

12

Figure 2.4: Structure of module M4 which computes Preference Indices with Reinforced
Preference effect

2.2.3 Preference with interactions between criteria

Previously, we have assumed that there are no interactions between the criteria. We
need to change the formula that calculates the aggregated preference indices to take
these interactions into account [14]. Our new equation needs to consider the weights
of the interaction coefficients. There are three types of interactions between criteria to
consider:

• Mutual strengthening effect

If criteria gi and gj support aPb then their influence for aggregated preference
index should be stronger (greater than wi + wj). This effect can be modeled by
mutual strengthening coefficient ksij = ksji > 0. The set of criteria pairs which have
this interaction effect is denoted with Equation 17.

F SE(a, b) = {i, j ∈ J : i, j ∈ F P (a, b) and ksij > 0} (17)

where:

ksij is a mutual strengthening coefficient,

J is a set of criteria ID’s J = {1, 2, ..., k}, k - number of criteria,

for which:
F P (a, b) = {j : aPjb⇔ Pj(a, b) > 0} (18)

13

• Mutual weakening effect

If criteria gi and gj support aPb, then their influence for aggregated preference
index should be weaker (smaller than wi + wj). This effect can be modeled by
mutual weakening coefficient kwij = kwji < 0. The set of criteria pairs for which this
interaction effect holds is denoted with Equation 19.

FWE(a, b) = {i, j ∈ J : i, j ∈ F P (a, b) and kwij < 0} (19)

where:

kwij is mutual weakening coefficient

• Antagonistic effect

If criterion gi support aPb and criterion gj supports bPa, then the influence of
criterion gi for aggregated preference index should be weaker (smaller than wi).
This effect can be modeled by an antagonism coefficient kaij > 0, which intervenes
negatively in π(a, b). The set of criteria pairs which have this interaction effect is
denoted with Equation 20.

FAE(a, b) = {(i, j) ∈ J × J : i ∈ F P (a, b), j ∈ F P (b, a) and kaij > 0} (20)

where kaij is antagonism coefficient. The antagonistic effect for pair (i, j) ∈ J × J
does not mean that reverse effect for (j, i) exist. Of course, it does not exclude
existing of this reverse effect.

It should be noted that mutual strengthening effect and mutual weakening effect are
mutually exclusive.

The new aggregated preference index with interactions between criteria is defined in
Equation 21.

πI(a, b) =

∑
j∈J

Pj(a, b)wj +
∑

{i,j}∈FSE(a,b)

Zabij · ksij +
∑

{i,j}∈FWE(a,b)

Zabij · kwij −
∑

{i,j}∈FAE(a,b)

Zabij · kaij∑
j∈J

wj +
∑

{i,j}∈FSE(a,b)

Zabij · ksij +
∑

{i,j}∈FWE(a,b)

Zabij · kwij −
∑

{i,j}∈FAE(a,b)

Zabij · kaij

(21)
Function Zab

ij is used to capture the interaction effects in the ambiguity zone. This can
take one of many forms. Figueira, Greco and Roy proposed two approaches presented
in Equations 22 and 23.

Zab
ij = Z(Pi(a, b), Pj(a, b)) = min{Pi(a, b), Pj(a, b)} (22)

Zab
ij = Z(Pi(a, b), Pj(a, b)) = Pi(a, b) · Pj(a, b) (23)

Module M5. PrometheePreferenceWithInteractions. Structure of this module
is presented in Figure 2.5. It computes aggregated preference indices with interactions
between criteria πI(a, b) (out1) and partial preference indices Pj(a, b) (out2).

This module is very similar to module M3. It computes partial preference indices in
normal way, and then uses additional information about interactions (in8) to calculate
aggregated indices. All other data inputs are the same as in module M3.

14

The user has an additional parameter to specify. There are two types of Z_functions
prepared and it is required to choose one of them (param3).

If there are no interactions between criteria, it is recommended to use module M3
instead of this one.

Figure 2.5: Structure of module M5 which computes Preference Indices with Interactions
between criteria

2.2.4 Discordance

Preference index Pj(a, b) in PROMETHEE measures only the intensity of agreement
with preposition aPjb. Hu and Chen proposed overall preference index which includes
both votes for and against aPjb [18]. They suggested concordance index Cp(a, b) which
is analogical to already exising in PROMETHEE aggregated preference index π(a, b). It
is presented in Equation 24.

Cp(a, b) =
k∑
j=1

Pj(a, b)wj (24)

15

Partial discordance indices Dj(a, b) are calculated from partial preference indices as in
Equation 25.

Dj(a, b) = Pj(b, a) (25)

An overall discordance Dp can be calculated by aggregating Dj (see Equation 26).

Dp(a, b) = 1−
k∏
j=1

(1−Dj(a, b))
τ/k (26)

where:

τ is technical parameter, τ ∈ [1, k], smaller τ → weaker discordance

An overall preference index is presented in Equation 27.

P (a, b) = Cp(a, b) · (1−Dp(a, b)) (27)

Module M6. PrometheeDiscordance. Structure of this module is presented in
Figure 2.6. It computes aggregated discordance indices Dp(a, b) (out1) and partial
discordance indices Dj(a, b) (out2).

It requires the user to specify alternatives to be considered (in1), a set of criteria (in3)
and partial preference indices (in4). If user wants to calculate discordance indices for
comparing alternatives with profiles (s)he has to set it in “comparison with” parameter
(param1) and to specify categories profiles (in2). This module requires also to specify
technical parameter (param2). It has to be an integer number, whose maximum value
is determined by the number of criteria defined in criteria file (in3).

Figure 2.6: Structure of module M6 which computes Discordance Indices

16

2.2.5 Veto

In classic PROMETHEE approach there is no discordances and even veto thresholds.
Only preference indices are considered [18]. In many cases it is necessary to refuse
alternative completely if it has very weak evaluation on specific criterion. We adapt
the idea of veto originally developed for the context of ELECTRE methods to the
PROMETHEE methods [29]. The veto threshold is critical feature in decision making
and it is very simple in concept. If alternative b has better evaluation (gj(b)) than a
(gj(a)) on some criterion by at least the veto threshold (vj) then a cannot be preferred
over b regardless of the ratings on the other criteria. According to this definition we
can calculate partial veto indices as in Equation 28, where we use deviation (dj(b, a))
defined in Equation 7.

Vj(a, b) =

{
1 dj(b, a) ≥ vj

0 dj(b, a) < vj
(28)

Aggregated veto indices can be calculated in two ways. In first approach, one criterion
with exceeded veto threshold is enough to set aggregated veto index to 1 (Equation 29).

Vp(a, b) =

{
1 if ∃j ∈ J, Vj(a, b) = 1

0 if ∀j ∈ J, Vj(a, b) = 0
(29)

In second approach, the idea is to use criteria weights as in aggregated preference index
(Equation 30). In this case, the preference is not completely discarded when the veto
threshold is exceeded. It can be used like discordance which decrease overall preference
index.

Vp(a, b) =
∑
j∈J

Vj(a, b) · wj (30)

Aggregated veto indices can be combined with aggregated preference indices into
overall preference indices like in Equation 31.

P (a, b) = π(a, b) · (1− Vp(a, b)) (31)

Module M7. PrometheeVeto. Structure of this module is presented in Figure 2.7. It
computes aggregated veto indices Vp(a, b) (out1) and partial veto indices Vj(a, b) (out2).

It requires the user to specify alternatives to consider (in1), criteria (in3), which con-
tains information about criteria, veto thresholds and preference directions; performance
table (in4) and weights of criteria (in6).

Same as in other modules of this type, the user can parameterize this module
(param1) to compare alternatives with each other, with boundary class profiles or
characteristic class profiles. If comparison with some profiles is selected then a set of
categories profiles (in2) and their performances (in5) is required.

Aggregation of veto indices can be processed in one of two predefined ways. User
can use disjunctive method (param2 : not specified) or method with criteria weights
(param2 : specified).

17

Figure 2.7: Structure of module M7 which computes Veto Indices

2.2.6 Overall preference index

Overall preference index proposed by Hu and Chen [18] can be used to combine both
discordances with preferences and veto indices with preference. This overall preference
index can be computed as in Equation 32.

P (a, b) = π(a, b) · (1−D(a, b)) (32)

where:

π(a, b) is aggregated preference index

D(a, b) is aggregated discordance index or aggregated veto index

Module M8. PrometheePreferenceDiscordance. Structure of this module is
presented in Figure 2.8. It computes overall preference indices P (a, b) (out1).

It requires the user to specify a set of alternatives (in1), aggregated preference indices
π(a, b) (in3) and aggregated discordance indices or aggregated veto indices D(a, b) (in4).
The module has to be parameterized to comparing alternatives with other alternatives,
boundary profiles or central profiles (param1). Comparing with profiles requires the
user to specify categories profiles (in2).

2.3 Outranking Flows

In this section, we define positive and negative outranking flows. We show how to
compute them using preference indices mentioned in Section 2.2. At the same time we
present the module that we have created (M9).

18

Figure 2.8: Structure of module M8 which combines preference and discordance (or
Veto) indices

Positive and Negative Outranking Flow

The positive outranking flow is a value which shows how alternative a is outranking all
other alternatives [4]. It is showing the power of alternative, its outranking character
(Figure 2.9a). Alternative is the better, the larger its positive outranking flow.

The negative outranking flow is a value which shows how alternative a is outranked
by all other alternatives [4]. It is showing the weakness of alternative, its outranked
character (Figure 2.9b). Alternative is the better, the lower its negative outranking flow.

Figure 2.9: (a) The Positive Outranking Flow. (b) The Negative Outranking Flow

We can define the positive outranking flow like in Equation 33 and the negative
outranking flow like in Equation 34 [4].

φ+(a) =
1

n− 1

∑
x∈A\{a}

π(a, x) (33)

φ−(a) =
1

n− 1

∑
x∈A\{a}

π(x, a) (34)

19

where:

a, x are the alternatives,

A is the set of all alternatives,

n is the number of all alternatives.

Module M9. PrometheeOutrankingFlows. Structure of this module is presented
in Figure 2.10. It computes the positive outranking flows φ+(a) (out1) and the negative
outranking flows φ−(a) (out2).

It requires the user to specify alternatives to consider (in1), aggregated preference
indices π(a, b) (in3). User can parameterize this module (param1) to compare alterna-
tives with each other, with boundary class profiles or characteristic class profiles. If
comparison with some profiles is selected then the categories profiles are required (in2).

Figure 2.10: Structure of module M9 which computes the positive and negative out-
ranking flows

2.4 Profiles of the Alternatives

In this section, we present the idea of profiling the alternatives using the single criterion
net flows. We present the module which allows to create these profiles in diviz platform
(M10).

Profiles of the Alternatives

The profiles of alternatives are used to determine the “quality” of alternatives on different
criteria. It is very helpful for DM. The profile of the alternative is constructed of the set
of the single criterion net flows computed for all criteria (φj(a), j = 1, 2, . . . , k) [4].

If the value of the single criterion net flow is greater than zero (φj(a) > 0), it
expresses how the alternative a is outranking all the other alternatives on criterion gj().
If this value is less than zero (φj(a) < 0) it expresses how the alternative a is outranked
by all the other alternatives on criterion gj().

20

The single criterion net flow can be computed using partial preference indices Pj(a, b)
as in Equation 35.

φj(a) =
1

n− 1

∑
x∈A\{a}

[Pj(a, x)− Pj(x, a)] (35)

By aggregating single criterion net flows using weights of criteria the net outranking
flow can be easy computed (Equation 36).

φ(a) =
k∑
j=1

φj(a) · wj (36)

Module M10. PrometheeAlternativesProfiles. Structure of this module is pre-
sented in Figure 2.11. It computes the single criterion net flows φj(a) (out1) for all
criteria and alternatives. These data allows to build the profiles of the alternatives.

It requires the user to specify a set of alternatives (in1), criteria set (in2) and partial
preference indices (in3).

Figure 2.11: Structure of module M10 which computes Alternatives Profiles

2.5 Ranking Problems

In this section, we focus on different ways of ranking alternatives using PROMETHEE
methods. In the first approach, the ranking is determined by the final comprehensive
flows. The next one is ranking presented as the weak preference relation, which enables
to show comparisons between alternatives. Last but not least is an approach which is
the most associated with ranking and returns as the output positions in the ranking.
We demonstrate a few modules we have implemented. They are numbered for easy
identification (M11 - M16). In next subsections, we show examples to all described
ranking methods.

2.5.1 Promethee I

Promethee I ranking is calculating method based on the positive and negative outranking
flows. The final result is only partial - in some ambiguous cases this method does not
decide which of the current alternatives is better. The general method of computing the
ranking is presented in Equation 37 [4].

21

PI_RANK =



aP Ib ⇐⇒


φ+(a) > φ+(b) and φ−(a) < φ−(b) or
φ+(a) = φ+(b) and φ−(a) < φ−(b) or

φ+(a) > φ+(b) and φ−(a) = φ−(b)

aIIb ⇐⇒ φ+(a) = φ+(b) and φ−(a) = φ−(b)

a?Ib ⇐⇒

{
φ+(a) > φ+(b) and φ−(a) > φ−(b) or

φ+(a) < φ+(b) and φ−(a) < φ−(b)

(37)

It can be generalized to the relation of the weak preference (Equation 38).

PI_RANK =



aSIb ⇐⇒


φ+(a) > φ+(b) and φ−(a) < φ−(b) or
φ+(a) = φ+(b) and φ−(a) < φ−(b) or
φ+(a) > φ+(b) and φ−(a) = φ−(b) or

φ+(a) = φ+(b) and φ−(a) = φ−(b)

a?Ib ⇐⇒

{
φ+(a) > φ+(b) and φ−(a) > φ−(b) or

φ+(a) < φ+(b) and φ−(a) < φ−(b)

(38)

Module M11. PrometheeIRanking. Structure of this module is presented in
Figure 2.12. It computes ranking in Promethee I method based on the positive (in2)
and negative outranking flows (in3) with available list of all alternatives (in1). The
result of this module is the ranking presented as the weak preference relation, which
means that the output file consists of pairs of alternatives for which the outranking
relations is valid (out1).

Figure 2.12: Structure of module M11 which computes Promethee I Ranking

2.5.2 Promethee II

In contrary to Promethee I, Promethee II returns a complete ranking without any
incomparabilities. Firstly, there is calculated value which is called net outranking flow.
It is a difference between positive and negative flow for each alternative (which is shown
in Equation 39) and put all together in one set (see Equation 40) [4].

φ(a) = φ+(a)− φ−(a) (39)

PII_FLOW = {∀a ∈ alternatives : φ(a)} (40)

22

Module M12. PrometheeIIFlow. Structure of this module is presented in Figure
2.13. It computes ranking in Promethee II method based on the positive (in2) and
negative outranking flows (in3) with available list of all alternatives (in1). The fourth
file (in4) is optional - it should be included only when the value of parameter (param1)
is different from “alternatives”. It consists of list of boundary/characteristic profiles.
This module requires a parameter which determines if a flow is calculated as a comparison
of only alternatives (then we need to choose “alternatives”), comparison of alternatives
and boundary profiles or characteristic profiles.
The result of this module is a set which consists of net outranking flows described above.
Moreover, flows can be calculated not only for alternatives but also for profiles - it
depends on the selected program parameters.

Figure 2.13: Structure of module M12 which computes Promethee II Flows

2.5.3 Promethee III

Ranking in Promethee III is not based on net outranking flows, as it is in Promethee
I or Promethee II but it is based on intervals. It enables to relate to the current set
of data in more practical way - there is no need to have the same values to make two
alternatives indifferent. The ranking is calculated in the following way: basied on the
preferences (shown in Equation 12) and transformations typical for Promethee III (see
Equation 41), we calculate intervals as revealed by Equation 42 [6].

¯φ(a) =
1

n

∑
b∈A

(Π(a, b)− Π(b, a))

σ2
a =

1

n

∑
b∈A

(Π(a, b)− Π(b, a)− ¯φ(a))2

α > 0

(41)

where:

n is number of alternatives,

α is a parameter given by the DM.

23

{
xa = ¯φ(a)− ασa,
ya = ¯φ(a) + ασa,

(42)

Then, the final ranking can be designated as it is shown in Equation 43.

PIII_RANK =

{
aP IIIb ⇐⇒ xa > yb

aIIIIb ⇐⇒ xa ≤ yb and xb ≤ ya
(43)

Module M13. PrometheeIIIFlow. Structure of this module is presented in Figure
2.14. It requires providing list of alternatives (in1), positive (in2) and negative outranking
flows (in3), matrix of preference degrees (in4). There is also a need to give the param1

- α which is decimal value between 0 and 1. This module returns two files. Firstly, it
computes intervals (out1) which are described above and shown in Equation 42. The
other output is ranking(out2) – based on this from Equation 43 – which is represented
as a weak preference relation.

Figure 2.14: Structure of module M13 which computes Promethee III intervals and
ranking

2.5.4 Net Flow Score

Net Flow Score is a ranking method which bases on calculating scores associated with
each alternative [3]. There are nine basic scoring functions which are shown in Equations
44 - 52.

max in favor : max
b∈A‘\{a}

R̃(a, b) (44)

min in favor : min
b∈A‘\{a}

R̃(a, b) (45)

sum in favor :
∑

b∈A‘\{a}

R̃(a, b) (46)

-max against : − max
b∈A‘\{a}

R̃(b, a) (47)

24

-min against : − min
b∈A‘\{a}

R̃(b, a) (48)

-sum against : −
∑

b∈A‘\{a}

R̃(b, a) (49)

max difference : max
b∈A‘\{a}

R̃(a, b)− R̃(b, a) (50)

min difference : min
b∈A‘\{a}

R̃(a, b)− R̃(b, a) (51)

sum of differences :
∑

b∈A‘\{a}

R̃(a, b)− R̃(b, a) (52)

There are a few approaches in designating the Net Flow Score values. We want to
focus on two of them. First one, which is known as Net Flow Rule is a base of all the
others. It says that we just take the results given by the chosen scoring function. There
is possibility that some alternatives have the same value but algorithm does not take
this into account [3].

The other approach implies that we can run the procedure of calculating scores more
than once. It happens only when there are a few alternatives with the same results of
scoring function. In such a situation the whole procedure is started again but only for
the set of alternatives with the same values. While creating ranking, there is need to
take into account values from all iterations [20].

Module M14. NetFlowScore. Structure of this module is presented in Figure 2.15.
It requires list of alternatives (in1) and matrix of preferences (in2). Decision maker also
needs to provide two parameters: first one stands for function (param1) : max, min or
sum. The second one stands for direction (param2): in favor, against or difference. This
module computes values of chosen scoring function for each alternative (NFSa).
Module M15. NetFlowScoreIterative. Structure of this module is presented in
Figure 2.16. It requires a list of alternatives (in1) and matrix of preferences (in2).
Decision maker also needs to provide two parameters. First one stands for function
max, min or sum (param1). The second one stands for direction: in favor, against
or difference (param2). This module computes the values of chosen scoring function
according to the algorithm described above for each alternative and then assign to each
alternative proper position in the ranking (NFSia).

2.5.5 GDSS Ranking

GDSS Ranking is a method which can be used to create ranking basing on decisions
from many decision makers. It is simply calculated as the weighted sum of flows for
every alternative and is shown in Equation 53 [22].

ΦG
a =

N∑
n=1

φnaωn (53)

25

Figure 2.15: Structure of module M14 which computes Net Flow Score

Module M16. PrometheeGroupRanking. Structure of this module is presented
in Figure 2.17. It requires providing list of alternatives (in1), flows from every decision
maker (in2−11) and a file with weights assigned to every decision maker (in12). It
computes values of weighted flows for each alternative (out1) and puts aggregated flows
into one file (out2).

2.6 Sorting Problems

In this section, we focus on different ways of resolving sorting problems using PROME-
THEE methodology. Each alternative a ∈ A has to be assigned to one or, in general,
some of K categories C1, C2, . . . , CK . Without loss of generality, we suppose that they
are ordered from the worst to the best, so that Ch is preferred to Ch−1 when h > l. We
can define each category by one central profile which represents typical alternative which
should be assigned to the category, two limiting profiles which limit each category as
the best and worst alternative, or boundary profiles which separate pairs of subsequent
categories. When using central profiles, we need to define K profiles r1, r2, . . . , rK ∈ R,
one for each category. In case of using boundary profiles, we need to define K − 1
profiles r1, r2, . . . , rK−1 ∈ R separating categories. For the limiting profiles we need to
define K + 1 profiles r1, r2, . . . , rK+1 ∈ R setting the classes limits (r1 will be here the
worst possible alternative and rK+1 will be best possible alternative). Performance of
profiles is connected with categories preferences, as they are ordered. Most of methods
described in this section propose its own dominance conditions concerning profiles.

Each sorting method described in this thesis is based either on total net flows (as
in Promethee II) or positive and negative flows (as in Promethee I). At the output,
we obtain either precise or imprecise assignment of each alternative to, respectively,
one category or few categories. There are plenty of methods in PROMETHEE family

26

Figure 2.16: Structure of module M15 which computes Net Flow Score Iterative.

Figure 2.17: Structure of module M16 which computes GDSS Ranking.

resolving sorting problems in different ways. In the next subsections, we focus on some
of them and propose a few modules which are based on these methods (M17 - M22).

2.6.1 PromSort

PromSort is a sorting method from Promethee family that bases on outranking relations
between alternatives and boundary profiles. It uses Promethee I positive and negative
flows.

We can define 3 types of outranking relation between alternative ai and profile
rk - preference (shown in Formula 54), indifference (Formula 55) and incomparability
(Formula 56) [1].

(ai P rk) if


φ+(ai) > φ+(rk) ∧ φ−(ai) < φ−(rk)

φ+(ai) = φ+(rk) ∧ φ−(ai) < φ−(rk)

φ+(ai) > φ+(rk) ∧ φ−(ai) = φ−(rk)

(54)

(ai I rk) if φ+(ai) = φ+(rk) ∧ φ−(ai) = φ−(rh) (55)

27

(ai R rk) if

{
φ+(ai) > φ+(rk) ∧ φ−(ai) > φ−(rk)

φ+(ai) < φ+(rk) ∧ φ−(ai) < φ−(rk)
(56)

As input categories are ordered, PromSort requires the profiles to fulfill the dominance
condition as in Formula 57. In this formula, pj is a preference threshold for criterion j,
gj is the evaluation of profile. Each profile needs to be preferred over profiles which are
worse than it.

∀j,∀k1, ..., K − 1 gj(bk) + pj ≤ gj(bh+1) (57)
The assignment procedure in PromSort can be divided into two steps. In the first

step, the DM needs to compare alternative ai with each profile rk from the best (K − 1)
to the worst (1). After the comparison there are a few possible options:

1. If alternative ai is preferred to profile rK−1 it should be assigned to the category
CK .

2. If each profile is preferred to alternative ai, the latter should be assigned to the
category C1.

3. If rp is the first profile such that ai P rp and rs is the first profile that ai I rs or
ai R rs and p > s, alternative ai should be assigned to the category Cp+1.

4. If none of above holds, alternative ai should not be assigned to any of the categories.
It should be assigned to the category s or s+ 1 in the next step (s is the number
of profile such that rs is the first profile that ai I rs or ai R rs).

After first step some of alternatives can be not assigned to any of categories. In the
other step, the assigned categories are being used to assign the unassigned ones. For
each category we can define the set of alternatives assigned in the first step Xk, where k
is a category number.

At first, the DM needs to calculate positive and negative distance for each alternative
ai basing on calculated s and s+ 1 from the first step as in given formulas:

d+k =
∑
x∈Xs

(φ(ai)− φ(x)) (58)

d−k =
∑

x∈Xs+1

(φ(x)− φ(ai)) (59)

After calculating positive and negative distances, we can determine a total distance
for the assignment using following formula:

dk =
1

ns
d+k −

1

ns+1

d−k , (60)

where ns means the number of alternatives assigned to category s in a first step of
assignment in PromSort.

After computing the total distance for a given alternative ai and profiles rs and
rs+1, we can compare it with cut point parameter b which is given by the DM. While
comparing cut point and total distance the following situations can be instantiated:

28

• If dk > b, alternative ai should be assigned to category Cs+1.

• If dk < b, alternative ai should be assigned to category Cs.

• If dk = b, alternative ai can be assigned to Cs or Cs+1 according to additional
parameter (preference of decision maker to assign alternatives to better class -
pref) or just assigned to both of them in a imprecise assignment.

Note that cut point parameter represents the DM’s preferences. When it is set to 0,
the DM relays on dk. When the parameter is lower than zero, the DM prefers to assign
alternatives to better categories. If cut point is higher than 0, the DM prefers to assign
alternatives to worse categories.

To prevent procedure from imprecise assignment, we incorporated one more parameter
into it - preference of the DM to assign alternatives to better class (pref). One can
say that this parameter is redundant - decision makers preferences are already used in
cut point. Howeve,r adding additional decision maker’s parameter is the easiest and
probably the most intuitive way to achieve precise assignment when the DM’s goal is to
avoid imprecise assignments.

If the DM can get on the output of PromSort procedure some imprecise assignments
(s)he can resign from providing an additional parameter - preference of decision maker
to assign alternatives to better class (pref).

