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Abstract

We postulate flexibility in constructing ELECTRE decision aiding methods so that they can be better

suited for real-world decision problems, and implement this paradigm in practice. We provide a wide spec-

trum of elementary ELECTRE-based components that are able to interoperate, and make them available

via the diviz platform. At the stage of construction of an outranking relation, we consider a variety of

procedures for carrying out the concordance and (non-)discordance tests, computing the credibility degree,

and checking the validity of a crisp relation. At the stage of its exploitation, we refer to several choice-,

ranking-, and sorting-specific algorithms. By coupling together the ELECTRE-based construction and ex-

ploitation procedures, an analyst can reconstruct the existing methods, or develop her/his own ELECTRE

without any mathematical or programming skills. For this reason, (s)he needs to combine the provided

modules in one of several hundred ways that are discussed in the paper. The proposed approach is demon-

strated with application of a few previously not considered variants of ELECTRE to evaluation of mass

transit systems in the selected European cities and a set of products within a storage location assignment

system.

Key words: Decision Analysis, Multiple criteria, Outranking methods, ELECTRE, Preference

aggregation, diviz

1. Introduction

Over the last fifty years a significant body of research has demonstrated the benefits of using ELECTRE

methods in real-world decision aiding [12, 13]. The usefulness of this family of Multiple Criteria Decision

Aiding (MCDA) approaches comes from the fact that they employ an outranking-based preference model.

Its main advantages consist in the non-compensatory character of the aggregation of multiple criteria,

tolerating the imperfect knowledge of data, and operating on heterogeneous scales. Moreover, it has

the abilities of dealing with both qualitative and quantitative performances as well as representing the

situations of weak preference and incomparability (apart from the traditionally considered indifference

and strict preference). An outranking relation is also appreciated for implementing an analogy to voting

procedures by taking into account the reasons for and against an outranking [17].

The interpretability, faithfulness, flexibility, and descriptive character of an outranking model are essen-

tial in MCDA, since they encourage the participation of the Decision Makers (DMs) in the decision process
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and lead to better understanding of the proposed recommendation [8]. Indeed, the ELECTRE methods

had a considerable impact on human decisions in a variety of real-world multiple criteria problems. The

application fields include finance, medicine, energy planning, military, project selection, agriculture, and

environmental management (for a review, see [12, 13]).

All ELECTRE methods are based on the same rule: they first construct an outranking relation for all

ordered pairs of compared objects, and then exploit this relation to deliver recommendation in function of

the specific problem to solve. Several approaches have been designed for the three main types of multiple

criteria problems: choice (e.g., ELECTRE I, Iv, and Is [4, 23, 25, 28, 30]), ranking (e.g., ELECTRE II, III,

and IV [24, 30]) and sorting (ELECTRE Tri-B, Tri-C, and Tri-rC [2, 19, 39]). In fact, these methods are

sequences of the elementary well-defined steps which contribute to some particular implementation of the

construction and exploitation phases. When it comes to formalizing the general concepts of concordance

and discordance, none of these approaches tolerates the freedom in their interpretation. As a result, each

ELECTRE method is distinguished not only by its unique exploitation procedure, but also by the way it

constructs an outranking relation. While these two phases are independent, paradoxically, a new approach

can be obtained each time when coupling together the existing construction and exploitation procedures

that have not been yet considered within a common methodological framework. Such developments are

still considered valuable, because they are mainly application-driven, thus, allowing to deal with a specific

multiple criteria problem at hand (see, e.g., [5]).

When it comes to the use of ELECTRE for practical decision aiding, it is seriously limited by the

existing software. Firstly, the programs for ELECTRE Is [1], ELECTRE III/IV [36], and ELECTRE

Tri-B [22] have been implemented in the previous century. Due to a rapid development of computer

technologies, they fail to work correctly on the present-day operating systems. Secondly, several approaches

that have been suggested in the literature (e.g., the effects of reinforced preference and counter-veto, or

accounting for the interactions between criteria) have been implemented on an ad hoc basis just to illustrate

the proposed concepts or to demonstrate the salient points of the propose methodology [38]. Although

potentially useful, they have never been employed in the context of any real-world decision problem.

Thirdly, while most software developed by academics is available free of charge [18], commercial packages

implementing some ELECTRE-based procedures (e.g., DecisionCloud) cost hundreds of euro. Finally, the

existing MCDA tools poorly expose the underlying sequential character of the method, sticking to a rather

univocal implementation of the underlying elementary steps. The sole exception in this regard is the diviz

software [20].

diviz is an open-source tool which allows to build complex MCDA algorithmic workflows from the ele-

mentary components. It postulates implementation of basic computation procedures as separate software

pieces, which, if properly chained, would rebuild the original methods [20]. The main benefits of this

proposal consist in removing the black box effect of certain software, avoiding repeated and unnecessary

reimplementation of the same algorithms, and easily testing their variations. While the underlying idea is

appealing, the selection of ELECTRE specific modules available on diviz [7] is very limited.

The contribution of this paper is of both methodological and software nature. It consists in postulating

flexibility in constructing ELECTRE methods so that they are well suited for dealing with the specific real-

world decision problems, and implementing this paradigm in practice. For this reason, we have designed

a wide spectrum of elementary ELECTRE-based components that are able to interoperate, and make them

available via the diviz platform. The proposed methodological bricks are useful for designing advanced

approaches and supporting the analysts in both problem structuring and preference elicitation process.

At the stage of construction of an outranking relation, we consider a variety of procedures for carrying

out the concordance and (non-)discordance tests, computing the credibility of an outranking relation,
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and checking the validity of a crisp relation. These are derived, e.g., from ELECTRE Is, Tri-B, III, IV,

and MR-Sort. We also account for the concepts which are not linked to any specific approach, such as

modeling interactions between criteria, the effects of reinforced preference and counter-veto, using pre-veto

(discordance) thresholds, or numerous procedures for aggregating concordance and discordance degrees into

a valued or crisp outranking relation. We ensure universality of the implemented modules so that they

admit comparison of alternatives either with each other or with class profiles (boundary or characteristic

ones). In this way, we provide means for constructing an outranking relation that may be subsequently

exploited to derive choice, ranking, or sorting recommendation.

At the stage of exploitation of an outranking relation, we consider the following approaches: algorithms

for finding the graph kernel as in the ELECTRE I methods, distillation and ranking procedures of ELEC-

TRE III/IV, Net Flow Score rules for exploiting valued and crisp outranking relation, and assignment rules

of ELECTRE Tri-B, ELECTRE Tri-C, and ELECTRE Tri-rC. Taking advantage of such components, the

user may construct her/his own ELECTRE in a few minutes without any mathematical or programming

skills. This process boils down to combining the modules in one of several hundred ways that are possible

with our proposal and discussed in the paper.

The remainder of this paper is organized in as follows. Section 2 is devoted to different ways of

constructing an outranking relation. Section 3 is focused on procedures for exploiting this relation. In

both sections, apart from reviewing the methodological advances, we present the functionality of the

underlying software modules we have implemented. Section 4 provides a general view on how to construct

one’s own ELECTRE using diviz. Section 5 is devoted to the illustrative case studies which demonstrate

the application of a few variants of ELECTRE that have never been considered before. Section 6 concludes

the paper.

2. Construction of an Outranking Relation

We use the following notation:

• A = {a1, a2, . . . , ai, . . .} - a set of decision alternatives;

• F = {g1, . . . , gj , . . . , gm} - a consistent family of n criteria; without loss of generality, we assume both

gj : A→ R and that all criteria are maximized; J = {1, 2, . . . ,m};

• C1, . . . , Ch, . . . , Ct with t > 2 - a set of pre-defined completely ordered (from the worst to the best)

classes so that Ch+1 is preferred to Ch, h = 1, . . . , t− 1;

• PC = {pc1, . . . , pct} - a set of characteristic reference profiles defining the most typical performance

vector for each class Ch, h = 1, . . . , t;

• PB = {pb0, . . . , pbt} - a set of boundary profiles defining the limits between consecutive classes so that

pbh is the upper limit of class Ch and the lower limit of class Ch+1, for h = 1, . . . , t.

In this section, we review different ways of constructing an outranking relation. This construction is

based on the concepts of concordance and non-discordance tests. Their role is to consider, respectively,

the reasons for and the reasons against an outranking of one object (alternative or profile) over another.

Then, their indications are aggregated into a valued outranking relation. We refer to various proposals on

how this aggregation may be conducted. Finally, we discuss how to construct a crisp outranking relation

based on the valued one.

At the same time, we present the functionality of the software modules we have implemented. They

are accessible through the diviz platform. Some modules are responsible for conducting a well-defined
3



computation procedure with a single outcome, others can be parameterized to calculate result of the same

type in slightly different ways, whereas yet another modules return multiple results. The modules are

numbered from M1 to M11 so that they can be easily referred in Section 4.

2.1. Concordance Test

We consider each criterion gj as a pseudo-criterion [33] that models per-criterion attractiveness with

indifference qj(·) and preference pj(·) threshold functions [26]. The latter are most often defined as affine

functions:

qj(gj(a)) = αqj · gj(a) + βqj and pj(gj(a)) = αpj · gj(a) + βpj . (1)

When comparing gj(a) and gj(b), interpretation of the values provided by qj(·) and pj(·) is the following:

• qj(gj(b)) is the maximal difference in performances for which the indifference relation (aIjb) between

a and b holds on criterion gj ; thus, if |gj(a)− gj(b)| is neither greater than qj(gj(a)) nor greater than

qj(gj(b)), this represents a non-significant advantage of a over b, and vice versa; let us denote the set

of criteria for which aIjb as:

F I(a, b) = {j : aIjb⇔ −qj(gj(a)) ≤ gj(a)− gj(b) ≤ qj(gj(b))}; (2)

• pj(gj(b)) is the minimal difference in performances for which the strict preference relation (aPjb)

between a and b holds on criterion gj ; thus, if gj(a)− gj(b) is greater than pj(gj(b)), this represents

a significant advantage of a over b; the set of criteria for which aPjb is denoted with:

FP (a, b) = {j : aPjb⇔ gj(a)− gj(b) > pj(gj(b))}. (3)

Note that qj(gj(b)) < gj(a)−gj(b) ≤ pj(gj(b)) represents an ambiguity zone between indifference and strict

preference. In this case, a is weakly preferred to b (aQjb). The set of criteria for which aQjb is denoted

with:

FQ(a, b) = {j : aQjb⇔ qj(gj(b)) < gj(a)− gj(b) ≤ pj(gj(b))}. (4)

Thus, by indicating which performance difference is negligible or significant, qj(·) and pj(·) allow account-

ing for the imperfect character of data [2, 29].

