	efinitions, postulates			On Consequences	Fir O
--	------------------------	--	--	-----------------	----------

On SAT information content, its polynomial-time solvability and fixed code algorithms

Maciej Drozdowski

Institute of Computing Science, Poznań University of Technology, Poland

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This talk is about:

- information content of combinatorial problems
- information content of algorithms
- exponential amount of information in satisfiability problem (SAT)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- polynomial-time solvability of SAT
- Kolmogorov complexity of SAT

Related work

There is a connection between the combinatorial optimization **algorithm performance** and the **amount of information**:

- between the fraction of problem instances achieving certain histogram of values and the entropy of the histogram¹
- between entropy of the Markov chains representing behavior of simulated annealing algorithms and the convergence of the expected objective function value for maximum 3-SAT².
- A graph coloring *random sequential algorithm* visiting nodes in a random sequence and assigning the lowest feasible color cannot deterministically fail because it is connected to a source of unlimited amount of information³.

 $^{^1\}text{D.H.Wolpert, W.G.}$ Macready, No Free Lunch Theorems for Optimization, IEEE Trans. on Evolutionary Computation 1(1), April 1997.

²M.Fleischer, S.H.Jacobson, Information Theory and the Finite-Time Behavior of the Simulated Annealing Algorithm: Experimental Results, INFORMS Journal on Computing 11(1), Winter 1999.

³M.Kubale (ed.), Graph Colorings, American Mathematical Society, Providence, Rhode Island, 2004:

Introduction 00	Definitions, postulates ●000	SAT in poly-time O	Amount of Information in SAT	On Consequences	Finish O
SAT					

Definition

INPUT *I*: sums k_j , j = 1, ..., m, of binary variables, or their negations, chosen over a set of *n* binary variables $x_1, ..., x_n$.

REQUEST: find an assignment of 0/1 values to x_1, \ldots, x_n , i.e. vector \overline{x} , such that the conjunction $F(I, \overline{x}) = \prod_{j=1}^{m} k_j$ is 1. If such a vector does not exist then signal \emptyset .

|I| – instance I size, i.e., length of the string encoding I3-SAT – when clauses k_j comprise exactly three variables "yes" instance – if for instance I : $\exists \overline{x} : F(I, \overline{x}) = 1$ "no" instance – otherwise

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Amount of Information in SAT

On Consequences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finish

Fixed code algorithm

Definition

Fixed code algorithm is an algorithm which is encoded in limited number of immutable bits.

Thus, a fixed code algorithm:

- does not change its code during the runtime,
- has no access to a source of randomness,
- is deterministic.

|A| – the size of fixed code algorithm A code in bits.

Amount of Information in SAT

On Consequences Finish

Truly random bit sequence

Definition

Truly random bit sequence (TRBS) is a sequence of bits, that no bit can be computed on the basis of the other bits.

Thus:

- a TRBS cannot be compressed,
- the only way to represent it is to store it in its whole entirety,
- an N-bit TRBS has information content N bits.

Postulate

Truly random bit sequences exist.

Introduction 00 Definitions, postulates

SAT in poly-time

Amount of Information in SA

On Consequences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Information conservation

Postulate

An algorithm to solve a problem must be capable of representing at least the same amount of information as the amount of the information in the problem.

Postulate

Information is not created ex nihilo by fixed code algorithms.

Finish

Proposition

SAT can be solved in O(|I|) time, at least in principle, provided the algorithm for SAT has exponential amount of information.

SAT can be solved in O(|I|) time by referring to precomputed solutions, e.g.:

- use a binary tree with $2^{|I|}$ leaves and $2^{|I|} 1$ internal nodes,
- with pointers (addresses) of length |I| + 1,
- an internal node holds two pointers to its successors,
- a leaf holds a SAT solution (\overline{x} or \emptyset),
- the tree can be traversed top-down in O(|I|) time,
- such a data-structure has size $O(2^{|I|}|I|)$ because it has $2^{|I|+1} 1$ nodes holding at most 2(|I| + 1) bits.

Let:

 Σ – an alphabet

e – some reasonable encoding scheme over Σ ,

 Σ^+ – a set of strings encoding instances of SAT using scheme e over alphabet $\Sigma.$

SAT-search is an example of a string relation:

Definition

Search problem Π is a string relation

 $R[\Pi, e] = \begin{cases} a \in \Sigma^+ \text{ is the encoding of } I \text{ and} \\ (a, b) : b \in \Sigma^+ \text{ is the encoding of a solution} \\ \text{ under coding scheme } e \end{cases}$

SAT as a string relation

Definitions, postulates

Introduction

SAT in poly-time

Thus, SAT can be thought of as:

• a mapping from strings a = instances to strings b = solutions,

Amount of Information in SAT

- set of arcs from instances a to solutions b,
- an arc requires |I| + n bits of information,
- there are $2^{|I|}$ strings of size |I|,
- at least Ω(2^{|I|}) bits of information seem necessary to encode SAT as string relation R[SAT, e].
- However, SAT as a string relation can be *compressed*.