Module M17. PromSort. This module computes the assignments of given alterna-
tives to categories using PromSort. Its structure is presented in Figure 2.18.

The module requires providing on inputs a list of alternatives ids (in1), list of
categories ids with their ranks ordered from the worst to the best (in2), list of boundary
profiles (in3) describing the categories given in input in2. Decision maker can also
provide limiting profiles in input in3, module will not use profiles r1 and rK+1 then. To
check the dominance of profiles module use also a table with profiles performances on
each criterion (in4) and a list of criteria with their scales and preference threshold (in5).
Decision maker has to provide also the positive (in6) and negative (in7) flows for each
alternative from input in1 and for each boundary profile from input in3.

PromSort module uses two parameters, which were described in section above. First
of them - cut point (param1) is a decimal value greater or equal to -1 and lower or equal
to 1. The second parameter - assign to a better class - is an additional information of
decision maker preferences and as a logical value it can be true or false.

On the output module returns imprecise assignment from first step of assignment
procedure (out1) and precise final assignment (out2).

2.6.2 Promethee Tri

Promethee Tri is a sorting method which uses central profiles as a description for
categories and single criterion net flows to assign alternatives to categories.

There are two formulas for calculating criterion net flows for alternatives and for
profiles [13]:

φj(rk) =
1

|R| − 1

∑
r∈R\{rk}

(Pj(rk, r)− Pj(r, rk)) (61)

29

Figure 2.18: Structure of module M17 which computes PromSort class assignment

φj(ai) =
1

|R|
∑
r∈R

(Pj(ai, r)− Pj(r, ai)) (62)

where:

|R| is a cardinality of set of profiles,

Pj(rk, r) is a preference function beetween profile rk and profile r on criterion j.

Let us focus on two formulas above. As one can see the criterion net flow is based
on criterion preference function. Profiles are being compared to all other profiles,
alternatives are being compared to all profiles. Thanks to it assignment of alternative
do not depends on flows of another alternatives. The dividing by |R| or |R| − 1 makes
criterion net flows normalized.

To get assignments in Promethee Tri decision maker has to calculate for each profile
rk the deviation e(ai, rk) between alternative and each central profile [1] as shown in
the following formula:

e(ai, rk) =
∑
j∈J

|φj(a)− φj(rk)|wj (63)

where:

J is a set of criteria,

wj is a weight of criterion j.

After calculating the deviation, the DM can make the final assignment. Alternative
is being assigned to the category described by profile with the smallest deviation (as
shown in Formula 64).

ai ∈ Ct if e(a, rt) = min
k=1,...,K

e(a, rk) (64)

30

Module M18. PrometheeTri. This module computes the assignments of given
alternatives to categories using Promethee Tri method. Its structure is presented in
Figure 2.19.

In inputs module reads alternatives ids (in1), categories ids with their order from the
worst to the best (in2), profiles describing categories (in3), criteria ids (in4), and criteria
weights (in5). In the six’th input there should be added preferences on criteria between
each alternative and each profile and between each profile with each other profile.

As a first parameter PrometheeTri module reads a bool value (param1), by which
decision maker can indicate that (s)he prefers to assign alternative to the better category
when assignment is not clear (that can happen when two minimal deviations are equal).
As a second parameter decision maker has to provide an information if (s)he wants to
use deviation function in assignment with criterion flows (as in the Formula 63) or if
(s)he wants to count it with global net flows (it can be achieved by removing the absolute
value from Formula 63). In the first case parameter “use marginal value” (param2) needs
to be set to true, in second option - to false.

As an output PrometheeTri module returns the precise assignments calculated in
Promethee Tri algorithm.

Figure 2.19: Structure of module M18 which computes Promethee Tri class assignment

2.6.3 FlowSort based on Promethee I

In FlowSort method based on Promethee I we can use either limiting, boundary or central
profiles to describe categories. It uses both positive and negative flows computed in result
of comparisons of each alternative and each profile with all the profiles. Assignment
is calculated here separately for positive and negative flow. Both assignments can be
different, so that final assignment is imprecise.

Regardless of the profiles type, they need to fulfill the dominance condition [26],
which can be described with following formula:

∀rh, rl ∈ R such that h > l : gj(rh) ≥ gj(rl) ∀j ≥ 1 ∧ j ≤ q (65)

31

This condition is motivated by requirements of categories which need to be ordered. In
given formula gj(rh) is the evaluation of profile rh on criterion j and q is the number of
criteria.

Sorting with limiting profiles. While working with limiting profiles we need to
compare positive and negative flows of each alternative a ∈ A with all limiting profiles
r ∈ R. The assignment bases on following equations:

Cφ+(ai) = Ch if φ+(rh) < φ+(ai) ≤ φ+(rh+1) (66)

Cφ−(ai) = Ch if φ−(rh) ≥ φ−(ai) > φ−(rh+1) (67)
As mentioned before Cφ+(ai) can be different from Cφ−(ai). What is more Cφ+(ai)

can be preferred to Cφ−(ai) or Cφ−(ai) can be preferred to Cφ+(ai). When we assume
that Cb is the better of them and Cw is the worse one we can assign alternative ai to
the categories [Cw; Cb].

As one can notice profile r1 (which represents worst possible alternative) and rK+1

(which represents best possible alternative) are not necessarily needed as all alternatives
which are worst then limiting profile r2 should be assigned to class C1, and all alter-
natives better then limiting profile rK should be assigned to class CK . We can easily
rewrite the assignment procedure to use it with boundary profiles instead of limiting ones.

Sorting with boundary profiles. When working with boundary profiles we can
define for each alternative ai the positive and negative flows assignment as follows:

Cφ+(ai) = Ch if


φ+(ai) ≤ φ+(rh) for h = 1

φ+(ai) > φ+(rh−1) for h = K

φ+(rh−1) < φ+(ai) ≤ φ+(rh) for h > 1 ∧ h < K

(68)

Cφ−(ai) = Ch if


φ−(ai) > φ−(rh) for h = 1

φ−(ai) ≤ φ−(rh−1) for h = K

φ−(rh−1) ≥ φ−(ai) > φ−(rh) for h > 1 ∧ h < K

(69)

Cφ+(ai) can be different from Cφ−(ai) as while sorting with limiting profiles.

Sorting with central profiles. When central profiles are given as an input of FlowSort
based on Promethee I flows the assignment rule need to change. As we are operating
on positive and negative flows the assignment still is imprecise – we get separately the
positive and negative assignment. As we do not know the limiting or boundary profiles
we need to find another way of separation different classes. To do this we are comparing
positive/negative flow of each alternative with the simple average of each pair of nearest
profiles as in formulas below:

Cφ+(ai) = Ch if



φ+(ai) ≤
φ+(rh) + φ+(rh+1)

2
for h = 1

φ+(rh−1) + φ+(rh)

2
< φ+(ai) for h = K

φ+(rh−1) + φ+(rh)

2
< φ+(ai) ≤

φ+(rh) + φ+(rh+1)

2
for h > 1 ∧ h < K

(70)

32

Cφ−(ai) = Ch if



φ−(ai) >
φ−(rh) + φ−(rh+1)

2
for h = 1

φ−(rh−1) + φ−(rh)

2
≥ φ−(ai) for h = K

φ−(rh−1) + φ−(rh)

2
≥ φ−(ai) >

φ−(rh) + φ−(rh+1)

2
for h > 1 ∧ h < K

(71)

As mentioned before both assignments Cφ+(ai) and Cφ−(ai) can be different, so we
need to find better and worse of them to indicate optimistic and pessimistic assignment.

Module M19. FlowSortI. This module computes the assignments of given alternatives
to categories using FlowSort procedure based on Promethee I flows. Its structure is
presented in Figure 2.20.

The module requires providing on inputs a list of alternatives ids (in1) and a list of
categories ids with their marks (in2). Categories should have marks from 1 to C where C
is the number of categories. Category with mark 1 should be the worst category, category
with mark C should be the best one. In input in3 decision maker need to provide a
description of categories with either central, limiting or boundary profiles. To check the
dominance of given profiles module requires to provide a table with performances of
profiles (in4) and a list of criteria with their scales (in5). To compute the categories
assignments module needs also on inputs negative and positive flows computed for
alternatives and profiles (in6 and in7). Decision maker ought to provide them for all
alternatives and profiles given in inputs in1 and in3. Otherwise module returns error
message. Decision maker needs also to provide as a parameter information of profiles
used in calculations (param1). When (s)he wants to use central profiles (s)he needs to
choose option “central profiles”. When (s)he wants to use boundary or limiting profiles
(s)he need to choose “boundary profiles” option.

On the output module returns the imprecise assignment of each alternative to
pessimistic and optimistic category (out1).

Figure 2.20: Structure of module M19 which computes FlowSort based on Promethee I
class assignment

33

2.6.4 FlowSort based on Promethee II

In FlowSort method based on Promethee II flows we can use either limiting, boundary or
central profiles as in described before FlowSort method based on Promethee I flows. The
difference is that Promethee II flows are net flows, which provides the precise assignment
in FlowSort procedure [26].

As mentioned before in FlowSort based on Promethee I flows we need to check the
domination of input profiles. When we are using Promethee II flows the condition does
not change and is the same as in Formula 65.

Sorting with limiting profiles. The assignment rule for limiting profiles is given in
Formula 72

Cφ(ai) = Ch if φ(rh) < φ(ai) ≤ φ(rh+1) (72)

Given rule is analogous to assignment with the limiting profiles in FlowSort based
on Promethee I flows. As net flows combines positive and negative flows the assignment
will also be a result of that combination and will not be worse from the pessimistic
assignment nor better from optimistic assignment from Promethee I based approach [26].

Sorting with boundary profiles. As we did before for FlowSort based on Promethee
I flows we can easily rewrite assignment procedure for boundary profiles in Promethee
II based approach. The assignment rule for boundary profiles is given in Formula 73.

Cφ(ai) = Ch if


φ(ai) ≤ φ(rh) for h = 1

φ(rh−1) < φ(ai) for h = K

φ(rh−1) < φ(ai) ≤ φ(rh) for h > 1 ∧ h < K

(73)

Sorting with central profiles. When working with central profiles the assigned rule
can be defined as follows:

Cφ(ai) = Ch if


φ(ai) ≤

φ(rh) + φ(rh+1)

2
for h = 1

φ(rh−1) + φ(rh)

2
< φ(ai) for h = K

φ(rh−1) + φ(rh)

2
< φ(ai) ≤

φ(rh) + φ(rh+1)

2
for h > 1 ∧ h < K

(74)
The assignment is analogous with the imprecise assignment from Promethee I based Flow-
Sort as in the procedure for limiting profiles. It is caused by a way of calculating net flows.

Module M20. FlowSortII. This module computes the assignments of given alterna-
tives to categories using FlowSort procedure based on Promethee II flows. Its structure
is presented in Figure 2.21.

Inputs of this module are similar to inputs from module FlowSortI (presented in
Section 2.6.3). Decision maker needs to provide a list of alternatives ids (in1), a list
of categories ids with their ranks ordered from the worst to the best (in2), a list of

34

either limiting, boundary or central profiles defining the categories (in3), a table with
performances of profiles (in4), a list of criteria and their scales (in5) and net flows of all
alternatives and profiles (in6). (S)He needs to provide also as a parameter (param1)
the type of input profiles. When (s)he wants to use boundary or limiting profiles (s)he
need to choose “boundary profiles” option, when (s)he wants to use central profiles (s)he
need to choose “central profiles” option.

As in FlowSortI module the dominance of profiles is being checked.
On the output module returns precise assignment of each alternative to proper

category.

Figure 2.21: Structure of module M20 which computes FlowSort based on Promethee II
class assignment

2.6.5 FlowSort GDSS

FlowSort GDSS is a sorting method from Promethee family which enables to assign
alternatives to predefined, ordered categories taking into account preferences of multiple
decision makers. It was proposed by Francesco Lolli et al. in 2015 [21].

Alternatives and categories are the only common data for all decision makers. Each
of them has his own description of categories with globally chosen type of profiles.
Chosen profiles can be either central, boundary or limiting. Each decision makers has
also his own weight which measures his impact in the final assignment.

Profiles given by decision makers need to fulfill the dominance condition which can
be described by the following formula:

rt,jk > rs,jk+1; ∀rt,jk , r
s,j
k+1 ∈ R

j, ∀j = 1, ..., J and ∀t, s = 1, ..., T (75)

where:

J is a set of criteria,

T is a set of decision makers,

Rj is a set of profiles preferences on criterion j,

35

rt,jk is a performance of profile number k on criterion j given by decision maker t.