Marginal concordance. The marginal concordance index cj(a, b) ∈ [0, 1] represents a degree to which

gj supports the hypothesis about outranking of a over b (aSb). If a is indifferent to b or a is either weakly

or strictly preferred to b on gj , then gj is in favor of the assertion aSb with no reservation, and, thus,

cj(a, b) = 1. Let us denote an outranking relation on gj by Sj = Ij ∪ Qj ∪ Pj , and the corresponding

criteria for which Sj holds with:

FS(a, b) = {j : aSjb} = F I(a, b) ∪ FQ(a, b) ∪ FP (a, b). (5)

If b is strictly preferred to a, then gj is in the opposition to the assertion aSb, and, thus, cj(a, b) = 0.

Finally, if b is weakly preferred to a, gj hesitates between the indifference and the opposition. Then,

cj(a, b) ∈ (0, 1) indicates which of these two options is prevailing. The marginal concordance index cj(a, b)
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is defined in the following way:

cj(a, b) =


1 if gj(b)− gj(a) ≤ qj(gj(a)),

0 if gj(b)− gj(a) > pj(gj(a)),
[pj(gj(a))−(gj(b)−gj(a))]

[pj(gj(a))−qj(gj(a))] if qj(gj(a)) < gj(b)− gj(a) ≤ pj(gj(a)).

(6)

Although we consider the indifference and preference thresholds as variables, they can be defined as con-

stant values (in this case, αqj = αpj = 0 and βpj ≥ βqj ≥ 0). Remark that qj(gj(a)) can be equal to

zero and/or equal to pj(gj(a)) for all a. If pj(gj(a)) = qj(gj(a)) = 0, gj is a true-criterion, whereas if

pj(gj(a)) = qj(gj(a)) ≥ 0, gj is considered as a quasi-criterion.

Comprehensive concordance. The comprehensive concordance index CS(a, b) ∈ [0, 1] represents the

strength of the coalition of criteria being in favor of the outranking relation aSb. Among these criteria we

can distinguish these which support aSb with no hesitation, i.e., FS(a, b), and these which neither confirm

the indifference nor the opposition, i.e., FQ(b, a). To compute CS(a, b), we need to consider intrinsic

weights wj assigned to gj ∈ F . The coefficient wj is interpreted as the voting power of gj , i.e., the greater

wj , the more important gj . Note that there exist some well-established procedures for assigning values to

wj [14]. The comprehensive concordance index is defined as follows:

CS(a, b) =

∑
j∈J wj · cj(a, b)∑

j∈J wj
. (7)

This fraction is closer to one, when the strength of criteria FS(a, b) and FQ(b, a) outweighs the strength

of criteria opposing to aSb, i.e., FP (b, a). In particular, CS(a, b) = 1 indicates that all criteria strongly

support aSb, whereas CS(a, b) = 0 means that none of the criteria supports this assertion strongly or

weakly.

Module M1: ElectreConcordance. This module computes comprehensive concordance indices CS(a, b)

(out1). Its structure is presented in Figure 1. It requires the user to specify a set of alternatives (in1),

their performances (in4), a set of criteria along with the comparison thresholds (in3), and criteria weights

(in6). The user may parameterize the module (param1) to compare alternatives either with each other or

with boundary or characteristic class profiles. If (s)he selected the comparison with some profiles, their

definition (in2) and performances (in4) need to be provided at the input. The same possibility is offered

by other modules designed for constructing an outranking relation, i.e., M2-M11. Thus, when presenting

these modules, we will focus only on the features which are specific for them.

ElectreConcordancein1: alternatives

in2 (opt): boundary profiles 
/ characteristic profiles

in3: criteria (indifference 
and preference thresholds)

in4: alternatives’ performances 

in5 (opt) : profiles’ performances 

in6: criteria weights

param1: comparison with
- alternatives
- boundary profiles
- characteristic profiles

out1: comprehensive 
concordance indices

computation procedure: 
- CS(a,b) for all a,b

M1

Figure 1: Structure of module M1 which computes comprehensive concordance indices.
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Comprehensive concordance with reinforced preference. If aSjb, the performance difference gj(a)−
gj(b) does not influence the marginal concordance index cj(a, b) and, in consequence, CS(a, b). However,

if a is very strongly preferred to b, one may judge that it should obtain some bonus with respect to the

case where the preference is not that strong. To satisfy this wish, we may refer to a reinforced preference

threshold rpj(·) [32]. Formally, rpj(gj(a)) corresponds to the difference in performances gj(a)−gj(b) which

is judged high enough for considering gj as more significant in the coalition supporting aSb, comparing to

the situation where the difference of performances is smaller than rpj(gj(a)) but not less than pj(gj(a)).

When this threshold is crossed, whenever wj is used in the formula for CS(a, b), it has to be replaced by

ωj · wj , where ωj > 1 is a reinforcement factor. The set of criteria for which such reinforced preference

aRPjb occurs is denoted with:

FRP (a, b) = {j : aRPjb⇔ gj(a)− gj(b) > rpj(gj(a))}. (8)

Then, the new concordance index CRP (a, b) accounting for the reinforced preference is defined as fol-

lows [32]:

CRP (a, b) =

∑
j∈FRP (a,b)wj · ωj +

∑
j∈J\FRP (a,b)wj · cj(a, b)∑

j∈FRP (a,b)wj · ωj +
∑

j∈J\FRP (a,b)wj
. (9)

Due to the reinforced preference effect, the contribution of criteria FRP (a, b) in the strength of the coalition

of criteria supporting aSb is greater than their contribution when considering CS(a, b).

Module M2: ElectreConcordanceReinforcedPreference. This module (see Figure 2) computes

comprehensive concordance indices CRP (a, b) with reinforced preference (out1). When compared to M1,

it has to be provided with two additional parameters: reinforced preference thresholds rpj(·) (included in

the specification of criteria in3) and reinforcement factors ωj (in7).

ElectreConcordance
ReinforcedPreference

in1: alternatives

in2 (opt): boundary profiles 
/ characteristic profiles

in3: criteria (indifference, preference,
and reinforced preference thresholds)

in4: alternatives’ performances 

in5 (opt) : profiles’ performances 

in6: criteria weights

param1: comparison with
- alternatives
- boundary profiles
- characteristic profiles

out1: comprehensive concordance 
indices accounting for
the effect of reinforced preference

computation procedure: 
- CRP(a,b) for all a,b

M2

in7: reinforcement factors

Figure 2: Structure of module M2 which computes comprehensive concordance indices with reinforced preference.

Comprehensive concordance with interactions between criteria. In the standard setting, we

assume that a family of criteria F is constructed so that there are no interactions between criteria. To take

them into account, the formula for computing comprehensive concordance index needs to be extended by

considering the weights of the interaction coefficients [11]. Three types of interactions for pairs of criteria

are considered [11]:

• mutual strengthening effect: if both criteria gi and gj support aSb, i.e., i, j ∈ FNP (a, b) = J\FP (b, a),

their contribution to CS(a, b) must be greater than wi · ci(a, b) + wj · cj(a, b); in this case, the joint

presence of gi and gj in FNP (a, b) should justify an additional bonus; it can be imposed by using a

mutual strengthening coefficient wMS
ij = wMS

ji > 0, which intervenes positively in CS(a, b); the set of
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criteria pairs for which this interaction is considered meaningful for a pair (a, b) is denoted with:

FMS(a, b) = {i, j ∈ J : i, j ∈ FNP (a, b) and wMS
ij > 0}; (10)

• mutual weakening effect: if both criteria gi and gj support aSb, i.e., i, j ∈ FNP (a, b), their contri-

bution to CS(a, b) must be smaller than wi · ci(a, b) + wj · cj(a, b); in this case, the joint presence

of gi and gj in FNP (a, b) should contribute to CS(a, b) less than either gi or gj contributes in case

only one of them is present in FNP (a, b); such a penalty can be modeled with a mutual weakening

coefficient wMW
ij = wMW

ji < 0, which intervenes negatively in CS(a, b); the set of criteria pairs for

which this interaction holds for a pair (a, b) is denoted with:

FMW (a, b) = {i, j ∈ J : i, j ∈ FNP (a, b) and wMW
ij < 0}; (11)

• antagonistic effect: if criterion gi supports aSb, i.e., i ∈ FNP (a, b), and gj strongly opposes to aSb,

i.e., j ∈ FP (b, a), the contribution of gi to CS(a, b) must be smaller than wi · ci(a, b); thus, the

strong opposition of gj decreases the contribution of gi to CS(a, b) when compared to the case when

j /∈ FP (b, a); this effect can be modeled by introducing an antagonism coefficient wAij > 0, which

intervenes negatively in CS(a, b); let us denote the set of criteria pairs for which this interaction

holds for a pair (a, b) with:

FA(a, b) = {(i, j) ∈ J × J : i ∈ FNP (a, b), j ∈ FP (b, a) and wAij > 0}. (12)

The antagonistic effect for a pair (i, j) ∈ J × J neither implies nor excludes the reverse effect for

(j, i).

Note that the mutual strengthening and weakening effects are mutually exclusive, i.e., for all a, b, FMS(a, b)∩
FMW (a, b) = ∅. The new concordance index accounting for the aforementioned types of interactions is

defined as follows:

CINT (a, b) =

∑
j∈J

wj · cj(a, b) +
∑

{i,j}∈FMS(a,b)

Zabij · wMS
ij +

∑
{i,j}∈FMW (a,b)

Zabij · wMW
ij −

∑
(i,j)∈FA(a,b)

Zabij · wAij∑
j∈J

wj +
∑

{i,j}∈FMS(a,b)

Zabij · wMS
ij +

∑
{i,j}∈FMW (a,b)

Zabij · wMW
ij −

∑
(i,j)∈FA(a,b)

Zabij · wAij
,

(13)

where function Zabij is used to capture the interaction effects in the ambiguity zone. Among the multiple

forms that can be chosen for Zabij , the two following ones have an intuitive and meaningful interpretation:

Zab,minij = Z(ci(a, b), cj(a, b)) = min{ci(a, b), cj(a, b)}, or (14)

Zab,multiij = Z(ci(a, b), cj(a, b)) = ci(a, b) · cj(a, b). (15)

Module M3: ElectreConcordanceWithInteractions. This module (see Figure 3) computes compre-

hensive concordance indices CINT (a, b) (out1) accounting for the interactions between pairs of criteria.

When compared to M1, it has to be provided with the specification of interactions of three different types

(in4). For each type, the user needs to indicate pairs of interacting criteria and a numerical value of

an interaction coefficient. Furthermore, one can choose out of two pre-defined Zabij functions, i.e., either

Zab,minij or Zab,multiij .
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ElectreConcordance
WithInteractions

in1: alternatives

in2 (opt): boundary profiles 
/ characteristic profiles

in3: criteria (indifference, preference,
and reinforced preference thresholds)

in5: alternatives’ performances 

in6 (opt) : profiles’ performances 

in7: criteria weights

param1: comparison with
- alternatives
- boundary profiles
- characteristic profiles

out1: comprehensive concordance 
indices accounting for the three types
of interactions between criteria

computation procedure: 
- CINT(a,b) for all a,b

M3

in4: interactions between criteria pairs

param2: z function
- multiplication
- minimum

Figure 3: Structure of module M3 which computes comprehensive concordance indices accounting for the interactions between
criteria.

2.2. Discordance (Non-Discordance) Test

Discordance refers to the criteria which oppose to aSb. Veto threshold vj(gj(a)) such that vj(gj(a)) >

pj(gj(a)) for all a, can be used to model the effect of strong opposition gj puts to aSb. Let us first discuss

different ways of computing marginal discordance index dj(a, b) indicating to which degree gj “vetoes”

against the outranking.

Binary marginal discordance with veto threshold. In the basic scenario, the veto effect is modeled

with a binary situation in which gj imposes veto when gj(b) is better than gj(a) by at least the veto

threshold vj(gj(a)), or not, otherwise. Then, dj(a, b) is defined as follows:

dVj (a, b) =

{
1 if gj(b)− gj(a) ≥ vj(gj(a)),

0 if gj(b)− gj(a) < vj(gj(a)).
(16)

Comprehensive binary discordance. In the ELECTRE Is method [31], the comprehensive discordance

occurred if at least one criterion vetoed an outranking relation. In this spirit, a comprehensive binary

discordance DV (a, b) can be formalized as follows:

DV (a, b) =

{
1 if ∃j ∈ J, dVj (a, b) = 1,

0 otherwise.
(17)

Module M4: ElectreIsDiscordanceBinary. This module (see Figure 4) computes comprehensive

DV (a, b) and marginal dVj (a, b) discordance indices (out1 and out2). When compared to M1, it has to be

provided with veto rather than comparison thresholds (these need to be included in the specification of

criteria in3). It does not require, however, the criteria weights.

Marginal discordance with veto and preference thresholds. To weaken the veto effect, the marginal

discordance index can be fuzzified. This can be achieved by deriving its value from the comparison of the

performance difference gj(b)−gj(a) with both vj(gj(a)) and pj(gj(a)) rather than with vj(gj(a)) only. If gj

supports aSb, i.e., j ∈ FNP (a, b), it cannot simultaneously oppose to this assertion, and, thus, dj(a, b) = 0.

If gj(b) is better than gj(a) by at least vj(gj(a)), then gj imposes a strong veto, and, thus, dj(a, b) = 1.

If bPja, but the difference in favor of b is less than vj(gj(a)), then gj weakly vetoes aSb, and, thus,
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ElectreIsDiscordance

Binary

param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles

out1: comprensive

discordance indices

computation procedure: 

- dj
V(a,b) for all a,b and jJ

- DV(a,b) for all a,b

M4
in1: alternatives

in2 (opt): boundary profiles 

/ characteristic profiles

in3: criteria (veto thresholds)

in4: alternatives’ performances 

in5 (opt) : profiles’ performances 

out2: marginal

discordance indices

Figure 4: Structure of module M4 which computes marginal and comprehensive binary discordance indices.

dj(a, b) ∈ (0, 1). Thus, the marginal discordance index is formally defined as follows:

dPVj (a, b) =


1 if gj(b)− gj(a) > vj(gj(a)),

0 if gj(b)− gj(a) ≤ pj(gj(a)),
[vj(gj(a))−(gj(b)−gj(a))]

[vj(gj(a))−pj(gj(a))] if pj(gj(a)) < gj(b)− gj(a) ≤ vj(gj(a)).

(18)

Marginal discordance with veto and pre-veto thresholds. The definition of dPVj (a, b) derived from

the comparison of gj(b) − gj(a) with vj(gj(a)) and pj(gj(a)) implies that the zone of neutrality which

neither supports nor vetoes aSb is extremely scarce. Precisely, only if gj(b)− gj(a) = pj(gj(a)), then both

cj(a, b) and dPVj (a, b) are equal to zero. To enlarge this zone of neutrality, we may account for the pre-veto

(discordance) threshold pvj(·) [21], defined so that for all a, pj(gj(a)) ≤ pvj(gj(a)) ≤ vj(gj(a)). In this

case, gj contributes to the veto effect, i.e., dj(a, b) > 0, iff gj(b)− gj(a) > pvj(gj(a)). Thus, the marginal

discordance index is defined as follows:

dPV Vj (a, b) =


1 if gj(b)− gj(a) > vj(gj(a)),

0 if gj(b)− gj(a) ≤ pvj(gj(a)),
[vj(gj(a))−(gj(b)−gj(a))]
[vj(gj(a))−pvj(gj(a))] if pvj(gj(a)) < gj(b)− gj(a) ≤ vj(gj(a)).

(19)

Counter-veto effect. Analogously as for the reinforced preference, the counter-veto threshold cvj(·) can

be used to assign a special role to the criteria for which a very strong preference of one alternative over

another occurs [32]. Let cvj(gj(a)) correspond to the difference in performances gj(a) − gj(b) which is

judged high enough for weakening the effect of veto against the credibility of outranking, comparing to the

situation where the performance difference is smaller than cvj(gj(a)) but not less than pj(gj(a)). If this

threshold is exceeded by gj(a) − gj(b), gj should be allowed to intervene directly in the definition of the

credibility of an outranking (see Section 2.3). To make this intervention possible, the counter-veto effect

is quantified with the number cv(a, b) of criteria for which it occurs.

Module M5: ElectreDiscordance. This module (see Figure 5) computes marginal discordance in-

dices (out1). If the user wishes to consider pre-veto thresholds (param2), these indices are computed as

dPV Vj (a, b). In this case, the pre-veto thresholds need to provided along with the preference and veto

thresholds when specifying the criteria (in3). Otherwise, the procedure returns dPVj (a, b).

Additionally, this modules accounts for the counter-veto effect. If counter-veto thresholds are provided

at its input (in3), it indicates pairs of objects and criteria for which the counter-veto threshold was

exceeded. This information may be subsequently used to derive cv(a, b).
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ElectreDiscordancein1: alternatives

in2 (opt): boundary profiles 

/ characteristic profiles

in3: criteria (preference, veto, 

pre-veto, and counter-veto thresholds)

in4: alternatives’ performances 

in5 (opt) : profiles’ performances 

param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles

out1: marginal

discordance indices

computation procedure: 

- dj
PV(a,b) or dj

PVV(a,b)

for all a,b and jJ

M5

param2:

- consider pre-veto

- cv (a,b) for all a,b

out2: pairs of objects

and criteria with exceeded

counter-veto threshold

Figure 5: Structure of module M5 which computes marginal discordance indices while referring to veto and preference or pre-
veto thresholds. It also provides information on the pairs of objects and criteria for which the counter-veto effect occurred.

Comprehensive discordance index. The marginal discordance indices can be aggregated into a com-

prehensive discordance index (called also coalitional veto) by taking into account the criteria importance

coefficients [34]. It is computed analogously as the comprehensive concordance index CS(a, b), i.e.:

∆CD(a, b) =

∑
j∈J

wDj · dj(a, b)∑
j∈J

wDj
. (20)

The weights wDj express the power of each criterion gj to veto an outranking relation. In particular, all

these weights may be the same (i.e., for j ∈ J , wDj = 1) or set equivalent to the weights wj used in the

concordance test. Further, dj(a, b) used in (20) could be dVj (a, b), or dPVj (a, b), or dPV Vj (a, b).

Module M6: ElectreComprehensiveDiscordance. This module (see Figure 6) computes compre-

hensive discordance indices ∆CD(a, b) (out1). It requires the user to specify marginal discordance indices

dj(a, b) (in3) and criteria weights wDj (in4).

ElectreComprehensive

Discordance

param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles

out1: comprehensive

discordance indices

computation procedure: 

- ΔCD(a,b) for all a,b

M6
in1: alternatives

in5 (opt): boundary profiles 

/ characteristic profiles

in2: criteria

in3: marginal discordance indices

in4: criteria weights

Figure 6: Structure of module M6 which computes comprehensive discordance indices.

2.3. Valued Outranking Relation

ELECTRE combines the comprehensive concordance index and discordance marginal indices in order to

define a valued outranking relation S(a, b). Note that S(a, b) can be interpreted as a degree of credibility
10



of an outranking relation. In this subsection, whenever we refer to C(a, b), it can be interpreted as one of

its three versions discussed in Section 2.1, i.e., C(a, b) ∈ {CS(a, b), CINT (a, b), CRP (a, b)}.

Credibility of outranking. The basic idea for computing the credibility of an outranking relation

consists in synthesizing the strength of the coalition of criteria supporting aSb, i.e., C(a, b), and the

opposition of criteria being against this assertion, i.e., ∆(a, b). In the ELECTRE Tri-B method, ∆(a, b) is

interpreted as a comprehensive non-discordance index ∆DC which represents a degree to which the criteria

that sufficiently strongly oppose to aSb (i.e., dj(a, b) > C(a, b)), if any, collectively oppose a veto to this

assertion. It is computed in the following way:

∆DC(a, b) =
∏

j∈J :dj(a,b)>C(a,b)

1− dj(a, b)
1− C(a, b)

, (21)

where dj(a, b) ∈ {dVj (a, b), dPVj (a, b), dPV Vj (a, b)}. ∆DC(a, b) = 0 means that some criteria are totally

opposed to aSb, whereas ∆DC(a, b) = 1 indicates that none of the criteria vetoes aSb strongly enough.

Now, to aggregate results of the concordance and non-discordance comprehensive indices into a credibility

of an outranking relation, it is sufficient to multiply them:

SDC(a, b) = C(a, b) ·∆DC(a, b). (22)

Thus, the greater the concordance and non-discordance, the greater the credibility.

Simplified credibility index. Two simpler variants for computing the comprehensive non-discordance

have been proposed in [21]. The motivation for these proposals was to allow easier indirect inference of

the discordance-related parameters than in case of ∆DC , while still preserving the original discordance

concept. This can be achieved by referring to the marginal discordance indices dj(a, b), j ∈ J , only, while

neglecting the comparison with C(a, b). Thus, the criteria that influence the value of a comprehensive

non-discordance index are not limited to these for which dj(a, b) > C(a, b). Instead, all positive values of

dj(a, b) impact the index value in the following way:

∆D(a, b) =
∏
j∈J

(1− dj(a, b)), or (23)

∆DM (a, b) = 1−maxj∈Jdj(a, b). (24)

Now, the aggregation of the concordance and non-discordance comprehensive indices into a credibility of

outranking is carried out analogously as in case of SDC(a, b), i.e.:

SD(a, b) = C(a, b) ·∆D(a, b), or (25)

SDM (a, b) = C(a, b) ·∆DM (a, b). (26)

Module M7: ElectreCredibility. This module (see Figure 7) computes the credibility of an outranking

relation (out1). It requires the user to provide comprehensive concordance (in3) and marginal discordance

indices (in4). In its basic variant, it uses formula for SDC(a, b). However, it can be parameterized to

compute credibility using simplified formulations, i.e., either SD(a, b) (param2 set to false) or SDM (a, b)

(param3 checked). Moreover, it admits (param4) providing at the input comprehensive (aggregated) dis-

cordance indices instead of marginal ones. In this case, to derive a credibility of an outranking, it simply

multiplies comprehensive concordance and non-discordance degrees. This can be used, e.g., to account for
11



DV (one of the outputs of M4), but it also offers avenues for further developments.

ElectreCredibility

in1: alternatives

in2 (opt): boundary profiles 

/ characteristic profiles

in3: comprehensive concordance

in4: marginal or comprehensive 

discordance

param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles

out1: credibility of 

outranking relation

computation procedure: 

- SDC(a,b) or SD(a,b) 

or SDM(a,b) for all a,b

M7

param2:

- with denominator

param3:

- only max discordance

param4:

- use marginal discordances

Figure 7: Structure of module M7 which computes credibility of an outranking relation.

Credibility with counter-veto. To weaken the effect of veto imposed by the discordant criteria on

the credibility of outranking, we may consider the counter-veto effect [32]. It is materialized with the

number cv(a, b) of criteria for which the counter-veto threshold cvj(gj(a)) is exceeded by gj(a) − gj(b).
The proposed formula for the credibility index accounting for this phenomenon is [32]:

SCV (a, b) = C(a, b) · [∆(a, b)](1−
cv(a,b)

m
), (27)

where ∆(a, b) ∈ {∆DC(a, b),∆D(a, b),∆DM (a, b)}. If ∆(a, b) ∈ (0, 1) and cv(a, b) > 0, the effect of veto is

weakened, and, thus, SCV (a, b) is higher than the credibility computed without considering the counter-

veto.

Module M8: ElectreCredibilityWithCounterVeto. This module (see Figure 8) computes the credi-

bility SCV (a, b) of an outranking relation (out1) accounting for the counter-veto effect. When compared to

M7, it requires the user to provide information on the pairs of objects and criteria for which the counter-

veto effect occurred (in4). This is used by the M8 module to compute cv(a, b), which intervenes directly

in the computation of a credibility degree. Besides, it offers the same functionality as M7 but tolerating

comprehensive discordance at the input.

Credibility of outranking without considering criteria weights. In some decision making situa-

tions, we are not able or we do not want to specify weights of the criteria wj , j ∈ J . ELECTRE IV replaces

the use of importance coefficients with a definition of five embedded outranking relations. These are: quasi-

(Sq), canonic- (Sc), pseudo- (Sp), sub- (Ss), and veto-dominance (Sv) relations. The quasi-dominance is the

most credible and veto-dominance is the least credible among them. The conditions that need to be satis-

fied so that a given outranking relation holds are based on the following parameters: mP (a, b) = |FP (a, b)|,
mQ(a, b) = |FQ(a, b)|, mI>(a, b) = |j ∈ F I(a, b) : gj(a) > gj(b)|, mI(a, b) = |j ∈ F I(a, b) : gj(a) = gj(b)|,
mI>(b, a), mQ(b, a), and mP (b, a).

12



ElectreCredibility

WithCounterVeto
in1: alternatives

in2 (opt): boundary profiles 

/ characteristic profiles

in3: comprehensive concordance

in4: pairs of objects and criteria

with exceed counter-veto threshold

param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles out1: credibility of outranking 

relation accounting for 

the counter-veto effect

computation procedure: 

- SCV(a,b) for all a,b

using ΔDC(a,b) or  ΔD(a,b)

or ΔDM(a,b)

M8

in5: marginal discordance

indices

param2:

- with denominator

param3:

- only max discordance

Figure 8: Structure of module M8 which computes credibility of an outranking relation accounting for the counter-veto effect.

The five embedded relations are defined as follows:

aSqb⇔ [mP (b, a) +mQ(b, a) = 0] ∧ [mI>(b, a) < mP (a, b) +mQ(a, b) +mI>(a, b)]; (28)

aScb⇔ mP (b, a) = 0 ∧mQ(b, a) ≤ mP (a, b) ∧ [mQ(b, a) +mI>(b, a) < mP (a, b) +mQ(a, b) +mI>(a, b)];

(29)

aSpb⇔ mP (b, a) = 0 ∧ [mQ(b, a) < mP (a, b) +mQ(a, b)]; (30)

aSsb⇔ mP (b, a) = 0; (31)

aSvb⇔ mP (b, a) ≤ 1 ∧mP (a, b) ≥ m/2 ∧ [gj(b)− gj(a) < vj(gj(a)), j ∈ J ]. (32)

Thus, these relations are defined so that Sq ⊆ Sc ⊆ Sp ⊆ Ss ⊆ Sv. Clearly, the chosen values that can

be assigned to S(a, b) must be such that the more credible relation, the greater S(a, b). Moreover, the

transition from less credible relation to the more credible one needs to be perceived as a considerable

gain. Even though there exist different sets of values satisfying these requirements, the most often em-

ployed option is the following: aSqb ⇒ SIV (a, b) = 1.0, aScb ⇒ SIV (a, b) = 0.8, aSpb ⇒ SIV (a, b) = 0.6,

aSsb⇒ SIV (a, b) = 0.4, aSvb⇒ SIV (a, b) = 0.2. If none of these relations holds, SIV (a, b) = 0.0.

Module M9: ElectreIVCredibility. This module (see Figure 9) computes the credibility of an out-

ranking relation SIV (a, b) as in ELECTRE IV (out1). It requires the user to provide the indifference,

preference, and veto thresholds (in3).

2.4. Crisp Outranking Relation

The valued outranking relation S(a, b) can be transformed into a crisp outranking relation S (let us denote

it by SCUT ) by taking into account the cutting level λ ∈ [0.5, 1.0], which represents the minimum value of

S(a, b) which implies aSCUT b. Thus, if S(a, b) ≥ λ, then aSCUT b; otherwise, ¬(aSCUT b).

Module M10: cutRelationCrisp. This module (see Figure 10) transforms a valued relation into a crisp

one (out1). It requires the user to provide a valued relation (in3) and a cutting level λ (param2). If one

provides S(a, b) at the input (in2), it would produce SCUT at the output. However, if one provides C(a, b)

or ∆CD(a, b) instead, it can be used to obtain the crisp concordance or discordance, respectively.
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ElectreIVCredibility

param1: comparison with
- alternatives
- boundary profiles
- characteristic profiles

out1: credibility of
outranking relation

computation procedure: 
- SIV(a,b) for all a,b

M9in1: alternatives

in2 (opt): boundary profiles 
/ characteristic profiles

in3: criteria (indifference, 
preference, and veto thresholds)

in4: alternatives’ performances 

in5 (opt) : profiles’ performances 

Figure 9: Structure of module M9 which computes credibility of an outranking relation without considering criteria weights.

cutRelationCrisp

in1: alternatives

in2 (opt): boundary profiles 

/ characteristic profiles

in3: valued relation

(e.g., credibility of outranking,

comprehensive concordance,

or comprehensive discordance)

param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles
out1: crisp relation

(e.g., crisp outranking,

crisp concordance,

or crisp discordance)

computation procedure: 

- transforms valued relation

into crisp relation

M10

param2:

- cutting level

Figure 10: Structure of module M10 which transforms a valued relation into a crisp one.

Another way of constructing a crisp outranking relation is based on the separate consideration of the

comprehensive concordance and discordance indices. In the ELECTRE Is method, the outranking relation

SIs holds if the coalition of criteria in favor of this assertion is strong enough, while there is no veto

on any criteria. The former requirement can be verified by comparing C(a, b) with λC representing the

concordance majority threshold (cutting level), whereas the latter is satisfied if the value of comprehensive

binary discordance DV (a, b) was equal to zero. Thus, SIs can be defined as follows:

aSIsb ⇐⇒ C(a, b) ≥ λC and DV (a, b) = 0; (33)

¬(aSIsb) ⇐⇒ C(a, b) < λC or DV (a, b) = 1. (34)

Recently, [34] generalized this definition so that to consider the strength of the coalition of criteria

against an outranking in the same spirit as the strength of the coalition supporting this assertion. This

requires comparison of a comprehensive discordance index ∆CD(a, b) with λD representing the discordance

majority threshold (cutting level). Obviously, while the coalition in favor aSCOALb should be strong

enough, the discordant coalition should be relatively weak. Thus, SCOAL is constructed in the following

way:

aSCOALb ⇐⇒ C(a, b) ≥ λC and ∆CD(a, b) < λD; (35)

¬(aSCOALb) ⇐⇒ C(a, b) < λC or ∆CD(a, b) ≥ λD. (36)

Module M11: ElectreCrispOutrankingAggregation. This module (see Figure 11) constructs a crisp

outranking relation (out1) based on the binary information concerning concordance and discordance tests.

The user needs to provide information on whether the concordance and discordance tests were passed
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or not (in2 and in3). Depending on how a crisp discordance has been previously computed, the module

constructs a crisp outranking defined as SIs or SCOAL. In any case, the outranking relation is true for

some pair of objects only if the concordance test (1) was passed and the discordance test was failed (0).

ElectreCrisp

OutrankingAggregationin1: alternatives

in4 (opt): boundary profiles 

/ characteristic profiles

in2: crisp concordance
param1: comparison with

- alternatives

- boundary profiles

- characteristic profiles
out1: crisp 

outranking relation

computation procedure: 

- checking the truth of 

outranking in the spirit of

SIv or SCOAL

M11

in3: crisp discordance

Figure 11: Structure of module M11 which constructs a crisp outranking on the basis of binary information on concordance
and discordance.

S can be used also for representing the weak (Q) and strict (P ) preference, indifference (I), and

incomparability (R) as follows [26]:

aSb ∧ ¬(bSa) ⇐⇒ aQb ∨ aPb ⇐⇒ a � b, where �= {Q ∪ P}, (37)

aSb ∧ bSa ⇐⇒ aIb, (38)

¬(aSb) ∧ ¬(bSa) ⇐⇒ aRb. (39)

3. Exploitation of an Outranking Relation

In this section, we review different ways of exploiting an outranking relation. These are divided into

three groups depending on the type of considered problem: choice, ranking, or sorting. Analogously as

in Section 2, we present the functionality of the underlying software modules we have implemented. Note

that the modules for multiple criteria choice and ranking require specification of alternatives only, while

the modules for sorting need to be additionally provided with information on decision classes and either

boundary or characteristic class profiles. The modules discussed in this section are numbered from M12

to M18.

3.1. Choice Problems

Selecting a subset of the best alternatives while using an outranking relation as the preference model has

been first considered in the family of ELECTRE I methods (including ELECTRE I, ELECTRE Iv, and

ELECTRE Is; see, e.g., [4, 23, 25, 28, 30]). These approaches represent the outranking relation S imposed

on set A with an outranking graph GS whose nodes correspond to the alternatives and arcs reflect the

truth of S. The best alternatives are assumed to be contained in the kernel K of graph GS . Its definition

involves the following two properties:

• an internal consistency of K: the alternatives in K are incomparable in terms of an outranking

relation; thus, the nodes in K are not related by an arc;

• an external consistency of K: the alternatives not contained in K are outranked by at least one

alternative belonging to K; thus, they correspond to the ending nodes of arcs whose starting nodes

represent the alternatives from K.
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If graph GS is acyclic, there exists a unique kernel. The procedure for identifying K is based on an

observation that in an acyclic graph, there exists at least one node without any predecessors. It corresponds

to an alternative which is not outranked by any other alternative. Clearly, such nodes need to be included in

K. Then, the procedure takes into account each node whose all predecessors have been already considered

in terms of their presence in K. If none of their predecessors belongs to K, then such node is added to K.

Such iterative checking is continued until all nodes are verified.

If a graph has a cycle, we need to reduce it before looking for a kernel K. The two basic techniques

that can be used for reducing the graph’s cycle consist in:

• aggregating all elementary nodes in a cycle into a singleton (an artificial node) inheriting all in- and

out-arcs from its component nodes; consequently, all alternatives which form a cycle are considered

indifferent;

• cutting an arc associated with the weakest credibility of an outranking S(a, b); as a result, alternatives

belonging to a cycle are no longer considered indifferent.

For more details, see [28, 37].

Module M12: ElectreIsFindKernel. This module (see Figure 12) finds a kernel (out1) in a graph

constructed on the basis of a crisp outranking relation (in3). The user is allowed to choose a technique for

reducing the potential graph’s cycles (param1). If (s)he wished to cut the weakest arc, the module needs

to be additionally provided with a credibility of an outranking relation (in2).

ElectreIsFindKernel

param1: eliminate cycles

- aggregate nodes

- cut weakest arc
out1: graph kernel

computation procedure: 

- finding graph kernel while 

eliminating cycles as 

indicated by the parameter

M12

in1: alternatives

in2 (opt): credibility

of outranking

in3: crisp outranking

Figure 12: Structure of module M12 which finds a kernel in the outranking graph.

3.2. Ranking Problems

3.2.1. Net Flow Score procedure

In case of ranking problems, the alternatives may be ordered from the best to the worst with the Net

Flow Score (NFS) procedure [6, 35]. For each alternative, NFS accounts for the arguments confirming its

strength and/or weakness. In term of ELECTRE, for each a ∈ A these arguments may be interpreted as

the number of alternatives b ∈ A which, respectively, are outranked by a (i.e., aSb) or do outrank a (i.e.,

bSa), i.e.:

NFSS(a) = |b ∈ A : aSb| − |b ∈ A : bSa|. (40)

Then, the final ranking is determined by NFS(a) in A (the higher the score, the better).

Alternatively, instead of a crisp outranking relation, we can consider a valued one. In this case, for

each a ∈ A:

NFSSval(a) =
∑
b∈A

[S(a, b)− S(b, a)]. (41)
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Note that ranking and choice problems are closely related, because very often knowing a complete order

of alternatives, we indicate these occupying top positions (in this case, having the maximal NFS(a)) as

the best ones.

Module M13: ElectreNFSOutranking. This module (see Figure 13) computes net flow scores for all

alternatives (out1). It additionally provides information on the strength (out2) and weakness (out3). If

the user indicates (param1) that a crisp relation is provided at the input (in2), the scores are computed

as NFSS(a). Otherwise, a valued outranking relation needs to be provided (in2) and NFSSval(a) is used

in the computation procedure. Moreover, we provide an avenue for further developments, because the

module admits (param2) to consider the strength and weakness derived from the non-outranking relation

(in3).

ElectreNFS
Outranking

param1: 
- crisp relation

out1: net flow scores

computation procedure: 
- NFSS(a) or NFSSval(a) 

for all a

M13

in1: alternatives

in3 (opt): crisp or valued
non-outranking

in2: crisp or valued
outranking

param2: 
- consider non-outranking

Figure 13: Structure of module M13 which computes net flow scores for the alternatives.

3.2.2. Distillation Procedures

To rank the alternatives, in ELECTRE methods one has traditionally applied distillation procedures which

exploit a valued outranking relation (credibility matrix) S(a, b) for a, b ∈ A. In ELECTRE III [24, 30], we

construct two preorders PD (downward) and PU (upward) using, respectively, a descending and ascending

distillation.

The partial preorder PD is defined as partition on the set A into q ordered classes, D1, . . . , Dh, . . . , Dq,

where D1 is the head-class in PD. Each class deems together alternatives considered ex aequo according

to PD. The procedure for descending distillation is carried out in the following way:

1. Set the number of iteration to k = 0, and fix the set of considered alternatives in k-th iteration to

Bk = A.

2. Select the maximal credibility index: λk = maxa,b∈Bk,a6=bS(a, b).

3. Select the lower bound of the range of credibility indices that will be taken into account in the k-th

iteration: λk+1 = maxa,b∈Bk, S(a,b)<S
max
k −s(λk){S(a, b), 0}, where s(x) = α ·x+β. The values of α and

β are usually assumed to be equal to −0.15 and 0.3, respectively.

4. If λk = 0, then add all alternatives in Bk at the bottom of the descending preorder, and stop.

Otherwise, set k = k + 1.

5. Construct a crisp outranking relation SλkA in the following way:

SλkA =

{
1 if S(a, b) > λk and S(a, b) > S(b, a) + s(S(a, b)),

0 otherwise.
(42)
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6. Compute the strength and weakness of each alternative a ∈ Bk as the numbers of alternatives which

are, respectively, outranked by a or outrank a. The quality of a, QλkBk
(a), is computed as the difference

of its strength and weakness.

7. Select the set of alternatives Dk with the greatest quality QλkBk
(a). If this set contains a unique

alternative, add it at the bottom of the descending preorder, and delete Dk from Bk. Otherwise,

apply the same distillation procedure in Dk starting with λDk
k = λk.

8. If A is empty, then stop. Otherwise, go to point 2.

The ascending distillation is conducted analogously with the proviso that the preorder is constructed

bottom-up (rather than top-down), and the alternatives with the least (rather than the greatest) quality

are retained first.

Module M14: ElectreDistillation. This module (see Figure 14) conducts either descending or as-

cending (param1) distillation in the set of alternatives on the basis of a valued outranking relation (in2).

Depending on the selected option, it provides either upward or downward order. The module can be

additionally parameterized with values for α and β used in s(x) (param2 and param3).

ElectreDistillation

param1: 
- descending
- ascending out1: complete order

(upward or downward)

computation procedure: 
- conducts descending

or ascending distillation

M14

in1: alternatives

in2: valued outranking
relation

param2: 
- α

param3: 
- β

Figure 14: Structure of module M14 which conducts ascending/descending distillation in the set of alternatives.

The upward and downward preorders are subsequently combined to produce a partial final preorder

P = PD ∩ PA. Additionally, we may compute ranks of the alternatives which are derived from the

number of nodes on the longest path to the top of the final preorder (increased by one). Finally, a median

preorder may be constructed by ordering the alternatives using their ranks. For these with the same rank,

one investigates the differences between their positions in PD and PA, and ranks higher these alternatives

for which this comparison is more advantageous.

Module M15: ElectreDistillationRank. This module (see Figure 15) computes a final partial preorder

(out1), ranks of the alternatives (out2) in the final preorder, and a median preorder (out3). It requires the

user to provide downward (in2) and upward (in3) orders of alternatives derived from the descending and

ascending distillation procedures, respectively.

3.3. Sorting Problems

3.3.1. Multiple Criteria Sorting with Boundary Class Profiles

In the ELECTRE Tri-B method [39], the assignment of an alternative a ∈ A to a certain class re-

sults from the comparison of a with the boundary profiles PB which define the class limits. To determine
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ElectreDistillation

Rank out1: final preorder

intersection
computation procedure: 

- final partial preorder

- median order

- alternatives’ ranks

M15
in1: alternatives

in3: upward order

in2: downward order

out3: median order

out2: ranks

Figure 15: Structure of module M15 which computes a final partial preorder, a median preorder, and ranks of the alternatives
based on the distillation outcomes.

an assignment for a ∈ A, two disjunctive assignment procedures (called pessimistic (pseudo-conjunctive)

and optimistic (pseudo-disjunctive) procedures) exploit the binary relations (�, I, and R) between a and

boundary profiles in PB.

Pessimistic assignment procedure. To indicate the class in which a can be assigned to according to

the pessimistic rule, compare a successively to pbh, for h = t − 1, . . . , 0, seeking the first boundary profile

pbh such that aSpbh. Then, select Ch+1.

Optimistic assignment procedure. To indicate the class in which a can be assigned to according to

the optimistic rule, compare a successively to pbh, for h = 1, . . . , t− 1, seeking the first boundary profile pbh
such that pbh � a. Then, select Ch.

Module M16: ElectreTriClassAssignments. This module (see Figure 16) computes the pessimistic

(out1) and optimistic (out2) assignments for the set of alternatives. It needs to be provided with a crisp

outranking relation (in4) for the set of alternatives and boundary class profiles.

ElectreTri
ClassAssignments

out1: pessimistic
assignmentcomputation procedure: 

- pessimistic and optimistic
assignment procedures

M16in1: alternatives

in2: classes

in3: boundary profiles out2: optimistic
assignmentin4: crisp outranking

Figure 16: Structure of module M16 which computes pessimistic and optimistic class assignments for the alternatives using
ELECTRE Tri-B assignment procedures.

3.3.2. Multiple Criteria Sorting with Characteristic Class Profiles

In the ELECTRE Tri-C method [2], alternatives are compared with the characteristic reference profiles

PC rather than the boundary ones. ELECTRE Tri-C applies the descending and ascending assignment

rules to indicate the lower and upper classes to which an alternative could be assigned for a particular

outranking model.

Descending assignment procedure. The descending rule compares a successively to pch, for h =

t+ 1, . . . , 0, searching for the first profile pch, such that S(a, pch) > λ, i.e.:

(i) If h = t, select Ct as a class to assign alternative a.

(ii) If 0 < h < t: if S(pch, a) > S(a, pch+1), then select Ch; otherwise, choose Ch+1.
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(iii) If h = 0, select C1.

Ascending assignment procedure. The ascending rule compares a successively to bh, for h = 1, . . . , t+

1, searching for the first characteristic profile pch, such that S(pch, a) > λ, i.e.:

(i) If h = 1, select C1 as a class to assign alternative a.

(ii) If 1 < h < (t+ 1): if S(a, pch) > S(pch−1, a), then select Ch; otherwise, choose Ch−1.

(iii) If h = (t+ 1), select Ct.

The order of outcomes of the descending and ascending assignment rules vary, i.e. with some outranking

models the ascending rule indicates an assignment to a better class than the descending rule, whereas with

other models the order is inverse (for details, see [19]). Thus, these two procedures need to used conjointly

to indicate a possibly imprecise class interval to which a ∈ A is assigned.

Module M17: ElectreTri-CClassAssignments. This module (see Figure 17) computes an interval

class assignment (out1) for the set of alternatives by combining the outcomes of the descending and

ascending procedures of ELECTRE Tri-C. It needs to be provided with a crisp outranking relation (in5)

for the set of alternatives and boundary class profiles as well as the underlying credibility degrees (in4).

ElectreTri-C

ClassAssignments

out1: interval

class assignment

computation procedure: 

- descending and ascending

assignment procedures

M17
in1: alternatives

in2: classes

in3: characteristic profiles

in5: crisp outranking

in4: credibility of outranking

Figure 17: Structure of module M17 which computes interval class assignments for the alternatives using descending and
ascending rules of ELECTRE Tri-C.

Similarly to ELECTRE Tri-C, the ELECTRE Tri-rC method derives its recommendation from the

comparison of alternatives with the characteristic class profiles [19]. It employs, however, the revised

assignment procedures which indicate the extreme class assignments unambiguously (i.e., using univocal

and precise conditions) and allow easier indirect inference of the parameters of an outranking model. The

following procedures indicate the worst and the best classes for the possible assignment of a ∈ A:

Procedure for indicating the worst class. To indicate the worst class in which a can be assigned to,

compare a successively to bh, for h = t− 1, . . . , 0, seeking the first characteristic profile bh such that:

a � bh and c(a, bh+1) > c(bh, a). (43)

Select Ch+1.

Procedure for indicating the best class. To indicate the best class in which a can be assigned to,

compare a successively to bh, for h = 2, . . . , t+ 1, seeking the first characteristic profile bh such that:

bh � a and c(bh−1, a) > c(a, bh). (44)

Select Ch−1.
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Module M18: ElectreTriClassAssignments. This module (see Figure 18) computes an interval class

assignment (out1) for the set of alternatives by applying the assignment procedures of ELECTRE Tri-rC.

It needs to be provided with the same inputs as M17.

ElectreTri-rC

ClassAssignments

out1: interval

class assignment
computation procedure: 

- assignment procedures

indicating the best/worst class

M18
in1: alternatives

in2: classes

in3: characterisitc profiles

in5: crisp outranking

in4: credibility of outranking

Figure 18: Structure of module M18 which computes interval class assignments for the alternatives using joint assignment
rules of ELECTRE Tri-rC.

4. Construct Your Own ELECTRE Method in diviz

4.1. diviz

diviz is an open-source which allows to design, execute, and share complex workflows implementing

procedures of decision analysis [20]. The software infrastructure consists of:

• a Java client for algorithmic workflow design and visual analysis of the outcomes,

• distant servers for executing the workflows, i.e., computing the results.

MCDA procedures as well as visualization or reporting tools are available in diviz via XMCDA web-

services. They need to read inputs and write outputs formatted using the XMCDA standard. XMCDA

represents MCDA concepts (e.g., alternative, class, outranking relation, or veto threshold) using general

data structures referred to as MCDA types which are coded in XML with tags and attributes (e.g.,

alternativesComparisons, categoriesProfiles, or criteriaValues). In this way, the standard ties together all

the web-services, making their interoperability possible. Indeed, the web-services can be combined into

complex workflows even if they are written by different programmers in various programming languages.

4.2. Workflow Design

Procedures for construction and exploitation of an outranking relation in the spirit of ELECTRE have

been implemented and made available on diviz as a collection of individual modules (components). They

have been described in detail in Sections 2 and 3. In this section, we will refer to the specific modules

using their numbers, i.e., M1-M18.

All our modules are written in Python, which is a high-level, general-purpose, and multi-paradigm

programming language. Its design enhances expressiveness, code readability, and quick prototyping. It is

also perceived as a language which is perfectly suited for systems integration. All aforementioned features

make it suitable for preparing the modules that are meant to inter-operate within a framework such as

diviz.

The design of decision analysis workflows in diviz is performed via an intuitive graphical user interface.

Each component is represented by a rectangular box which can be linked to data files or other compu-

tation modules. Thus, the design of the workflow does not require any programming skills, but rather

understanding the role of each module [20]. To construct a workflow, the user chooses the modules (s)he is

interested in from the list of available elements. Using a “drag-and-drop” function, (s)he adds them to the

workspace along with the data files. Subsequently, the inputs and outputs of different components can be
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linked using connectors to define the structure of the workflow. Once the design is finished, it is possible

to execute the workflow. As already mentioned, the underlying calculations are performed on computing

servers through the use of the XMCDA web-services. Thus, diviz requires connection to the Internet.

The outputs and inputs of different modules need to be connected so that the underlying data types

are the same. Only in this way, one can effectively turn chains of components into a complete method.

In Figure 19, we present a general scheme for construction of one’s own ELECTRE from the modules we

provide. This scheme consists of two main parts corresponding to the construction and exploitation of an

outranking relation. The former one is additionally divided into four parts corresponding to carrying out

concordance and (non-)discordance tests, and constructing a valued or crisp outranking relation. In the

scheme, we refer to different concepts using the notation introduced in Sections 2 and 3. For each concept

(separate box), we indicate which module should be used for its implementation referring to the symbols

M1-M18. Any possible path in Figure 19 corresponds to a valid ELECTRE method. Some of them allow

reconstruction of the existing approaches. For example, by combining:

• M1 (CS(a, b)), M4 (DV (a, b)), M11 (SIv), and M12 (graph kernel), one obtains ELECTRE Is;

• M1 (CS(a, b)), M5 (dV P (a, b)), M7 (SDC(a, b)), M14, and M15 (distillation), one obtains ELECTRE

III,

• M1 (CS(a, b)), M5 (dV P (a, b)), M7 (SDC(a, b)), and M16, one obtains ELECTRE Tri-B.

Nevertheless, there are only few paths corresponding to the existing methods, while the rest can be followed

to construct new approaches possibly better suited for dealing with a particular decision problem.

Note that the possibly multiple outcomes of each component can be viewed either in diviz or in an

external web-browser. This allows better understanding of the steps involved in the workflow as well

as more effective troubleshooting, when designing a new method. Another important feature of diviz is

history of past executions, which also contributes to the better understanding of methods execution, but

more importantly, it allows to precisely calibrate the parameters of individual components. Moreover, diviz

allows to construct several methods (possibly sharing the same components) within a single workflow. In

this way, the software enhances the comparison of results they provide. Finally, diviz enables to export

any workflow as an archive (i.e., single file containing all necessary information including input data). This

archive can be subsequently shared with other users, who can then import it (by loading the archive) into

their software and continue the development of the workflow or execute it on the original data.

5. Illustrative Case Studies

In this section, we illustrate how construction of one’s own ELECTRE method can be incorporated

in a decision aiding process. We approach two real-world problems with the original combinations of

ELECTRE-based components that so far have not been considered in the literature. Firstly, we reconsider

the problem of evaluating mass transit systems [10] in view of multiple criteria ranking and choice. Secondly,

we sort a set of products into classes of specific inventory management policy [16] using either boundary or

characteristic profiles. For all problems, we have constructed dedicated diviz workflows which are available

online1:

• electreProductsRanking.dvz for Section 5.1.1;

1http://www.cs.put.poznan.pl/mkadzinski/diviz/electre; when the paper is accepted for publication, the workflows
will be made available at the official website of the project: http://www.decision-deck.org/diviz/workflows.html
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Figure 19: Construct your own ELECTRE in diviz.

• electreProductsChoice.dvz for Section 5.1.2;

• electreProductsSortingBoundary.dvz for Section 5.2.1;

• electreProductsSortingCharacteristic.dvz for Section 5.2.2.

They can be used to reproduce the results discussed in this section. For this purpose: 1) download diviz 2,

2) launch it, 3) import the workflow (“Workflow - Import as new”), and 4) run it on diviz (“Execution

- Run”). Moreover, the workflows illustrate how to prepare the input data and put together the diviz

modules in very diverse settings so that they can be later easily adapted to other problems at hand.

5.1. Multiple Criteria Ranking and Choice: Evaluation of Mass Transit Systems

We reconsider the problem of evaluating mass transit systems (MTSs) operating in nine major European

cities [10]. Each of these systems can be perceived as a set of organized components that carries out

2http://www.cs.put.poznan.pl/mkadzinski/diviz/; after the official release of the new version of diviz (scheduled for
mid-May 2015) the software will be available at http://www.decision-deck.org/diviz/download.html
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passenger transportation services within the urbanized area. The multiple criteria evaluation of MTSs aims

to support the DMs in selecting the most desirable public transportation solutions for metropolitan areas.

The constructed family of criteria includes characteristics of technical, economical, and social character as

well as the interests, requirements, and expectations of passengers, operators, and local authorities. It is

composed of the following seven factors [10]:

• Accessibility of the MTS (C1; km/km2; to be maximized) - density of the public transportation

network in the metropolitan area;

• Degree of crowdedness (C2, %; to be minimized) - an overall level of the capacity utilization of

vehicles used in the MTS in the peak hours;

• Commercial speed of transportation means (C3, km/h; to be maximized) - a weighted average of

operational speed of all transportation modes used in the MTS;

• Quality of the fleet (C4; pts; to be maximized) - an aggregated criterion composed of several measures

such as: average age of vehicles, percentage of low floor vehicles in the fleet, technical reliability of

transportation means, and special equipment used in the vehicles to increase the comfort of travel;

• Safety of the MTS (C5; to be minimized) - a ratio of the total number of accidents caused by MTS

per total number of inhabitants of the considered metropolitan area;

• Financial efficiency (C6; %; to be maximized) - a percentage share of subsidies in total operational

costs generated by the particular MTS;

• Waiting time (C7; minutes; to be minimized) - an aggregated waiting time of passengers traveling

by MTS in the peak hours.

The performance matrix is provided in Table 1.

Table 1: Performance matrix for the problem of evaluating mass transit systems in nine European cities.

City Abbrev. C1 C2 C3 C4 C5 C6 C7
Barcelona BCN 4.15 45 21.9 9 44.0 49.9 2
Brussels BRU 1.22 26 21.6 2 54.0 55.35 3.5
Helsinki HEL 3.09 32 26.5 10 25.0 43.49 4
Lisbon LIS 4.23 31 26.1 10 12.0 56.5 4.5
London LON 2.51 82 26.3 11 31.0 61.61 2.5
Oslo OSL 3.17 19 23.1 14 7.0 44.54 3.5
Paris PAR 1.84 46 21.8 6 25.0 37.8 2.5
Prague PRA 2.04 40 26.1 6 40.0 62.91 3.5
Warsaw WAR 1.51 70 20.1 3 10.6 53.85 5

In the following subsections, we will consider this problem in terms of multiple criteria ranking or

choice. In both settings, the intra- and inter-criterion parameters are the same. When conducting the

concordance test, we refer to the indifference and preference thresholds, whereas in case of verifying the

discordance, we employ both pre-veto and veto thresholds. Depending on the characteristics of criteria,

we refer to the thresholds which are either constant or defined with an affine function. The assumed values

for all thresholds and importance coefficients used in the concordance test are provided in Table 2.

5.1.1. Multiple Criteria Ranking by Exploiting a Valued Outranking Relation

In this section, we will first construct a valued outranking relation and then exploit it so that to order

the MTSs from the best to the worst. At the phase of construction of an outranking relation, we take into
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Table 2: The indifference, preference, pre-veto, and veto thresholds, and weights used in the concordance test for all criteria
for the problem of evaluating mass transit systems in nine European cities.

gj qj pj pvj vj wj

C1 0.2 0.5 2.0 3.0 6
C2 0.1g2(a) 0.2g2(a) 0.35g2(a) 0.5g2(a) 5
C3 0.02g3(a) 0.05g3(a) 0.1g3(a) 0.2g3(a) 3
C4 1.0 3.0 7.0 10.0 4
C5 0.2g5(a) 0.3g5(a) 0.5g5(a) 0.7g5(a) 2
C6 0.05g6(a) 0.1g6(a) 0.25g6(a) 0.35g6(a) 4
C7 0.5 1.0 1.5 2.5 7

account interactions between the criteria. For example, we assume that the relative weight of quality of the

fleet (C4) and financial efficiency (C6) considered together should be larger than 8 (= w4 +w6 = 4 + 4) as

a result of a mutual strengthening effect. The interaction coefficients are provided in Table 3. To capture

the interaction effects in the ambiguity zone, we use Zab,multiij .

Table 3: Interaction coefficients for the problem of ranking mass transit systems.

Type Criteria Coefficient
mutual strengthening C4, C6 wMS

46 = 2.0
mutual weakening C1, C3 wMW

13 = −1.5
antagonistic C7, C2 wA

72 = 3.0

When aggregating the results of the concordance and discordance tests into a credibility of outranking

relation, for each pair of alternatives (a, b) ∈ A×A we account for the maximal marginal discordance index

dPV Vj (a, b). As a result, a valued outranking relation is materialized with SDM (a, b). When exploiting

these credibility indices, we employ both distillation and NFS procedures.

The workflow that we have constructed for this purpose is presented in Figure 20. For clarity, we

will discuss its structure in detail. To save space, such explanation will be omitted for other illustrative

studies subsequently presented in this section. To support understanding of the connections between

different modules, we have enriched Figure 20 with a clear structure of the workflow while referring to

a notation used throughout the paper. It makes evident the specific implementation of both construction

and exploitation phases of an outranking relation.

The workflow contains the following input files: cities.xml (specification of all MTSs), criteria.xml

(specification of all criteria along with the indifference, preference, pre-veto, and veto thresholds), in-

teractions.xml (listing of interaction effects and coefficients), performances.xml (performance table), and

weights.xml (weights used in the concordance test). All ELECTRE modules are parameterized so that

to compare alternatives against themselves rather than with (boundary or characteristic) class profiles.

Further parameterization ensures that:

• ElectreConcordanceWithInteractions employs Zab,multiij rather than Zab,minij to capture interaction

effects in the ambiguity zone;

• ElectreCredibility aggregates the results delivered by ElectreConcordanceWithInteractions and Elec-

treDiscordance using SDM rather than SDC or SD;

• ElectreNFSOutranking aggregates arguments in favor and against each MTS derived from a valued

outranking relation rather than from the crisp one;

• one of the ElectreDistillation modules performs a downward distillation, whereas the other conducts

an upward distillation.
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Figure 20: Workflow for multiple criteria ranking of mass transit systems.

For graphical presentation of the outcomes of ranking procedures, we use a pair of visualization modules

(plotAlternativesValuesPreorder and plotAlternativesComparisons) which are available in diviz.

diviz exhibits the elementary results obtained at each phase of the workflow. With such modular

structure of the workflow, it is easy to verify the impact of different effects or assumptions on the partial

results. For example, for a pair (BCN,BRU):

• the comprehensive concordance indices with or without considering interactions between criteria are,

respectively, CINT (BCN,BRU) = 0.6604 and CS(BCN,BRU) = 0.7009;

• the credibility degrees of outranking taking into account all partial discordance indices or only the

maximal discordance index are, respectively, SD(BCN,BRU) = 0.1649 and SDM (BCN,BRU) =

0.1712.

In what follows, we focus on the final rankings. When it comes to the results obtained with NFS, the

strength, weakness, and scores are provided in Table 4. The ranking determined by NFSSval is depicted

in Figure 21a) (the graph was obtained with plotAlternativesValuesPreorder module). Comprehensively,

LIS with the greatest strength and OSL with the least weakness prove to be the best, whereas WAR with

the least strength and PAR with the greatest weakness occupy the bottom ranks.
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Table 4: Results of the Net Flow Score procedure (strength, weakness, and scores), ranks and median order derived from the
distillation procedure for the problem of evaluating mass transit systems in nine European cities.

NFS (valued relation) ELECTRE III

City Strength Weakness NFSSval Rank Median
BCN 1.834 1.787 0.047 3 3
BRU 1.170 2.846 -1.676 4 4
HEL 2.244 2.627 -0.383 4 5
LIS 4.898 1.305 3.594 1 1

LON 1.359 1.542 -0.183 3 3
OSL 3.446 1.146 2.300 2 2
PAR 1.059 4.084 -3.025 5 6
PRA 2.782 1.633 1.149 3 3
WAR 1.000 2.822 -1.823 6 7

a) b) c) d)

Figure 21: Orders of MTSs derived from a) NFS procedure, b) downward distillation, c) upward distillation, and d) final
ranking in ELECTRE III.

As far as outcomes typical for ELECTRE III are concerned, the downward and upward orders are

presented in Figures 21b) and c), respectively. On one hand, when constructing the ranking from the top,

LIS is judged the best, while BRU, LON, PAR, and WAR turn out to be the worst. On the other hand, when

starting from the bottom, HEL and WAR are clearly worse than other MTSs, whereas LIS, LON, and OSL

are considered superior to the remaining cities. These two orders are combined into a partial final preorder

(see Figure 21d); the graph was obtained with plotAlternativesComparisons module parameterized so that

to reduce arcs that can be obtained with transitivity). Note that some pairs of MTSs are incomparable,

because their relation in the downward and upward preorders is not univocal. The ranks derived from the

final preorder are provided in Table 4 (column “Rank”). When compared to the ranking obtained with

NFS, the order of some cities is inverse (see, e.g., PAR and WAW). Even though the ranks of HEL and
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BRU are the same, the superiority of BRU over HEL in the upward preorder outweighs its loss in the

downward preorder. This is reflected in the median order (see Table 4, column “Median”) where BRU is

preferred to HEL.

5.1.2. Multiple Criteria Choice by Exploiting a Crisp Outranking Relation

In this section, we will first construct a crisp outranking relation and then exploit it so that to select

a subset of the best of MTSs. When constructing a crisp relation, we consider separately the strength of

the coalition of criteria supporting the assertion and against an outranking. For the purpose of illustration,

when computing the comprehensive concordance index, we use the same thresholds and weights as in the

previous subsection, but neglect the interactions between criteria. When aggregating marginal discordance

indices into a comprehensive discordance index ∆CD, we use the same weights wDj for all criteria (wDj = 1,

j = 1, . . . , 7), thus, assigning them equal powers to veto an outranking relation. The concordance λC and

discordance λD majority thresholds are set to 0.7 and 0.2, respectively. When exploiting thus constructed

crisp outranking relation, we search for the kernel in the underlying graph and select the best MTSs with

NFS.
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Figure 22: Workflow for multiple criteria choice of mass transit systems.

The workflow constructed for this purpose along with its intuitive structure is presented in Figure 22.
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We use the same input files as in the previous subsection with the proviso that listing of the interaction

effects is replaced with specification of the discordance weights wDj (weights-disc.xml). The sequential char-

acter of the workflow is best visible when ElectreCrispOutrankingAggregation puts together the outcomes

of concordance and discordance tests so that to determine a crisp outranking relation.

The graph of an outranking relation is presented in Figure 23 (the graph was obtained with plotAlter-

nativesComparisons module parameterized so that to draw all arcs). Its kernel identified with ElectreIs-

FindKernel is composed of LIS, LON, and OSL. The same cities proved to be the best in terms of NFS with

NFSS = 4. On the contrary, WAR and PAR attain the worst scores equal to −7 and −6, respectively.

a) b) c) d)

Figure 23: Graph of an outranking relation for the problem of evaluating MTSs.

5.2. Multiple Criteria Sorting: Evaluation of Products

We reconsider the problem of evaluating a set of products (items) within a storage location assign-

ment system [16]. The products are compared with respect to the following features which influence the

company’s inventory management policy [16]:

• demand (C1; in units between 0 and 1000; to be maximized) - the average frequency of orders by

clients;

• size (C2; m2; to be minimized) - the product’s density in the range between 0 and 1;

• profitability (C3; in %; to be maximized) - the financial return of each unit of product;

• consumer’s sensitivity (C4; linguistic variables coded in the range between 0 (very little) and 4

(much); to be maximized) - the product’s sensitiveness to the level of service, e.g., the slow delivery

of orders.

The task consists in assigning each product to a class-based storage. The three considered classes Cl1-Cl3

(with Cl1 being the worst one) represent different levels of operational, storage, and cost efficiency. Thus,

the products with great demand, small size, high profitability, and high sensitivity to the level of customer

service should be assigned to class Cl3, and subsequently allocated to the most favorable storage area in

the warehouse (close to input/output) [16]. The performance matrix is provided in Table 5. To save space,

we consider 25 randomly drawn products out of 50 originally considered in [16].

In the following subsections, we will consider this problem in terms of multiple criteria sorting with

either boundary or characteristic class profiles. In both settings, we assume the same values for the

indifference, preference, and veto thresholds as well as criteria weights (see Table 6). Additionally, when
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Table 5: Performance matrix for the problem of evaluating products, and class assignments obtained with the boundary
(Tri-B) and characteristic (Tri-rC) class profiles.

Assignments
Criteria ELECTRE Tri-B Tri-rC

C1 C2 C3 C4 Pessimistic Optimistic Class interval
a1 50 0.060 70 4 2 3 1-2
a2 675 0.006 33 1 2 3 2-3
a4 350 0.014 100 4 3 3 3-3
a5 120 0.054 10 3 1 1 1-1
a9 450 0.026 90 3 3 3 3-3

a11 100 0.135 5 2 1 1 1-1
a13 55 0.282 75 2 1 2 1-2
a15 35 0.514 76 1 1 2 1-2
a17 190 0.111 53 2 2 2 2-2
a19 80 0.288 63 3 1 1 1-1
a23 420 0.069 47 0 2 2 2-2
a24 130 0.231 30 3 1 1 1-1
a26 670 0.051 100 2 3 3 3-3
a27 255 0.149 41 1 1 1 1-1
a29 590 0.076 65 4 3 3 3-3
a31 420 0.117 85 2 2 2 3-3
a33 280 0.189 86 1 1 2 2-3
a36 840 0.071 34 1 2 3 2-3
a39 380 0.171 65 3 2 2 2-2
a40 130 0.500 50 2 1 1 1-1
a42 915 0.077 5 0 1 3 1-3
a45 230 0.357 53 2 1 1 1-1
a46 730 0.116 60 4 3 3 3-3
a48 970 0.093 46 2 3 3 3-3
a50 145 0.620 32 1 1 1 1-1

comparing the products with class profiles, we acknowledge a bonus in case of very strong preference of one

object over another. Precisely, we consider the effect of reinforced preference on C1 and C4 (see Table 6

for the reinforced preference thresholds rpj and reinforcement factors ωj). The cutting level, representing

the minimum credibility degree which implies the truth of a crisp outranking relation, is set to λ = 0.55.

Table 6: The indifference, preference, veto, counter-veto, and reinforced-preference thresholds, reinforcement factors, and
weights used in the concordance test for all criteria for the problem of evaluating products within a storage assignment
location system.

gj qj pj vj cvj rpj ωj wj

C1 10 20 300 500 100 1.2 3
C2 0.01 0.03 0.20 0.40 − − 2
C3 2 5 25 40 − − 1
C4 0 1 3 − 3 1.5 1

5.2.1. Multiple Criteria Sorting with Boundary Class Profiles

Let us first approach the problem of assigning the products to class-based storage by comparing them

against the class limits. Since we consider three decision classes, it is sufficient to define two boundary

profiles: pb1 (the boundary between Cl1 and Cl2) and pb2 (the boundary between Cl2 and Cl3). Their

performances on all criteria are provided in Table 7.

Table 7: Boundary class profiles for the problem of evaluating products within a storage assignment location system.

pbj C1 C2 C3 C4

pb1 300 0.200 50 1.5

pb2 450 0.130 65 2.5
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The workflow for this particular problem is presented in Figure 24. All diviz modules are parame-

terized to compare alternatives with the boundary class profiles. Their definition and specification of the

performances are provided in separate input files, respectively, boundary.xml and boundary-perf.xml. While

accounting for the reinforced preference within the concordance test, it might be of interest to the DM to

check the influence of this effect on the comprehensive concordance index. For example, for a pair (pb2, a1)

its value increases from 0.4286 (when not considering the reinforced preference) to 0.4737, while when com-

paring pb2 with a2 the effect of reinforced preference does not occur, and, thus, CRP (pb2, a2) = CS(pb2, a2).

M2

M5

M8 M16

WORKFLOW 

STRUCTURE
CRP

dPV cv

SCV

ELECTRE TRI-B assignmentsM10
SCUT

WORKFLOW 

credibility: SCV

concordance: CRP

discordance: dPV and cv

crisp outranking: SCUT

ELECTRE TRI-B assign.

Figure 24: Workflow for multiple criteria sorting of products with boundary class profiles.

When further constructing a valued outranking relation, to weaken the potential impact of veto, we

account for the counter-veto effect on three selected criteria (see Table 6 for the counter-veto thresholds

cvj). For each pair of objects, the number of criteria for which the counter-veto threshold is crossed is

returned at the output of the ElectreDiscordance module. This happens once for, e.g., a4 and pb1 or a48

and pb2. These numbers intervene in the computation of credibility SCV of an outranking relation with

ElectreCredibilityWithCounterVeto. We assume that a comprehensive non-discordance index is interpreted

as ∆DC so that to take into account only the criteria which sufficiently strongly oppose to an outranking.

The ElectreTriClassAssignments module which is responsible for computing class assignments with the

pessimistic and optimistic procedures of ELECTRE Tri-B takes into account only a crisp outranking

relation (i.e., the output of the cutRelationCrisp module) for all pairs composed of a project and a boundary

profile. Moreover, only at this final stage of the workflow, one requires formal specification of the decision

classes which is provided in classes.xml.

Although the pessimistic and optimistic procedures have been mainly used separately, for illustrative

purpose, we present their outcomes together in Table 5. Obviously, the assignment indicated by the

optimistic rule is always at least as good as indication of the pessimistic one. For our problem, for 17
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out of 25 projects the assignments suggested by both rules are the same, and only for one project (a42)

the recommended classes are not consecutive. For example, since a1 is preferred to pb1 and incomparable

with pb2, its pessimistic (optimistic) assignment is Cl2 (Cl3). The best (worst) class is suggested for 6 and

10 (12 and 8) projects by the pessimistic and optimistic rules, respectively. As noted in [16], the stock

management policy calls for prudence, and, thus, the pessimistic assignments are more appropriate for this

particular study.

5.2.2. Multiple Criteria Sorting with Characteristic Class Profiles

In this section, the three considered decision classes are defined by a set of characteristic profiles such

that pcj corresponds to Clj , j = 1, 2, 3. Their performances are provided in Table 8. These profiles can

be used with the assignment rules of ELECTRE Tri-C or ELECTRE Tri-rC. We present the results of

applying the latter one.

Table 8: Characteristic class profiles for the problem of evaluating products within a storage assignment location system.

pcj C1 C2 C3 C4
pc1 250 0.250 40 1
pc2 350 0.150 55 2
pc3 500 0.100 70 3

The workflow implementing such scenario is presented in Figure 24. Now, all modules are parameterized

so that to compare alternatives with the characteristic profiles. When conducting the discordance test, we

use the ElectreIsDiscordanceBinary, thus, computing the binary discordance indices dVj and DV as in the

ELECTRE Is method. These ensure that the veto effect occurs iff the loss of one object with respect to

another is at least as great as the veto threshold. This can be observed, e.g., for comparison of a1 with pc2
on C1. When computing the credibility degree, we account only for the comprehensive discordance index

DV . Thus, the credibility degree is equal to the comprehensive concordance if no veto occurs (e.g., for

comparison of a1 with pc1), or to zero, otherwise (e.g., for comparison of a1 with pc2). Finally, the assignment

rules of ELECTRE Tri-rC require information on both crisp and valued outranking relation for all pairs

composed of a project and a characteristic profile. Thus, these two relations need to be provided as the

inputs of the ElectreTri-rCClassAssignments module.

The class intervals suggested for all products by the joint assignment rules of ELECTRE Tri-rC are

provided in Table 5. For 18 out of 25 products the extreme classes are the same. For example, a17 is

preferred to pc1, indifferent with pc2, and preferred by bc2, which implies its precise assignment to Cl2. For the

remaining 7 items (a1, a2, a13, a15, a33, a36, and a42), the assignment remains ill-determined taking into

account the way that the set of characteristic profiles defines the classes [2]. In particular, a42 performs

relatively well on C1 and C2, and rather bad on C3 and C4. When collated with the characteristic profiles

which are composed of typical performances for each class, this diversity in the performance vector implies

incomparability of a42 with all these profiles and results in the imprecise assignment Cl1 − Cl3.

6. Conclusions

In this paper, we reviewed a wide spectrum of ELECTRE-based concepts and postulated flexibility

in their joint consideration. At the stage of construction of an outranking relation, we accounted for

different ways of conducting the concordance and (non-)discordance tests, computing the credibility of an

outranking relation, and checking the validity of a crisp relation. These procedures were derived from the

existing ELECTRE methods (e.g., ELECTRE Is, III, IV, Tri-B, and MR-Sort) as well as proposals which

are not linked to any specific approach (e.g., reinforced preference, counter-veto, pre-veto, or simplified
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Figure 25: Workflow for multiple criteria sorting of products with characteristic class profiles.

comprehensive discordance). At the stage of exploitation of an outranking relation, we considered several

algorithms which can be used to decide the ranking (e.g., distillation of a valued outranking relation as

in ELECTRE III or Net Flow Score procedure), or presence in the subset of the best alternatives (e.g.,

identifying the graph kernel as in ELECTRE Is), or the assignment into the pre-defined and ordered classes

(e.g., sorting rules of ELECTRE Tri-B, Tri-C, and Tri-rC).

More importantly, we implemented the postulate of flexibility in designing the ELECTRE methods

in practice. We designed several highly parameterized computational modules, each responsible for con-

ducting some construction or exploitation procedure. These modules are universal in a sense that they

admit comparison of alternatives either with each other or with class profiles (boundary or characteristic

ones). We made them available via the diviz platform, which offers the infrastructure for coupling the

modules together so that to reconstruct the existing methods or develop one’s own ELECTRE which is

best suited for a particular decision context. Overall, with our proposal one can consider several hundred

valid combinations of modules which can be obtained without any mathematical or programming skills.

We illustrated how a decision aiding process can be supported by construction of new ELECTRE

methods by reconsidering two real-world problems. These problems concerned evaluation of either mass

transit systems in cities or products within a storage location assignment system. We approached them

by designing a few previously not considered variants of ELECTRE. For all accounted scenarios, we have

constructed dedicated diviz workflows which are attached as the e-Appendices. They can be used to

reproduce the results discussed in the paper, but they also serve as examples which can be easily adapted

for dealing with other problems. Let us emphasize, however, that when applying any variant of ELECTRE,
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an analyst needs to verify if its properties correspond to the characteristics of a decision context [12].

Although the spectrum of ELECTRE-based approaches considered in this paper is very wide, it is by

no means exhaustive. Nonetheless, the source code of all modules is available and can be extended by

other researchers so that to meet their specific requirements. Moreover, the new modules for diviz can be

created in any programming language and only adjusted so that to read input and write output in the

XMCDA format. The useful extensions of the proposed framework include, but are not limited to:

• accounting for the inverse thresholds [15] in the concordance and discordance tests; currently, when

the threshold is defined with an affine function, we consider the direct thresholds which are defined

from the worst of the two performances;

• considering group (categorical) credibility indices which allow joint comparison of a single object

(e.g., alternative) with a set of other objects (e.g., a set of characteristic profiles defining the same

class) as proposed in the ELECTRE Tri-nC method [3];

• adding other exploitation procedures implementing, e.g., the assignment rules of THESEUS [9] or

partitioning procedure and constructing the complete pre-orders in the spirit of ELECTRE II [27].
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[6] Bouyssou, D., Marchant, T., Pirlot, M., Tsoukiàs, A., Vincke, P., 2006. Evaluation and decision models with multiple

criteria: Stepping stones for the analyst, 1st Edition. International Series in Operations Research and Management

Science, Volume 86. Springer, Boston.

[7] Cailloux, O., 2010. ELECTRE and PROMETHEE MCDA methods as reusable software components. In: Proceedings

of the 25th Mini-EURO Conference on Uncertainty and Robustness in Planning and Decision Making (URPDM 2010).

Coimbra, Portugal, pp. 359–368.
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