On Consequences

SAT and Fixed Code Algorithm

SAT in poly-time

Definitions, postulates

Introduction

• An algorithm solving SAT must provide an answer **for each** input instance.

Amount of Information in SAT

On Consequences

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- \Rightarrow An algorithm for SAT must represent a mapping from the instances to the solutions.
- The mapping requires a certain number of bits to be represented.
- This information must be provided in the input instance *I* and the algorithm *A* because information is not created *ex nihilo*.
- The amount of information in a fixed code algorithm A and in the input instance I is |I| + |A| bits.
- For sufficiently large |I|, the instance and the algorithm have less information than $\Omega(2^{|I|})$ bits necessary to represent SAT as a string relation.
- However, can SAT be compressed to fewer than $\Omega(2^{|I|})$ bits?

Introduction 00 $\begin{array}{c} \text{Definitions, postulates} \\ 0000 \end{array}$

SAT in poly-time

Amount of Information in SAT

On Consequences

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Finish 0

Exponential Information Content of SAT

Theorem

The amount of information in SAT grows exponentially with instance size.

Proof: the idea

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definitions, postulates

Introduction

Proof: Exponential number of "Yes" instances

SAT in poly-time

- \tilde{x}_i a variable x_i with or without negation
- n number of variables, 4n number of clauses
- Let there be 4 clauses for i = 1, ..., n: $k_{i1} = x_a + x_b + \widetilde{x}_i, k_{i2} = \overline{x_a} + x_b + \widetilde{x}_i,$

$$k_{i3} = x_a + \overline{x_b} + \widetilde{x_i}, k_{i4} = \overline{x_a} + \overline{x_b} + \widetilde{x_i}.$$

- No valuing of x_a, x_b alone makes the four clauses simultaneously equal 1.
- The four clauses may simultaneously become equal 1 only if $\widetilde{x_i} = 1$.

Amount of Information in SAT

On Consequences

- Satisfying formula $F = k_{11}k_{12}k_{13}k_{14}...k_{n4}$ depends on valuing of variables \tilde{x}_i for i = 1, ..., n.
- There are 2ⁿ different ways of constructing formula *F*, leading to 2ⁿ different "yes" instances with 2ⁿ different solutions.
- Variables x_a, x_b are chosen such that $a \neq b$ and $a, b \neq i$.

Introduction

Definitions, postulates

Proof: From the number of variables n to instance size |I| Uniform cost criterion:

- uniform criterion \Rightarrow each number has value limited from above by some constant K,
- it is necessary to record the number of variables in log K bits,

Amount of Information in SAT

- each binary variable induces 4 clauses of length $3 \log K$,
- negation of a variable, or lack thereof, is encoded on one bit within log K,
- \Rightarrow the length of the encoding of the instance data is $|I| = 4n \times 3 \log K + \log K = 12n \log K + \log K$
- \Rightarrow the number of possible unique solutions is $2^n = 2^{(|I| - \log K)/(12 \log K)} = 2^{|I|/(12 \log K)}2^{-1/12}$, which is $\Omega(2^{d_1|I|})$, where $d_1 = 1/(12 \log K) > 0$ is constant.

On Consequences

Introduction Definitions, postulates SAT in poly-time Amount of Information in SAT On Consequences Exponential Information Content of SAT Information Content of SAT Information Informati

Finish

Proof: From the number of variables n to instance size |l|Logarithmic cost criterion:

- the number of bits necessary to record n is $\lfloor \log n \rfloor + 1$
- [log n] + 2 bits are needed to encode the index of a variable and its negation, or lack thereof.
- $|I| = 12n(\lfloor \log n \rfloor + 2) + \lfloor \log n \rfloor + 1 \le 15n \log n = dn \ln n$, for $n > 2^{24}$ and $d = 15/\ln 2 \approx 21.6404$.
- an inverse function of $(cx \ln x)$, for some constant c > 0, is $\frac{x}{c}/W(\frac{x}{c})$, where W is Lambert W-function⁴.
- Lambert W function for big x can be approximated by $W(x) = \ln x \ln \ln x + O(1)$.

⁴Eric W. Weisstein, Lambert W-Function, MathWorld-A Wolfram Web Resource. [accessed in September 2015]. http://mathworld.wolfram.com/LambertW-Function.html

Definitions, postulates

Introduction

SAT in poly-time

Proof: From the number of variables n to instance size |I|Logarithmic cost criterion, cont.:

• given instance size |I|, we have $n \ge \frac{|I|}{d}/W(\frac{|I|}{d}) \approx \frac{|I|}{d}/(\ln \frac{|I|}{d} - \ln \ln \frac{|I|}{d} + O(1)) \ge \frac{|I|}{d}/(2\ln \frac{|I|}{d}) \ge \frac{|I|}{d}/(2\ln |I| - 2\ln d) \ge |I|/(2d\ln |I|),$

Amount of Information in SAT

On Consequences

Finish

• the number of possible unique solutions is $2^n \ge 2^{|I|/(d_2 \ln |I|)}$ where $d_2 = 2d = 30/\ln 2$.