At the beginning FlowSort GDSS requires from decision maker calculating the net
flow φj(ai) of each alternative ai ∈ A on each criterion j ∈ J using following formula:

φj(ai) =
1

|Rj|
∑

rt,jk ∈Rj

[Pj(ai, r
t,j
k)− Pj(rt,jk , ai)] (76)

where:

J is a set of criteria,

T is a set of decision makers,

Rj is a set of profiles preferences on criterion j,

|Rj| is a cardinality of set of profiles preferences on criterion j,

rt,jk is a performance of profile number k on criterion j given by decision maker t,

Pj(ai, r
t,j
k) is a preference of alternative ai to profile rt,jk on criterion j.

After calculating net flows of alternative ai on each criterion decision maker can
calculate the global net flow of this alternative as a weighted sum of net flows on each
criterion:

φ(ai) =
J∑
j=1

wgjφj(ai) (77)

where:

wgj is a weight of criterion j,

φj(ai) is a net flow of alternative ai on criterion j computed in Formula 76.

As one can see global net flow φ(ai) can be calculated also as a average of net flows of
alternative ai calculated separately for every decision maker. In this case each decision
maker calculates his own net flow of alternative ai as a result of comparisons with his
own profiles rh ∈ R. After that step local net flows of all decision makers are being
added and divided by number of decision makers. That approach enables us divide
whole assignment process to one more separated step which can be done by each decision
maker by his own.

FlowSort GDSS requires from decision makers also calculating criterion net flow of
each profile with influence of each alternative ai ∈ A. We will mark it as φj,i(rτ,jκ) and
calculate as following:

φj,i(r
τ,j
κ) =

1

|Rj|+ 1

{ ∑
rt,jk ∈Rj

[Pj(r
τ,j
κ , rt,jk)− Pj(rt,jk , r

τ,j
κ)] + [Pj(r

τ,j
κ , ai)− Pj(ai, rτ,jκ)]

}
(78)

where:

36

J is a set of criteria,

T is a set of decision makers,

τ is a chosen decision maker number,

κ is a chosen profile number,

Rj is a set of profiles preferences on criterion j,

|Rj| is a cardinality of set of profiles preferences on criterion j,

rt,jh is a performance of profile number h on criterion j given by decision maker t,

Pj(r
τ,j
κ , rt,jk) is a preference of profile rτ,jκ to profile rt,jk on criterion j.

The Formula 78 is being calculated for every pair of alternative ai ∈ A and profile
rt,jk ∈ Rj on each criterion j ∈ J . After that we can calculate global net flows φi(rτκ) for
each profile as a weighted sum of net flows on criteria:

φi(r
τ
κ) =

J∑
j=1

wgjφj,i(r
τ,j
κ) (79)

where:

wgj is a weight of criterion j,

φj,i(r
τ,j
κ) is a net flow of profile rτ,jκ on criterion j computed in Formula 78.

After calculating all needed net flows we can move to the next step - assignment
of alternatives. There are two types of assignments in FlowSort GDSS - unanimous
and non unanimous. The unanimous assignment takes place when all decision makers
assign alternative ai to the same category Ck. The non unanimous assignment is being
used when decision makers preferences are not consistent. There are different rules of
assignment for sorting with limiting profiles and sorting with central profiles.

Sorting with boundary profiles. The unanimous assignment rule for sorting with
boundary profiles for each decision maker t is described below:

Ct(ai) = Ck if


φ(ai) ≤ φi(r

t
k) for k = 1

φi(r
t
k−1) < φ(ai) for k = K

φi(r
t
k−1) < φ(ai) ≤ φi(r

t
k) for k > 1 ∧ k < K

(80)

If for each t ∈ T assignment Ct is the same it is the final assignment. If there are
some decision makers with different assignments the final assignment will be made with
non unanimous assignment rule. What is important thanks to use dominance condition
on profiles (Formula 75) after the first step of assignment only two different assignments
of decision makers can be taken into account - to category Ck or Ck+1.

37

In non unanimous assignment rule distances functions di(k) and di(k + 1) are being
are calculated using following formulas:

di(k) =
∑

t:φ(ai)<φi(rtk)

wdt [φ(ai)− φi(rtk)] (81)

di(k + 1) =
∑

s:φ(ai)≥φi(rsk)

wds [φi(r
s
k+1)− φ(ai)] (82)

where:

wdt is a weight of decision maker t,

k is a number of worse category from first step,

k + 1 is a number of better category from first step,∑
t:φ(ai)≥φi(rtk)

means, that we are making a sum of profiles rtk only for profiles of decision

makers who have chosen a worse assignment in a first step,∑
s:φ(ai)<φi(rsk)

means, that we are making a sum of profiles rsk only for profiles of decision

makers who have chosen a better assignment in a first step.

After calculating the distances the only thing to do is to compare di(k) with di(k+ 1)
and make a final assignment. In final assignment there are 3 possibilities of an assignment:

• If di(k + 1) > di(k) assign alternative ai to category Ck.

• If di(k + 1) < di(k) assign alternative ai to category Ck+1.

• If di(k + 1) = di(k) assign alternative ai to category Ck or Ck+1 according to
additional global parameter - preference of decision maker to assign alternative to
a better category.

Sorting with central profiles. While working with central profiles the unanimous
assignment rule for each decision maker t ∈ T is defined by another formula:

Ct(ai) = Ck if |φi(rtk)− φ(ai)| < |φi(rth)− φ(ai)|,∀h = 1, ..., K, h 6= k (83)

As one can see, the assignment for decision maker t is being made here by finding
a profile with the nearest flow for decision maker t. When assignments of decision
makers are equal the assignment is final. Otherwise there need to be performed a non
unanimous assignment.

As in the assignment with boundary profiles, decision makers can have only two
different assignments in this step. To find a final assignment decision makers need to
count the distance functions as follows:

di(k) =
∑
t∈Tk

wdt |φi(rtk)− φ(ai)| (84)

38

di(k + 1) =
∑
s∈Tk+1

wds |φi(rsk+1)− φ(ai)| (85)

where:

wdt is a weight of decision maker t,

k is a number of worse category from first step,

k + 1 is a number of better category from first step,

Tk is a set of decision makers who assigned alternative ai to a worse category,

Tk+1 is a set of decision makers who assigned alternative ai to a better category.

After calculating the distance functions decision makers can make a final assignment
using same rule as while using boundary profiles:

• If di(k + 1) > di(k) assign alternative ai to category Ck.

• If di(k + 1) < di(k) assign alternative ai to category Ck+1.

• If di(k + 1) = di(k) assign alternative ai to category Ck or Ck+1 according to
additional global parameter - preference of decision maker to assign alternative to
a better category.

Module M21. FlowSortGDSS. This module computes the assignments of given
alternatives to categories using FlowSort GDSS procedure. Its structure is presented in
Figure 2.22.

On the input module reads global ids of alternatives (in1), global ids of categories
with their ranks ordered from the worst to the best as in2. It requires also to provide
lists of profiles describing the categories for all (at least two) decision makers (in3−4 are
required, in5−12 are optional). To check the dominance condition of profiles decision
maker need to provide list of criteria with their scales (in13). Module also requires
providing flows of alternatives of all (at least two) decision makers (mandatory in14−15
and optional in16−23). Performances of profiles (in24−33) for each decision maker (at least
two of them) are also needed on the input. To compute global flows for profiles module
requires providing also preferences between alternatives and profiles for each decision
maker (in34−35 and in36−43 optionally) and list of net flows for profiles calculated by
comparisons with all decision makers profiles (in44). As the number of decision makers
is known from the beginning, the number of used inputs in structures given separately
by each of decision maker (in3−12, in14−23, in24−33 and in34−43) need to be the same and
equal to number of decision makers. The module requires providing data from at least 2
and at most 10 decision makers.

As a first parameter module reads global type of profiles used by decision makers
(param1). Decision makers can use either central profiles or boundary profiles. When
they need to provide limiting profiles the can do it using “boundary” option - module
will use only needed profiles. As a second parameter (param2) decision makers need to
provide their preference of assign to a better category in case of ambiguous assignment in

39

the step of non unanimous assignment. As the last 10 parameters (param3−12) decision
makers need to provide their own weights. If number of decision makers is lower then
10 they should put “0” to weights of absent decision makers.

On the output module returns imprecise assignments after an unanimous assignment
step (out1) and precise final assignment (out2).

Figure 2.22: Structure of module M21 which computes FlowSort GDSS class assignment

2.6.6 Group Class Acceptabilities

In this section, we present an approach that supports finding a common solution in terms
of a sorting problem. The starting point is the set of assignments to classes for every
alternative defined as upper (Uk(ai)) and lower bound (Lk(ai)) (there is also a possibility
that upper bound = lower bound, which means that assignment is precise).Then one
should iterate through all the classes and alternatives and firstly express if current
decision maker (k) assigns this alternative (ai) to the class (as it is shown in Equation
86).

Ek(ai, Cx) =

{
1 if Cx ∈ [Lk(ai), Uk(ai)]

0 if Cx /∈ [Lk(ai), Uk(ai)]
(86)

The next step consists in the aggregation of all individual values by the Equation 87.

E(ai, Cx) =

∑K
k=1Ek(ai, Cx)

K
∗ 100% (87)

Such an approach has some disadvanatges. For example, when two separated classes
have bigger value than the class between them. The cure for that is “unimodal” version

40

shown in Equation 88. It takes into account both classes better and weaker than current
and then assign value basing on this knowledge [8].

E′(ai, Cx) =

{
E(ai, Cx) ∗ 100% if x = 1 ∨ x = h

max{E(ai, Cx),min{max
y<x

E(ai, Cy),max
y>x

E(ai, Cy)}} ∗ 100% if 1 < x < h
(88)

Module M22. GroupClassAcceptabilities. Structure of this module is presented
in Figure 2.23. It requires providing list of alternatives (in1), list of categories (in2)
where are not only shown all the available classes but also their numeric equivalents to
make it possible to compare the classes. Last inputs are assignments of each alternative
to the classes defined generally as imprecise assignment which means there is lower
and upper bound (it is possible that they are equal) - in3−12. There are two outputs
from this module. First one presents alternatives support, calculated with the usage
of Equation 87 (out1). The second output represents unimodal alternatives support,
computed accordingly to Equation 88 (out2).

Figure 2.23: Structure of module M22 which computes Group Class Acceptabilities.

2.7 Choice Problem

The problem of choosing is about how to find the most preferred alternatives from the
perspective of the DM. The algorithms applied to solve this problem can also be used
to reduce the number of acceptable alternatives. In this section we present the method
which solves this problem. At the same time we present the module that implements
this method (M23).

Promethee V

Promethee V [4] is applied to find a subset of the most preferred alternatives with
respect to linear constraints by constructing and solving linear programming problem.
The Promethee V procedure consists of two following steps:

• STEP 1: Computation of the Promethee II flows for all alternatives (see Section
2.5.2)

• STEP 2: Solving the following linear programming model:

41

max{
k∑
i=1

φ(ai)xi} (89)

n∑
i=1

λp,ixi ◦ βp, (90)

xi ∈ {0, 1}, i = 1, 2, ..., n, (91)

where symbol ◦ stands for ≥, ≤ or =.
Objective function has boolean variables which represent the selection of each alterna-

tive and flows of each one as coefficients. The higher the flow, the better the alternative.
If a boolean variable xi is equal to 1 it means that set of results contains alternative ai.
Linear constraints are defined by the DM and may include various business constraints
such as: cardinality, budget, investment, time, etc.

Module M23. PrometheeV. The structure of this module is presented in Figure
2.24. It solves binary linear programming problem given by the DM. The result of
this module is a set of alternatives values in which value 0 represents alternative not
included in the selected subset and value 1 represent alternative incorporated in the
optimal set (out1). This module requires the user to specify an alternatives to consider
(in1), net outranking flows (in2) and linear constraints (in3). This outranking flows
can be calculated by module M12 or any function corresponding to the net flows from
Promethee II.

Figure 2.24: Structure of module M23 which computes results of the Promethee V
method.

2.8 Clustering

In case of sorting problems, the DM must define groups before applying a sorting
algorithm but in many cases (s)he knows only the number of required groups. Then,
(s)he should use a clustering algorithm. Main problem of clustering is assigning similar
or indifferent alternatives into groups, which are called clusters. These groups may be
ordered or not. In this section, we focus on different methods of clustering. We present
a few modules we have implemented. They are numbered for easy identification (M24 -
M26).

In this section we use the following notation. Let A = {a1, a2, ..., an} be a set of
alternatives and C = {c1, c2, ..., ck} be a set of clusters. Each alternative must be

42

assigned only to one cluster, but clusters may aggregate many alternatives:

A = ∪i=1,...,kCi (92)

∀i 6=jCi ∩ Cj = ∅ (93)

In many cases ordered clusters are needed:

C1 > C2 > ... > Ck (94)

where symbol > in Ci > Cj means that cluster Ci has a lower rank than Cj . In ordered
clusters (the lower rank, the better cluster), if alternative ai is assigned to a cluster with
lower rank than alternative aj, ai is considerably better than alternative aj.

2.8.1 Ordered clustering

Ordered Clustering [10] is a method of grouping alternatives into K-ordered group, where
number of groups (K) is defined by the DM. This method, based on preference matrix,
builds directed, acyclic graph whose longest path equal to K-1. This graph allows us to
extract the required number of groups in K steps (see point 6. in algorithm).

Algorithm:

1. Define πi,j as a preference table and create a graph with all alternatives as vertices
and without arrows.

2. Choose maxi,j{πi,j}, if this value is equal to zero then move onto step 6.

3. Add arrows to the graph between node i and j

4. Check if graph has a cycle or some path longer than K-1; if it is true, delete an
arrow between node i and j

5. Set πi,j = 0 and go to step 2.

6. Determine first cluster by finding all nodes which have input degree equal to 0,
then delete these nodes from the graph. Each next cluster is determined like the
first one as long as there are some nodes in the graph.

The upper bound of algorithm’s iterations is equal to n2 − n, where n is the number of
alternatives.

Module M24. OrderedClustering. The structure of this module is presented in
Figure 2.25. It groups alternatives into clusters using Ordered Clustering method based
on the preference matrix (in2) and the set of alternatives (in1). The result of this module
is the ordered alternatives’ sets in which each cluster has at least one alternative(out1).
Lower set id represents a better cluster. The user needs to specify the number of clusters,
which is the parameter of this module (param1).

43

Figure 2.25: Structure of module M24 which computes the results of Ordered Clustering
method.

2.8.2 Promethee II Ordered Clustering

It is a clustering method based on FlowSort II and k-means algorithm, which is used to
assign alternatives to clusters [13].

Algorithm:

1. Decision maker (DM) defines the number of clusters K.

2. Generate random K central profiles.

3. Assigns each alternative to one cluster using the FlowSort method (see Section
2.6.4).

4. Update performances of the central profile rh through calculating an avarage of
performances of alternatives ai contained in the Ch cluster.

5. Repeat the procedure, from step 3, until a membership of alternatives no longer
changes.

Being generated at random, the central profiles must be dominated, which means
that if the ri profile dominates rj, then ri is better than rj, according on all criteria.
In this way, the resulting groups are ordered. The only task of FlowSort is to assign
alternatives to groups.

Module M25. PrometheeIIOrderedClustering. The structure of this module is
presented in Figure 2.26. It combines k-means method (main flow of algorithm) with
FlowSort (used to assign alternatives to clusters). This module computes the ordered
alternatives sets (out1), where the lower set id indicates better (more preferred) cluster.
It requires the user to specify an alternatives to consider (in1), a set of criteria (in2),
weights of criteria (in3) and preference indices (in4).

2.8.3 Promethee Cluster

Promethee Cluster [13] combines k-means algorithm (used to group alternatives into
clusters) with Promethee Tri (used to establish the difference between alternatives).
When implementing this module, we used a deviation formula different than in the
Promethee Tri method (see Section 2.6.2). This is presented in Equation 95.

44

Figure 2.26: Structure of module M25 which computes the results of Promethee II
Ordered Clustering method.

ep(a, rh) = (
∑
j∈J

|φRj (a)− φj(rh)|pwj)1/p (95)

where:

• R = {r1, r2, ..., rk} is a set of central profiles,

• φRj is a flow calculated by using a set which contains an alternative a and the set
R,

• φj is a flow calculated on set R.

As opposed to the original formula, we expanded it with coefficient p and calculated
flows based on different data set. Deviation ek(a, rh) is a measure of the difference
between alternatives. The smaller ek(a, rh), the more a and rh have in common (e.g., if
ek(a, rh) = 0 it means that a and rh are the same).

Algorithm:

1. The DM defines the number of clusters k and p coefficient.

2. Central profiles are selected among the existing alternatives.

3. Deviation between all alternatives and central profiles is calculated.

4. If deviation is minimal, then the alternative ak alternative is assigned to a category
Cl:

ai ∈ Cli if eq(ai, rli) = minh=1,...,k{eq(ai, rh)} (96)

5. Central profiles are redefined by calculating median of each alternatives on each
criterion:

gj(rh) = median{gj(ai), ai ∈ Ch} (97)

6. Steps 3-5 are repeated until cluster membership no longer changes.

45

Module M26. PrometheeCluster. Structure of this module is presented in Figure
2.27. It groups alternatives into clusters using k-means algorithm and Promethee Tri
evaluation of distance between alternatives and central profiles. The result of this
module are unordered sets of alternatives, where each cluster has at least one alternative
(out1). This module requires the user to specify an alternatives to consider (in1), a set
of criteria (in2), weights of criteria (in3) and preference indices (in4).

Figure 2.27: Structure of module M26 which computes Promethee Cluster method.

2.9 Visualization

In this section we describe two graphical modules (M27 and M28), which visualize
assignments of alternatives to categories.

2.9.1 Graphical class assignment

Figure 2.28: Structure of module M27 which visualizes class assignments with an image.

Module M27. plotClassAssignments. Structure of this module is presented in
Figure 2.28. It reads alternatives ids (in1), alternatives assignments (in2) and ids of
categories to which alternatives can be assigned with categories ranks ordered from the
worst to the best (in3). The input alternatives assignments for this module can be either
precise or imprecise. As a parameter module requires providing information of required

46

visualization type (param1). There are two possible types of visualization - “normal”,
and “dashed”. The chosen one is being returned on the output (out1). Example outputs
are shown on the Figure 2.29.

As one can see the “normal” visualization presents for each alternative all categories.
Only the interval of categories form the pessimistic alternative assignment to the
optimistic one is colored in gray. In “dashed” visualization categories has its spaces. For
each alternative the assignment interval is selected by a rounded shape.

Figure 2.29: Outputs from plotClassAssignments module. On the left “normal” visual-
ization, on the right “dashed” one.

2.9.2 Latex table of class assignment

Module M28. LaTeXClassAssignments. Structure of this module is presented in
Figure 2.30. It reads alternatives ids (in1), alternatives assignments (in2) and ids of
categories to which alternatives can be assigned with categories ranks ordered from
the worst to the best (in3). The input alternatives assignments for this module can be
either precise or imprecise. As the output module returns the LaTeX table visualizing
the alternatives assignments (out1). The example output is shown in Table 2.2.

Figure 2.30: Structure of module M28 which visualizes class assignments with a latex
table.

47

Table 2.2: Example LaTeX table generated for alternatives with imprecise assignments.
Alternative Lower class Upper class

a1 C3 C4
a2 C1 C1
a3 C2 C5

3 Construct Your Own Promethee Method in diviz

3.1 diviz

diviz is a workbench used to design, execute and share complex MCDA methods and
experiments [25]. It is an open-source software which allows to combine work of many
researchers. The platform provides an integrated environment for creating MCDA
workflows from elementary MCDA components.

diviz has been constructed in a client-server infrastructure. The client is a desktop
Java application which allows to design MCDA workflows, enter data, and analyze
results with a simple and comfortable graphical user interface. The distant servers are
used to execute workflows and to enable cooperation of all components. All computation
modules, visualization and reporting tools are available in diviz via XMCDA web-services.
To communicate with each other they use an XMCDA standard. It is an XML-based
format which represents the MCDA concepts such as alternatives, criteria, outranking
flows and so on, using general data structures coded with appropriate tags and attributes.

3.2 Modules implementation

The collection of 28 modules created within the project has been made available on
diviz platform. Their functionality was described in Section 2. They represent methods
for deriving weights of criteria, computing preference degrees and outranking flows as
well as for constructing recommendation in function of the ranking, choice, sorting and
clustering problems. They also support visualization of the results.

All presented modules are written in Java 8 which is a simple high-level, object-
oriented, general-purpose programming language. The diviz platform offers a full support
for this language. A library dedicated for XMCDA is also written in Java. In some
modules, we used external libraries. This has been explained in description of these
modules.

3.3 Workflow Design

The design of decision analysis workflow is provided by user-friendly and intuitive
graphical user interface. Each algorithm available on diviz is represented by a rectangular
box. Each input and output of a module can be linked to a file (all files used by diviz
are unified XML files) or another algorithm provided that they accept the same data
type. User can add modules and files to a project using a drag-and-drop function.

48

In many cases, an algorithm requires the DM to set some parameters. This can be
done with a dialogue box that is displayed after double-clicking the module. Modules
contain an additional output file, named “messages”, including the information either on
a successfully completed calculation or on the errors (failure). diviz allows exporting
projects (workflows) with or without input files.

diviz can be used as a powerful educational program which shows partial results of
each step of an algorithm or as a commercial tool for decision making in the context
of real-world problems. One of the most important advantages of diviz is that the
calculation is delegated on the external server, regardless of the user’s machine limitations.
diviz does not require the user to have any programming skills, but to understand the
functionality of the modules.

Figure 3.1: All possible connections between modules.

In Figure 3.1, we presented all our modules with all possible connections between them.
To facilitate the analysis of our system of modules we divided them into groups. The
modules of each group are taking part in creating some structures (weights, preferences,
flows, alternatives profiles), resolving some problems (choice, clustering, ranking, sorting),
or visualizing the results. The flow of data between the modules is realized in accordance
with the direction of the arrows. We can distinguish three main types of information
which are transmitted between our modules (and groups of modules): weights of criteria,
preference indices, and outranking flows. Weights of criteria produced by modules
M1 and M2 are accepted by most of modules from “Preference” group (M3, M4, M5,
M7), “Clustering” group (M25, M26) and by one module from “Sorting” group (M18).
Preferences computed in modules M3, M4, M5, M8 are used in creating outranking flows
(M9, M14), in “Clustering” (M24, M25, M26), “Ranking” (M13,M15), “Sorting” (M18,
M21), and in constructing “Alternatives Profiles”. Outranking flows derived in modules
M9, M12, M14 and M16 are used as a base for “Choice” module M23, in “ranking”

49

modules (M11, M13) and in “Sorting” modules (M17, M19, M20, M21). Assignments
created by “Sorting” modules can be visualized by modules M27 and M28. Results from
all modules can be treated as independent incorporated as partial inputs for further
processing.

Using our modules, the user can construct both the existing (based on the PROME-
THEE family) as well as some new methods. For example, to reconstruct PROMETHEE
II (s)he can create workflow which consists of modules: M3, M9, and M12. The weights
of criteria can be specified directly or generated by one of “Weights” modules. If we used
module M5 which takes into account interactions between criteria, module M7 which
introduces the veto effect and combine their results with module M8, we can obtain
preference indices which has been never calculated in that way. A variety of possibilities
for combining modules and creating new combinations is the strongest point of our
system.

4 Illustrative Case Studies

Let us consider two illustrative case studies which will be solved in the decision aiding
process using methods from the PROMETHEE family. All results will be shown step
by step and then thoroughly discussed.

4.1 Multiple criteria ranking and choice - example 1

We reconsider the problem of selecting a subset of research projects which will be
financed by the government from the set of 20 research proposals [31]. The decision to
be made will take into account not only performances of the alternatives on multiple
criteria, but also the whole performance of portfolio. We created the workflow in diviz,
which shows the processes carried out in analysis of this problem. It is presented in
Figure 4.1. The list of alternatives with evaluations on several criteria and the related
cost (budget) is presented in Table 4.1.

Criteria. The alternatives are evaluated in terms of six following criteria:

• g1 : the presentation’s writing quality which accepts scores on a 5-point ordinal
scale

• g2 : the publication score which describes the combined quality value of all
researches who submit proposal on a 100-point scale,

• g3 : an adequacy of the proposal to the government’s priorities on a 3-point ordinal
scale,

• g4 : the scientific quality scores on a 5-point ordinal scale,

• g5 : experience of researchers scores on a 5-point ordinal scale,

• g6 : international collaboration expressed on a binary scale.

50

Figure 4.1: Workflow of Example 1 in diviz

Table 4.1: Performances of alternatives in Example 1.

Alternative g1 g2 g3 g4 g5 g6 Budget
a1 2 47 2 3 1 0 27
a2 2 3 2 4 4 0 29
a3 5 63 1 5 1 0 20
a4 1 92 3 5 5 1 34
a5 4 13 2 4 2 0 32
a6 5 5 3 5 1 0 22
a7 1 27 3 2 5 1 34
a8 4 28 0 5 3 0 30
a9 3 73 0 2 1 1 28
a10 4 3 2 2 3 0 21
a11 3 75 2 4 3 1 32
a12 3 40 2 1 3 0 37
a13 2 48 1 3 3 0 26
a14 5 57 1 0 2 1 16
a15 1 16 3 4 2 1 13
a16 3 22 0 3 4 0 32
a17 4 90 2 0 0 0 35
a18 4 33 2 1 5 1 20
a19 1 95 3 1 3 0 40
a20 2 18 1 4 2 1 39

The parameters which are associated with the criteria are presented in Table 4.2. In
particular, all criteria have different importances for the DM. We provided a ranking of
the criteria which is used to determine the underlying weights with the SRF method

51

(2.1.2). This ranking and the derived weights are presented in Table 4.2. In creating this
ranking we used the rules presented in Module M2 (Section 2.1.2). The most important
criterion is associated with the greatest rank position. We choose criteria weight ratio
equal to 5, and expected the result to be expressed as integers.

Table 4.2: Description of criteria in Example 1.

Criterion g1 g2 g3 g4 g5 g6
Rank 1 6 3 9 7 3
Weight 6 20 11 29 23 11
Generalised Criterion 3 6 1 5 1 1
Type gain gain gain gain gain gain
Indifference Thr. 0 - 0 1 0 0
Preference Thr. 2 - 0 2 0 0
Sigma Thr. - 4 - - - -
Veto Thr. - 40 - 4 - -
Reinforced Preference Thr. - - 2 3 3 -
Reinforcement Factor - - 1.2 1.5 1.3 -

In Table 2.1, we listed six generalized criteria types which can be used to calculate
preference indices. In this example, each attribute is associated with a generalized
criterion. The latter determines the types of thresholds which need to be provided
before computing the preference degrees. A single criterion is assigned to Gaussian
Criterion; thus, it requires specification of the sigma threshold. The remaining criteria
are associated with the indifference and preference thresholds (note that in some cases
there are equal to zero).

The reinforced preference thresholds are assigned to three selected criteria. Their
use implies that if the performance of one alternative on a specific criterion is higher
than that of another alternative by more than the value specified by this threshold, then
the preference index on this criterion will take the value of this criterion reinforcement
factor, being greater than one.

Preference Indices. In Table 4.3, we provide examples of both partial and aggregated
preference degrees. We tried to depict the most representative cases that can occur in
calculating preference.

Let us consider the results of calculations for a pair (a1,12). The preference indices
in g1, g3, g5 and g6 are equal to 0, since a1 has at most the same evaluation as a12.
This situation occurs in all types of generalized criteria. On criterion g4 – which is
associated with V-shape preference function – the performance difference is equal to the
preference threshold. Hence, the preference index is equal to 1.

On g2, the respective index is equal to 0.784. When Gaussian preference function is
used, the preference increases smoothly with the increase in performance difference. In
our case, the inflection point of the preference function is expressed by sigma threshold

52

equal to 4. We can treat this point more or less as the middle point between indifference
and preference threshold. With the performance difference being equal to 7, the attained
preference index (0.784) represents this case quite well. The value of preference index
on criterion g2 should never reach 1. When comparing pairs of alternatives (a1,a5) and
(a4,a1), the difference in their evaluations is very huge. The value of preference degrees
is so close to 1 that the computer cannot express this, so it rounds the value to 1.

When comparing a3 with a5, we can notice that on criterion g4 the preference index
is equal to 0, but alternative a3 is more favorable. The difference between evaluations
is equal to 1. In this case, the indifference threshold (=1) was not crossed, so the
observed difference was deemed negligible in terms of DM’s preferences. For the V-shape
criterion, the value of preference index is increasing from 0 to 1 in the area between 0 and
preference threshold. Examples of this phenomenon are visible comparing alternatives
(a3,a5) and (a5,a11) on criterion g1.

Table 4.3: Exemplary Preference Indices in Example 1.

Alt. a Alt. b g1 g2 g3 g4 g5 g6 Aggregated Preference
a1 a12 0 0.784 0 1 0 0 0.447
a2 a14 0 0 1 1.5 1 0 0.677
a3 a5 0.5 1 0 0 0 0 0.23
a4 a1 0 1 1 1 1.3 1 0.944
a5 a11 0.5 0 0 0 0 0 0.03
a6 a16 1 0 1.2 1 0 0 0.472
a12 a3 0 0 1 0 1 0 0.34
a12 a4 1 0 0 0 0 0 0.06

Reinforced Preference Effect. To illustrate the reinforced preference effect, let us
refer to criteria g3, g4 and g5. On the attributes, for some pairs of alternatives the
preference degrees are greater than one. In each of these cases, the evaluation of one
alternative is much better than the other, so it deserves to get a bonus in the preference
index. The partial preference indices from all criteria are aggregated to a comprehensive
value using the weights of criteria. This is conducted according to Equation 16.

Table 4.4: Exemplary Veto Indices in Example 1.

Alt. a Alt. b g1 g2 g3 g4 g5 g6 Aggregated Veto
a1 a12 0 0 0 0 0 0 0
a2 a14 0 1 0 0 0 0 1
a3 a5 0 0 0 0 0 0 0
a4 a1 0 0 0 0 0 0 0
a5 a11 0 1 0 0 0 0 1
a6 a16 0 0 0 0 0 0 0
a12 a3 0 0 0 1 0 0 1
a12 a4 0 1 0 1 0 0 1

53

Veto Effect. For two out of six considered criteria, the veto thresholds have been
defined. In Table 4.4, we illustrate the discordance effect while referring to the same
exemplary pairs of alternatives as in Table 4.3.

The veto effect can occur only criteria g2 and g4. For example, with alternative a2
being worse than alternative a14 by more than value specified by the DM as a veto
threshold, the veto index is equal to 1. In other cases the veto effect does not occur.
The aggregated veto can be calculated in two ways. In first method we can use the
weights of criteria to calculate the aggregated veto. In this example we assumed that
the veto on one criterion is enough to imply that the comprehensive veto is equal to 1.

Table 4.5: Sample Overall Preference Indices in Example 1

Alt. a Alt. b Aggregated Preference Aggregated Veto Overall Preference
a1 a12 0.447 0 0.447
a2 a14 0.677 1 0
a3 a5 0.23 0 0.23
a4 a1 0.944 0 0.944
a5 a11 0.03 1 0
a6 a16 0.472 0 0.472
a12 a3 0.34 1 0
a12 a4 0.06 1 0

Table 4.6: Outranking flows in Example 1 (values rounded to 4 decimal places)

Alternative Positive Flows Negative Flows
a1 0.2030 0.3755
a2 0.1663 0.2897
a3 0.4045 0.1409
a4 0.7232 0.0095
a5 0.1598 0.3395
a6 0.1594 0.2956
a7 0.3742 0.2942
a8 0.3114 0.2218
a9 0.2885 0.2125
a10 0.0816 0.4576
a11 0.5226 0.0479
a12 0.1961 0.4389
a13 0.2778 0.2965
a14 0.1876 0.3817
a15 0.2308 0.2948
a16 0.2320 0.3907
a17 0.1353 0.1862
a18 0.2789 0.3342
a19 0.3144 0.1036
a20 0.2106 0.3465

54

Figure 4.2: The part of visualiza-
tion the results Promethee II.

Table 4.7: Flows in Promethee II
in Example 1

Alternative Flow
a1 -0.1726
a2 -0.1233
a3 0.2636
a4 0.7137
a5 -0.1798
a6 -0.1363
a7 0.08
a8 0.0896
a9 0.076
a10 -0.376
a11 0.4747
a12 -0.2428
a13 -0.0187
a14 -0.194
a15 -0.064
a16 -0.1587
a17 -0.0509
a18 -0.0553
a19 0.2107
a20 -0.136

Overall Preference Indices. The aggregated preference indices are combined with
aggregated veto indices into overall preference indices. This is conducted by using the
Formula 32. The results of putting together these values for some exemplary pairs of
alternatives are presented in Table 4.5. The preference indices are just reduced to zero
when the veto effect occurs; otherwise, they remain unchanged. This construction of
workflow allows to combine different sources of information about preferences and discor-
dances. In this example, we used a binary veto effect, but the discordance implemented
as the M6 module can be used as well.

Outranking flows. All these overall preferences are used to derive positive and nega-
tive outranking flows which are used within many methods for ranking the alternatives.
Outranking flows calculated in our workflow are presented in Table 4.6.

Promethee II. The next step consists in computing the final ranking results in two
different ways. The first one is based on the flows calculated with Promethee II method
which are computed on the basis of positive and negative outranking flows.

The obtained values are shown in Table 4.7. The greater the respective value, the
better the alternative. The visualisation of this result is shown in Figure 4.2. This figure

55

has been obtained with the plotAlternativesValuesPreorder module. Currently, the
latter accepts only input provided in the XMCDA2 format. Thus, we had to manually
change the format of the output derived with our module. However, after the scheduled
adjustment of plotAlternativesValuesPreorder to XMCDA3, it will interoperate with
our modules in an automatic way.

Promethee III. The other one is a matrix of weak preferences which is the result of
Promethee III method. It is shown in Table 4.8. The method was run with parameter
α = 0.005. Setting this parameter so small enabled us to observe more diverse interac-
tions between alternatives.

Comparing those two results we can easily see that the outcomes are similar. Alter-
native a4 which has the greatest value of the outranking flow in Promethee II is better
than the others alternatives according to the results presented in Table 4.8: there is no
any other alternative which is even weakly preferred over a4. The same dependencies
can be easily seen also with respect to other alternatives.

The visualization of this result is shown in Figure 4.3. This figure has been obtained
with the plotAlternativesComparisons module. Analyzing Figures 4.2 and 4.3, we can
see that they are the same. Some small differences appear only in the middle of both
rankings, but the general order is maintained.

Table 4.8: Ranking in Promethee III in Example 1.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20
a1 S S S S
a2 S S S S S S S S
a3 S S S S S S S S S S S S S S S S S
a4 S S S S S S S S S S S S S S S S S S S
a5 S S S
a6 S S S S S S S
a7 S S S S S S S S S S S S S S
a8 S S S S S S S S S S S S S S S
a9 S S S S S S S S S S S S S
a10
a11 S S S S S S S S S S S S S S S S S S
a12 S
a13 S S S S S S S S S S S S
a14 S S
a15 S S S S S S S S S
a16 S S S S S
a17 S S S S S S S S S S S
a18 S S S S S S S S S S
a19 S S S S S S S S S S S S S S S S
a20 S S S S S S S

Promethee V. Promethee V generates a subset of the most preferred alternatives when
we have to deal with some constraints. We aim at optimizing a sum of alternatives’
qualities represented by their flows. In this case, we have budgetary constraints in which
each alternative has a factor defining the cost of its choice, and the summary cost of
all chosen alternatives must be lower or equal to 150. Table 4.9 shows the results of

56

this method in which a value of 1 means that the respective alternative is chosen by the
Promethee V algorithm. An alternative which was not chosen by the algorithm does
not have to be worse than the chosen one; just it has not contributed to a construction
of the most preferred subset.

Figure 4.3: The part of visualization the results Promethee III.

Table 4.9: Promethee V in Example 1.

Alternative Selected
a1 0
a2 0
a3 1
a4 1
a5 0
a6 0
a7 0
a8 0
a9 0
a10 0
a11 1
a12 0
a13 0
a14 0
a15 0
a16 0
a17 0
a18 0
a19 1
a20 0

57

4.2 Multiple criteria sorting and clustering - example 2

We consider a real world problem from banking sector [11]. In this problem, the DM aim
is to assign 40 alternatives to 5 categories. In Figure 4.4 we present the workflow created
in diviz, which reproduces all processes carried out in the analysis of this example. All
alternatives with their performances in terms of 7 criteria are presented in Table 4.10.

Figure 4.4: Workflow of Example 2 in diviz

We defined 5 categories of financial risk: C1: Very High Risk (the worst category),
C2: High Risk, C3: Medium Risk, C4: Low Risk, and C5: Very Low Risk (the best
category). These categories are delimited by 4 boundary profiles. The performances of
these profiles can be found in Table 4.11. Each profile can be perceived as the boundary
between the two neighboring categories:

• b12: High Risk / Very High Risk,

• b23: Medium Risk / High Risk,

• b34: Low Risk / Medium Risk,

• b45: Very Low Risk / Low Risk.

58

Table 4.10: Performance of alternatives in Example 2

Alternative g1 g2 g3 g4 g5 g6 g7
a1 35.8 67 19.7 0 0 5 4
a2 16.4 14.5 59.8 7.5 5.2 5 3
a3 35.8 24 64.9 2.1 4.5 5 4
a4 20.6 61.7 75.7 3.6 8 5 3
a5 11.5 17.1 57.1 4.2 3.7 5 2
a6 22.4 25.1 49.8 5 7.9 5 3
a7 23.9 34.5 48.9 2.5 8 5 3
a8 29.9 44 57.8 1.7 2.5 5 4
a9 8.7 5.4 27.4 4.5 4.5 5 2
a10 25.7 29.7 46.8 4.6 3.7 4 2
a11 21.2 24.6 64.8 3.6 8 4 2
a12 18.3 31.6 69.3 2.8 3 4 3
a13 20.7 19.3 19.7 2.2 4 4 2
a14 9.9 3.5 53.1 8.5 5.3 4 2
a15 10.4 9.3 80.9 1.4 4.1 4 2
a16 17.7 19.8 52.8 7.9 6.1 4 4
a17 14.8 15.9 27.9 5.4 1.8 4 2
a18 16 14.7 53.5 6.8 3.8 4 4
a19 11.7 10 42.1 12.2 4.3 5 2
a20 11 4.2 60.8 6.2 4.8 4 2
a21 15.5 8.5 56.2 5.5 1.8 4 2
a22 13.2 9.1 74.1 6.4 5 2 2
a23 9.1 4.1 44.8 3.3 10.4 3 4
a24 12.9 1.9 65 14 7.5 4 3
a25 5.9 -27.7 77.4 16.6 12.7 3 2
a26 16.9 12.4 60.1 5.6 5.6 3 2
a27 16.7 13.1 73.5 11.9 4.1 2 2
a28 14.6 9.7 59.5 6.7 5.6 2 2
a29 5.1 4.9 28.9 2.5 46 2 2
a30 24.4 22.3 32.8 3.3 5 3 4
a31 29.5 8.6 41.8 5.2 6.4 2 3
a32 7.3 -64.5 67.5 30.1 8.7 3 3
a33 23.7 31.9 63.6 12.1 10.2 3 2
a34 18.9 13.5 74.5 12 8.4 3 3
a35 13.9 3.3 78.7 14.7 10.1 2 2
a36 -13.3 -31.1 63 21.2 29.1 2 1
a37 6.2 -3.2 46.1 4.8 10.5 2 1
a38 4.8 -3.3 71.1 8.6 11.6 2 2
a39 0.1 -9.6 42.5 12.9 12.4 1 1
a40 13.6 9.1 76 17.1 10.3 1 1

59

The intepretation of the criteria used to evaluate alternatives is as follows:

• g1 : (Financial ratio) Earning Before Interest and Taxes/Total Assets,

• g2 : (Financial ratio) Net Income/Net Worth,

• g3 : (Financial ratio) Total Liabilities/Total Assets,

• g4 : (Financial ratio) Interest Expenses/Sales,

• g5 : (Financial ratio) General and Administrative Expenses/Sales,

• g6 : (Qualitative criterion) Managers Work Experience,

• g7 : (Qualitative criterion) Market Niche/Position.

All details describing the criteria are included in Table 4.12. It contains information
about ranks, weights, generalized criteria, types of criteria (gain/cost), and thresholds.
In Table 4.13, we also present the interaction types and coefficients defined for some
selected pairs of criteria.

Weights of criteria in this example are calculated using Rank-Order Centroid method
described in Section 2.1.1. The most important criterion is assigned the first position
in ranking. The obtained weights in table are rounded for a better visual effect. The
weight of criterion g2 is more than eighteen times greater than weight of criterion g6.
In the SRF method, this ratio can be set as a parameter, but in this example it is
independent of decision maker.

In this case we have a wide spectrum of generalized criteria (solely Gaussian Criterion
was not used). In the previous example, we explained the role of generalized criteria 1,
3, 5 and 6. Hence, here we will focus on the generalized criteria which are used for the
first time.

In sorting problems, alternatives are compared with class profiles, because the DM
needs only to assign the alternatives to specific categories. In Table 4.14, we present the
list of exemplary partial and aggregated preference indices.

Criterion g2 is associated with the U-shape preference function (type 2) with prefer-
ence threshold equal to 4. The preference index on this criterion in comparing alternative
a9 with profile b34 is equal to 0, because the performance of a9 is worse than that of
b34. This index is the same if its performance is better, but not more than indifference
threshold (see, e.g., (a26, b23)). The evaluation greater than indifference threshold is
enough to achieve full preference on this criterion (compare, e.g., b34 with a17). Level
Criterion (type 4) is assigned to criterion g3. In this function preference index can take
3 values: 0 if the difference is less or equal to indifference criterion, 0.5 if it is between
indifference and preference criterion, or 1 if it is greater than preference criterion. These
three cases are showed in sample preferences: (a27, b12), (b12, a32), (b12, a40).

Interactions between criteria. In this example aggregated preferences are not just
the weighted sum of partial preferences. In Table 4.13, we list the interactions between
criteria which have some impact on the result. This effect is explained in Section 2.2.2.
For (b12, a40), criteria g6 and g7 support the idea that b12 is preferred over a40, so

60

Table 4.11: Performance of profiles in Example 2

Profile g1 g2 g3 g4 g5 g6 g7
b12 4 0 65 28 12 2 3
b23 10 10 45 23 8 3 4
b34 15 20 40 18 4 4 5
b45 25 30 35 10 0 5 6

Table 4.12: Description of criteria in Example 2.

Criterion g1 g2 g3 g4 g5 g6 g7
Rank 5 1 2 4 3 7 6
Weight 0.073 0.370 0.228 0.109 0.156 0.020 0.044
Generalised Criterion 5 2 4 3 5 1 1
Type gain gain cost cost cost gain gain
Indifference Thr. 1 4 1 0 1 0 0
Preference Thr. 2 4 3 3 3 0 0

Table 4.13: Interactions between criteria in Example 2.

Criterion 1 Criterion 2 Interaction type Coefficient
g6 g7 strengthening 0.03
g1 g3 strengthening 0.02
g4 g5 weakening -0.05
g2 g3 antagonistic 0.08

Table 4.14: Exemplary Preference Indices in Example 2.

Alt. A Alt. B g1 g2 g3 g4 g5 g6 g7 Aggregated Preference
a3 b12 1 1 0 1 1 1 1 0.7678
a9 b34 0 0 1 1 0 1 0 0.3565
a17 b34 0 0 1 1 0.6 0 0 0.4121
a22 b23 1 0 0 1 1 0 0 0.3025
a23 b23 0 0 0 1 0 0 0 0.1085
a26 b23 1 0 0 1 0.7 0 0 0.2648
a27 b12 1 1 0 1 1 0 0 0.6642
b12 a32 0 1 0.5 0.7 0 0 0 0.5601
b12 a40 0 0 1 0 0 1 1 0.3128
b34 a5 1 0 1 0 0 0 1 0.3574
b34 a17 0 1 0 0 0 0 1 0.3637

61

they should have greater influence for the result. If we calculated this partial result
without interaction effect the aggregated preference would be equal approximately to
0.2922, but if we accounted for the interaction, this value would rise up to 0.3128. This
growth was implied by the strengthening coefficient equal to 0.03.

For (b34, a5), one illustrated the strengthening effect on criteria g1 and g3. The
obtained aggregated preference increase from 0.3446 to 0.3574. The third interaction
occurs in comparing alternative a22 and profile b23. The mutual weakening effect
decreases the result from 0.3374 to 0.3025. The last interaction which represents the
antagonistic effect can be shown observed for a pair (b43, a17). Criterion g2 supports
the idea that b43 is preferred over a17, but criterion g3 supports opposite preference
direction. This allows to decrease the influence of criterion g2 on the aggregated prefer-
ence index. As a result, the value of index is decreased from 0.4146 to 0.3637. In general,
the number of interactions is not limited and it can occur multiple times in each exam-
ple. The strengthening and weakening effect exist both at once in first example (a3, b12).

Outranking flows. After the preference degrees are calculated, the next step is
to computed the outranking flows. In sorting problems, the flows are derived from
comparisons against the profiles. These have been presented in Tables 4.15 (for profiles)
and 4.16 (for alternatives).

Table 4.15: Outranking flows of profiles in Example 2.

Profile Positive Flow Negative Flow
b12 0 1
b23 0.3333 0.6667
b34 0.6667 0.3333
b45 1 0

Assignments. In Table 4.17, we present the final assignments of all alternatives to
categories derived with the PromSort and FlowSort I methods. Both methods use the
Promethee I positive and negative flows. As one can see PromSort returns precise
assignments, while FlowSort I delivers imprecise ones.

During calculations, we used PromSort module M17 described in Section 2.6.1 and
FlowSort I module M18 described in Section 2.6.2. PromSort required setting two
parameters - “cut point” and “assign to a better class”. With setting “cut point” to 0 we
are basing a second step assignments on a distance function. With parameter “assign
to a better class” set to true, when a distance to both potential categories is equal,
we will assign alternative to a better category. FlowSort I required us to set only one
parameter - “profiles type”. We set it to “boundary”, as we used the boundary profiles in
our calculations.

After analyzing the results one can see that for all alternatives the assignments
obtained with different methods are consistent. For each of our example alternatives the
final PromSort assignment was at least as good as FlowSort I pessimistic assignment
and at most as good as FlowSort I optimistic assignment. As an example, alternative

62

Table 4.16: Outranking flows of alternatives in Example 2.

Alternative Positive Flows Negative Flows
a1 0.9231 0.0221
a2 0.4686 0.4508
a3 0.4596 0.3244
a4 0.5478 0.3594
a5 0.4594 0.3868
a6 0.5332 0.3933
a7 0.6145 0.2840
a8 0.6930 0.2220
a9 0.5335 0.3718
a10 0.5692 0.2346
a11 0.4675 0.4101
a12 0.4991 0.3287
a13 0.6663 0.1947
a14 0.2410 0.5816
a15 0.2880 0.5402
a16 0.4647 0.3705
a17 0.6642 0.2500
a18 0.4762 0.4416
a19 0.3775 0.4108
a20 0.3547 0.5759
a21 0.3911 0.4414
a22 0.2959 0.5536
a23 0.3050 0.5683
a24 0.1586 0.6289
a25 0.0884 0.8531
a26 0.3754 0.4826
a27 0.2815 0.5545
a28 0.3538 0.4929
a29 0.4306 0.5348
a30 0.6440 0.1697
a31 0.4386 0.3960
a32 0.0623 0.8468
a33 0.4428 0.3551
a34 0.2626 0.5719
a35 0.1310 0.7147
a36 0.0718 0.8813
a37 0.1944 0.6466
a38 0.0940 0.7404
a39 0.1667 0.7313
a40 0.1944 0.6444

63

Table 4.17: PromSort and FlowSort I alternatives assignments.

Assignments
PromSort FlowSort I

Alternatives Precise Pessimistic Optimistic
a1 C4 C4 C4
a2 C3 C3 C3
a3 C3 C3 C4
a4 C3 C3 C3
a5 C3 C3 C3
a6 C3 C3 C3
a7 C3 C3 C4
a8 C4 C4 C4
a9 C3 C3 C3
a10 C3 C3 C4
a11 C3 C3 C3
a12 C3 C3 C4
a13 C3 C3 C4
a14 C2 C2 C3
a15 C2 C2 C3
a16 C3 C3 C3
a17 C3 C3 C4
a18 C3 C3 C3
a19 C3 C3 C3
a20 C3 C3 C3
a21 C3 C3 C3
a22 C2 C2 C3
a23 C2 C2 C3
a24 C2 C2 C3
a25 C2 C2 C2
a26 C3 C3 C3
a27 C2 C2 C3
a28 C3 C3 C3
a29 C3 C3 C3
a30 C3 C3 C4
a31 C3 C3 C3
a32 C2 C2 C2
a33 C3 C3 C3
a34 C2 C2 C3
a35 C2 C2 C2
a36 C2 C2 C2
a37 C2 C2 C3
a38 C2 C2 C2
a39 C2 C2 C2
a40 C2 C2 C3

64

a3 was assigned with PromSort to category C3, in FlowSort I pessimistic assignment is
the same (C3), optimistic assignments is better (C4). In some cases, the assignments
were identical (for example a1).

Let’s now trace the way of assigning alternative a3 to category C3 in PromSort
method. The alternative has positive flow 0.4596 and negative flow 0.3244. Its flows are
being compared with profiles flows to get the relations between alternative and each
of the profiles. As one can see alternative a3 is better than profiles b12 and b23 (it has
higher positive flow then these profiles and lower negative flow), so alternative a3 is
preferred to them. Profiles b34 and b45 have lower positive flow and higher negative
flow, so they are preferred to a3. In that case the assignment from the first step of
PromSort can be deemed as final for that alternative; it is assigned to category C3,
which is between profiles b23 and b34.

FlowSort I derives its results from the separated comparisons of positive and negative
flows of alternative and profiles. In our example, alternative a3 is being comprised with
boundary profiles. When comparing positive flows, alternative a3 with its flow 0.4596
is better then profile b23 (0.3333) and worse then profile b34 (0.6667). Because of that,
the alternative a3 is assigned to category C3 using positive flows. Negative flow for
alternative a3 is 0.3244. It is lower (better) then negative flow of profile b34 and higher
(worse) then the negative flow of profile b45. That means that the negative assignment
of alternative a3 is category C4. As positive assignment is worse then negative one
it will be the pessimistic one, negative assignment will be the optimistic one. Finally,
alternative a3 is assigned to categories [C3; C4].

Table 4.18: Ordered clustering in Example 2.

Cluster index Alternatives
0 a1
1 a4, a6, a7, a8, a10, a13, a17, a30
2 a2, a3, a5, a9, a11, a12, a16, a18, a19, a21, a26, a28, a29, a31, a33
3 a14, a15, a20, a22, a23, a24, a27, a34, a37, a39
4 a25, a32, a35, a36, a38, a40

Ordered Clustering. We also run the Ordered Clustering (OC) module which assigns
the alternatives into five clusters. This method uses the aggregated preference indices
computed as a result of comparison alternatives with each other. In contrast to the
previously used sorting method, there is no need to define categories and their respective
profiles. Instead, it uses different approach which is described in Section 2.8.1. Table
4.18 shows the constructed ordered clusters. Note that the lower the index of a cluster,
the better alternatives are contained in it. The OC algorithm finds the first highest
preference value, the maximal one is equal to 1 and the minimal is equal to 0. The first
cluster (cluster index = 0) has solely one alternative a1 since it has high preferences
(the smallest one is equal to 0.74...) over other alternatives. Incorrect as it may seem,
in the example workflow, a1 is always better than the remaining ones (i.e., there is not
any at least as good alternative as a1). As the users of the OC method, we may control

65

the quantity of groups but not the minimal cardinality of clusters. We can say that
alternative a4 is better than any other alternative aggregated in a group with lower id
(there is a transitive relation between clusters) and alternative a4 is similar or indifferent
to any other one assigned to the same cluster.

5 Conclusions

In this thesis, we described a large number of basic PROMETHEE methods. We
postulated greater flexibility in constructing new approaches in this family by putting
together some elementary algorithmic components.

At the stage of defining criteria weights, we considered several methods which can
help to reflect the DM’s preferences into specific weights using only simple information
like ranking of criteria. At the stage of constructing a preference structure, we accounted
for different approaches of computing preference indices. Apart from considering those
commonly used in the PROMETHEE method (i.e., involving six types of preference
functions and three types of thresholds (indifference, preference, sigma)), we expanded
PROMETHEE by introducing reinforced preference effect, interactions between criteria,
veto effect and accounting for the discordance. We considered the process of creating a
positive and negative outranking flows. At the stage of exploitation of preference indices
and outranking flows, we considered several algorithms which can be used to ranking
alternatives (PROMETHEE I, II, and III), selecting a subset of the most preferred
options (PROMETHEE V), resolving sorting problems (PromSort, Promethee Tri, Flow-
Sort), dividing alternatives into a number of groups (Promethee II Ordered Clustering,
Promethee Cluster) and for group decision making (FlowSort GDSS, Promethee Group).
We investigated also the creation of alternatives profiles from partial preference indices.

We implemented the postulate of flexibility in creating the PROMETHEE methods
in practice. We developed 28 universal, highly parameterized and flexible modules
realizing some methods, procedures or visualizing data according to them in the spirit
of PROMETHEE. The modules are designed to compare alternatives with each other,
alternatives with central (characteristic) class profiles and with boundary class profiles.
We introduced them into diviz platform, which provides full environment for exploiting
them. It allows to recreate existing PROMETHEE methods and to create new methods
undiscovered by scientists in earlier considerations. Our modules allow to create several
hundreds valid combinations which can accurately reflect a particular decision context
and all that without any mathematical and programming skills.

We reconsidered two real-world problems to present construction of the new PRO-
METHEE methods and to show how it can help in decision aiding process. In this
examples we designed a few not considered earlier variants of PROMETHEE. For these
examples we created workflows which can be easy imported into diviz. They can be
used as a base for researchers to explore their own new PROMETHEE methods or for
easy adapting to other decision context.

In this thesis we considered a very wide spectrum of PROMETHEE-based approaches
to resolving multiple criteria decision problems, but we have to admit there is still some
scope for improvements. However, all our modules are open source and are available for

66

other researchers. They can extend functionality of these programs to reach the new
requirements. Furthermore, there is no any contraindications to create new modules
which will cooperate with our modules on diviz. We can propose sample improvements,
which would be useful in our PROMETHEE framework:

• Adding a module based on Promethee GAIA Plane method, which is a very
powerful way of visualizing dependencies between criteria and alternatives [4];

• Adapting all implemented modules to account for the hierarchical structure of
criteria;

• Exteneding the modules to provide results of Monte Carlo simulation involving
different sets of weights consistent with some linear constraints instead of just one
weight vector which is either provided by the DM or selected with some arbitrary
rule, and to imprecise performances of alternatives;

• Adapting robust ordinal regression methods to the context of a wide variety of
PROMETHEE method.

6 Acknowledgments
The authors thank Sébastien Bigaret from IMT Atlantique for helping us to make our
modules available in diviz platform.

67

References

[1] Araz, C. and Ozkarahan, I., 2007. Supplier evaluation and management system for
strategic sourcing based on a new multicriteria sorting procedure, Int. J. Production
Economics 106, 585–606.

[2] Behzadian, M., Kazemzadeh, R.K., Albadvi, A. and Aghdasi, M., 2010. PRO-
METHEE: A comprehensive literature review on methodologies and applications,
European Journal of Operational Reserach, 100(1): 198–215.

[3] Bouyssou, D. and Perny, P., 1992. Ranking methods based on valued preference rela-
tions: A characterization of the net flow method. European Journal of Operational
Research 60, 61–67.

[4] Brans, J.-P. and Mareschal, B., 2005. PROMETHEE methods. In Figueira, J.,
Greco, S., Ehrgott, M., editors, Multiple Criteria Decision Analysis. State of the
Art Surveys, 163–195. Springer, New York, USA.

[5] Brans, J.-P., Vincke, Ph. and Mareschal, B., 1986. How to select and how to rank
projects: The PROMETHEE method. European Journal of Operational Research
24 (2), 228–238.

[6] Cavalcante, C.A.V. and de Almeida,A.T., 2007. A multi-criteria decision-aiding
model using PROMETHEE III for preventive maintenance planning under uncertain
conditions. Journal of Quality in Maintenance Engineering, Vol. 13 Iss 4 pp. 385 -
397.

[7] Corrente, S., Greco, S.and Słowiński, R., 2016. Multiple Criteria Hierarchy Process
for ELECTRE TRI. European Journal of Operational Research, 252(1), 198-199.

[8] Damart, S., Dias, L.C. and Mousseau, V., 2007. Supporting groups in sorting
decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS.
Decision Support Systems 43 (2007) 1464–1475

[9] De Smet, Y., 2013. P2CLUST: An Extension of PROMETHEE II for Multicriteria
Ordered Clustering. 2013 IEEE International Conference on Industrial Engineering
and Engineering Management, 848-851

[10] De Smet, Y., Nemery, P. and Selvaraj, R., 2012. An exact algorithm for the
multicriteria ordered clustering problem. Omega 40, 861–869

[11] Dias, L., et al., 2002. An aggregation/disaggregation approach to obtain robust
conclusions with ELECTRE TRI. European Journal of Operational Research 138.2,
332-348.

[12] D’Avignon, G. and Mareschal, B., 1989. An application of the PROMETHEE and
GAIA methods. Mathematical and Computer Modelling 12 (10–11), 1393–1400.

68

[13] Figueira, J., De Smet, Y. and Brans, J.P., 2004. MCDA methods for sorting and
clustering problems: Promethee TRI and Promethee CLUSTER. Université Libre
de Bruxelles, Service de Mathématiques de la Gestion, Working Paper 2004/02

[14] Figueira, J., Greco, S. and Roy, B., 2009. ELECTRE methods with interaction
between criteria: An extension of the concordance index. European Journal of
Operational Research 199, 478-495.

[15] Figueira, J. and Roy, B., 2002. Determining the weights of criteria in the ELECTRE
type methods with a revised Simos’ procedure, European Journal of Operational
Research 139, 317-326.

[16] Halouani, N., Chabchoub, H. and Martel, J.-M., 2009. PROMETHEE-MD-2T
method for project selection, European Journal of Operational Research 195 841–849

[17] Hayez, Q., De Smet, Y. and Bonney, J., 2012. D-Sight: A New Decision Making
Software to Address Multi-Criteria Problems, International Journal of Decision
Support System Technology (IJDSST) 4(4)

[18] Hu, Y.C. and Chen, C.J., 2011. A PROMETHEE-based classification method using
concordance and discordance relations and its application to bankruptcy prediction.
Information Sciences 181, 4959-4962.

[19] Huth, A., Drechsler, M. and Kohler, P., 2005. Using multicriteria decision analysis
and a forest growth model to assess impacts of tree harvesting in Dipterocarp
lowland rain forests. Forest Ecology and Management 207, 215–232.

[20] Kadziński, M. and Michalski, M., 2016. Scoring procedures for multiple criteria deci-
sion aiding with robust and stochastic ordinal regression. Computers & Operations
Research 71, 54–70.

[21] Lolli, F., Ishizaka, A., Gamberini, R., Rimini, B. and Messori, M., Appl. 2015.
FlowSort-GDSS-A novel group multi-criteria decision support system for sorting
problems with application to FMEA. Expert Syst., 42, 6342–6349.

[22] Macharis, C., Brans, J.-P. and Mareschal, B., 1998. The GDSS PROMETHEE
Procedure. Journal of Decision Systems, Vol. 7-SI/1998, 283-307.

[23] Mareschal, B. and De Smet, Y. 2009. Visual PROMETHEE: Developments of
the PROMETHEE & GAIA multicriteria decision aid methods. In 2009 IEEE
International Conference on Industrial Engineering and Engineering Management,
1646-1649

[24] Mavrotas, G., Diakoulaki, D. and Caloghirou, Y., 2006. Project prioritization under
policy restrictions. A combination of MCDA with 0–1 programming. European
Journal of Operational Research 171, 296–308.

[25] Meyer, P. and Bigaret, S., 2012. diviz: a software for modeling, processing and shar-
ing algorithmic workflows in MCDA. Intelligent Decision Technologies 6, 283–296.

69

[26] Nemery, P. and Lamboray, C., 2007. FlowSort: a flow-based sorting method with
limiting or central profiles, Top 16(1), 90-113.

[27] Roberts, R. and Goodwin, P., 2002. Weight approximations in multi-attribute
decision models. Journal of Multi-Criteria Decision Analysis, 11 (6), pp. 291-303.

[28] Roszkowska, E., 2013. Rank Ordering Criteria Weighting Methods – a Compar-
ative Overview, Wydawnictwo Uniwersytetu w Białymstoku, Optimum. Studia
ekonomiczne, Nr 5 (65), 21-22.

[29] Roy, B. and Skalka, J., 1984. ELECTRE IS : Aspects méthodologiques et guide
d’utilisation. Tech. rep., Document du LAMSADE N◦ 30, Université Paris-Dauphine,
Paris.

[30] Roy, B. and Słowiński, R., 2008. Handling effects of reinforced preference and
counter-veto in credibility of outranking. European Journal of Operational Research
188, 185–190.

[31] Zheng, J.,Cailloux, O. and Mousseau, V., 2011. Constrained Multicriteria Sort-
ing Method Applied to Portfolio Selection. Algorithmic Decision Theory, New
Brunswick, New Jersey, United States. Springer, 6992, pp.331-343, Lecture Notes
in Computer Science.

70

	Introduction
	Description of methods implemented as algorithmic modules on the diviz platform
	Criteria Weights
	Surrogate Weighting Techniques
	Simos-Roy-Figueira (SRF)

	Preference Indices
	Preference
	Preference with Reinforced Preference
	Preference with interactions between criteria
	Discordance
	Veto
	Overall preference index

	Outranking Flows
	Profiles of the Alternatives
	Ranking Problems
	Promethee I
	Promethee II
	Promethee III
	Net Flow Score
	GDSS Ranking

	Sorting Problems
	PromSort
	Promethee Tri
	FlowSort based on Promethee I
	FlowSort based on Promethee II
	FlowSort GDSS
	Group Class Acceptabilities

	Choice Problem
	Clustering
	Ordered clustering
	Promethee II Ordered Clustering
	Promethee Cluster

	Visualization
	Graphical class assignment
	Latex table of class assignment

	Construct Your Own Promethee Method in diviz
	diviz
	Modules implementation
	Workflow Design

	Illustrative Case Studies
	Multiple criteria ranking and choice - example 1
	Multiple criteria sorting and clustering - example 2

	Conclusions
	Acknowledgments
	References