Observe that $2^{|I|/(d_2 \ln |I|)}$ exceeds any polynomial function of |I| for sufficiently large |I|, because for a polynomial function $O(|I|^k)$, $\ln(|I|^k) < |I|/(d_2 \ln |I|)$.

Definitions, postulates

Introduction

SAT in poly-time

Proof: Length 2^n TRBS injection into SAT by wrapping TRBS around the 2^n instances

• Consider a truly random bit sequence (TRBS) of length 2^n .

Amount of Information in SAT

On Consequences

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Finish

- Consider j = 1,..., 2ⁿ instances with clauses k_{1i},..., k_{4i} and variables x_i as constructed above.
- If TRBS bit j is 1, then the jth instance is constructed as "yes" instance by setting x_i in k_{1i},..., k_{4i} consistently with j binary encoding.

Example: $j = 5, (j)_2 = 101$ set $\tilde{x}_0 = x_0$ in k_{10}, \dots, k_{40} ; $\tilde{x}_1 = \overline{x_1}$, in k_{11}, \dots, k_{41} ; $\tilde{x}_2 = x_1$ in k_{12}, \dots, k_{42} .

If TRBS bit j is 0, then the jth instance is constructed as "no" instance by setting some x_i variable in k_{1i},..., k_{4i} inconsistently with j binary encoding.
Example: set x₀ = x₀ in k₁₀ and x₀ = x₀ in k₂₀.

Proof: finishing

Finish

A TRBS of length 2^n was encoded in 3-SAT search problem.

The amount of information in 3-SAT grows at least in the order of

- $\Omega(2^{d_1|I|})$ for uniform criterion,
- $\Omega(2^{|I|/(d_2 \ln |I|)})$, for logarithmic cost criterion.

Finish

Fixed code algorithm capability

Proposition

Fixed code algorithm is not capable of representing SAT in polynomial time.

Proof.

- assume the runtime is p(|I|), where p is a polynomial,
- assuming limited random number acquisition speed v,
 v × p(|I|) bits of information come from the progress of time which is O(p(|I|)) bits of information,
- the total amount of information in instance *I*, the polynomial-time algorithm *A*, running in time p(|*I*|) is |*I*| + |*A*| + O(p(|*I*|)),
- which is less than Ω(2^{d₁|I|}) bits of information in SAT (Ω(2^{|I|/(d₂ ln |I|)}), for logarithmic cost criterion).

 Introduction
 Definitions, postulates
 SAT in poly-time
 Amount of Information in SAT
 On Consequences
 Fin

 Strange case of SAT Kolmogorov complexity

Kolmogorov complexity of some object⁵ (informally): "the length of a shortest computer program ... that produces the object as output."

Observation

SAT has constant Kolmogorov complexity.

⁵Kolmogorov complexity, https://en.wikipedia.org/wiki/Kolmogorov_complexity visited Feb. 13, 2024.

- We show that fixed code algorithms can recreate SAT as a set of instance-solution links of a string relation.
- SAT instances can be encoded as strings (n, m, k₁,..., k_m), where: n number of variables, m < 2²ⁿ number of clauses, k₁,..., k_m the clauses.

- \Rightarrow SAT instance can be perceived as a $(\log n + 2n + 2n \times 2^{2n})$ -bit binary number
- SAT solutions can be encoded on *n* bits

- ⇒ all SAT instance-solution pairs can be enumerated by fixed code Turing machine *E* adding 1 to a binary number on the tape.
- Since SAT∈**NP**, an algorithm *V* exists verifying given solutions in polynomial time.
- Hence, the amount of information required to reconstruct SAT is O(|E| + |V|).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Strange case of SAT Kolmogorov complexity

Introduction

Definitions, postulates

SAT in poly-time

- SAT has constant Kolmogorov complexity and at least exponential information content (Ω(2^{d1|I|}) for uniform or Ω(2^{|I|/(d2 ln |I|)}) for logarithmic criterion).
- Can the discrepancy between these two numbers be explained by the the existence of algorithm V and information extraction from the progress of time ??.

Amount of Information in SAT

On Consequences

- Informally, SAT has exponential compression efficiency and SAT is information-inflated by solutions enumeration and verification.
- Since by Cook's theorem SAT is a foundation of all NP-complete problems, can the above observations can be extended to all problems in class NP?

That's all. Thank you for listening.

Full text available from https://arxiv.org/abs/2401.00947

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @