
THE COMBINATORICSIN DIVISIBLE LOAD SCHEDULINGMaciej DROZDOWSKI∗, Marcin LAWENDA †Abstract. Divisible load scheduling problem is studied in this work. Thoughtractability of this problem in the practical cases is considered as its great advan-tage, we show that it has a hard combinatorial core. Computational hardness andpolynomial time solvability of some special cases are shown.Keywords: divisible loads, scheduling, computational complexity.1 IntroductionDivisible load theory (DLT) is a new branch in the scheduling theory. DLT is usedto represent communications and computations in distributed computer systems, ortransportation and production systems. It is assumed in DLT, that the job (e.g.computation, production) can be divided into parts of arbitrary size. These parts canbe processed in parallel by remote processing elements (computers, factories, etc.).The communication, or transportation, time must be taken into account. DLT wasproved to be a versatile tool for modeling distributed computations, analyzing variouscommunication topologies, and in performance evaluation. DLT predictions have beenveri�ed and con�rmed experimentally. Surveys of DLT can be found in [2, 3, 5, 7, 10].In the further discussion we will use distributed computing metaphor in divisible loadprocessing. In the earlier literature, computational tractability of the divisible loadmodel was considered as its great advantage. Though it is a justi�ed observation formany practical cases, we will show that divisible load scheduling problems have hardcombinatorial core.In this work we consider star interconnection (a.k.a. a single level tree) of set
P of processing elements. In the center of the star a computer P0 called originator

∗Institute of Computing Science, Pozna« University of Technology, ul.Piotrowo 3A, 60-965 Poz-na«, Poland. This research was partially supported by a grant of Polish State Committee for theScienti�c Research. Corresponding author.
†Pozna« Supercomputing and Networking Center, ul.Noskowskiego 10, 61-794 Pozna«, Poland.

(or master, server) is located. Originator distributes the load to processing elements
P1, . . . , Pm (slaves, workers, clients). The load is sent from the originator to a process-ing element in only one message. No other communications are performed. We assumethat the time of returning the results can be neglected. The reasons for this assump-tion are twofold. First, we intend to consider the simplest, rudimentary cases of DLT.Second, this assumption is made for the simplicity of presentation. It is not limitingthe generality or practicality of the considerations. It was shown in the earlier DLTliterature [2, 3, 7, 10] that the process of result collection can be incorporated in theDLT models.Assume that load chunk of size αi is processed by Pi, where αi is expressed inload units, e.g. bytes. The time of transferring this load to Pi is Si + αiCi. Siis communication startup time, Ci is reciprocal of bandwidth. The computationtime is pi + αiAi, where pi denotes computation startup time which elapses beforecomputations start, and Ai is processing rate (reciprocal of computing speed). Usingprocessor Pi bears cost fi + αili. If memory size is limited to Bi load units, thenload chunk must not exceed it, i.e. αi ≤ Bi. Due to the existence of other moreurgent computations, or maintenance periods, the availability of processor Pi may berestricted to some interval [ri, di]. By such a restriction we mean that computationsmay take place only in interval [ri, di]. A message with the load may arrive, orstart arriving before ri. We assume that computations start immediately after thelater of two events: ri, or the load arrival. The computation time pi + αiAi must�t between the latter of the above two events, and di. Scheduling divisible loadcomputations involve three decisions: selecting subset P ′ of the used processors fromset P , sequencing activation of processors in P ′, dividing total load V into chunks αifor Pi ∈ P ′. The goal is to schedule divisible load computations such that schedulelength Cmax = maxPi∈P′{ti} is minimum, where ti is the completion time of thecomputations on Pi, and processing cost G =

∑

i∈P′(fi + αili) is bounded. Analternative formulation of the problem is to �nd a schedule with minimum cost G,such that its length Cmax is limited.The combinatorial nature of DLT has been studied before. In [1] it has been shownthat the sequence of processor activation in a star network a�ects schedule length. Itwas proved in [1, 2], and independently in [4], that when there are no communicationstartup times (∀Pi
Si = 0) the processors have to be activated according to the order ofdecreasing bandwidth of communication links. The case with non-negligible startuptimes (∀Pi

Si > 0) was studied in [4, 12]. It was determined in [4], and independentlyin [12], that if communication parameters are identical (i.e. Ci = C, Si = S for
i = 1, . . . , m) then for the shortest schedule the order of decreasing processor speedshould be the order of processor activation. This result was obtained under conditionthat all processors in P receive non-zero load and thus, can participate in processing.In [4] it was determined that the problem of divisible load scheduling on a systemwith startup times and multiple buses is NP-hard. The case of non-negligible startuptimes and limited memory bu�ers was shown to be NP-hard in [8]. The problem ofoptimizing the cost of a schedule has been studied in [6, 11]. Heuristic rules have beenproposed in [6, 11] to select the set of used processors, and determine load assignment,e�ciently in terms of cost and schedule length.

The rest of this paper is organized as follows. In Section 2 we demonstrate thatthe problem of divisible load scheduling on a star network can be solved in polynomialtime for G, and for Cmax criteria, provided that the set of used processors and thesequence of their activation are given. In Section 3 we show that various special casesof these problems are NP-hard. In the appendix we summarize the main notationused in this paper.2 Fixed processor activation sequenceThe problem we consider is a bi-criterial optimization problem. The criteria areschedule length Cmax, and processor usage cost G =
∑

i∈P′(fi + αili), where P ′ is aset of the exploited processors. This bi-criterial problem can be relaxed to two simplerproblems: (i) minimization of Cmax on condition that G ≤ G, (ii) minimization of
G on condition that Cmax ≤ Cmax, where G is a predetermined upper bound onthe schedule cost, and Cmax is a given upper bound on the schedule length. Bothproblems can be solved in polynomial time by use of linear programming, providedthat the set P ′ of used processors and the sequence of their activation is known. Let usconsider problem (i) �rst. We assume that |P ′| = m′, and without loss of generality,the sequence of processor activation is P1, P2, . . . , Pm′ . Then, the linear program for(i) is as follows:minimize Cmaxsubject to:

i
∑

k=1

(Sk + αkCk) + pi + αiAi ≤ Cmax i = 1, . . . , m′ (1)
i

∑

k=1

(Sk + αkCk) + pi + αiAi ≤ di i = 1, . . . , m′ (2)
ri + pi + αiAi ≤ Cmax i = 1, . . . , m′ (3)
ri + pi + αiAi ≤ di i = 1, . . . , m′ (4)
m′

∑

j=1

(fj + αj lj) ≤ G (5)
0 ≤ αj ≤ Bj j = 1, . . . , m′ (6)

m′

∑

j=1

αj = V (7)In the above formulation constraints (1)-(4) guarantee that computations are per-formed in an admissible interval. The left side of inequalities (1), (2) is the earliestpossible completion time of the computations provided that they are started imme-diately after the end of the load transfer. The left side of inequalities (3), (4) is theearliest possible completion time of the computations provided that they are started

immediately after processor release time. By inequality (5) total cost of the scheduledoes not exceed the limit G. Constraints (6) ensure that memory bu�er size is notexceeded, and by (7) all the load is processed. Consider an example.Example. m′ = 4, V = 20, parameters of the processor system are the following:parameter \ processor P1 P2 P3 P4

Ai 2 0.5 1 2
Bi 10 10 10 20
Ci 1 0.1 2 2
Si 1 1 1 2
pi 0 1 1 0
di 10 20 30 200
ri 0 10 20 20
fi 1 5 3 2
li 0.5 1 0.3 1The solution for this instance depends on the value of cost limit G. This is demon-strated for some example values of G in the following table:

G α1 α2 α3 α4 Cmax

≥25.7669 3 10 5.3333 1.3333 26.33324.25 3 5 7.5 4.5 41.524.1334 3 0.00285 7.6666 9.3306 60.656
<24.1334 infeasibleObserve that schedule length increases as the limit put on the costs decreases. For

G ≥ 25.7669 inequality (5) is ine�ective. For G < 24.1334 the problem is infeasible.The schedule for G ≥25.7669 is presented in Fig.1. The vertical arrows indicate theend of communication from the originator to a certain processor.Problem (ii) can be also solved in polynomial time by modifying linear program (1)-(7). Namely, the roles of the objective function and constraint (5) must be exchanged.Thus, to solve problem (ii) the minimized objective function should be ∑m′

j=1
(fj +

αj lj), while inequality (5) should be replaced by Cmax ≤ Cmax. Both problems canbe solved provided that we know set P ′ of active processors and the sequence oftheir activation. In the next section we will demonstrate that determining them iscomputationally hard.3 Complexity of divisible load schedulingIn this section we will demonstrate that even restricted cases of scheduling divisibleload computations in star networks are computationally hard. All the cases we studyare in class NP because it is enough to guess set P ′ of the used processors, and thesequence of their activation. Then, the load sizes can be calculated in polynomial

P1

P2

P3

P4

r ,d2 1r1 r ,r ,d3 4 2

S1 a1 1C
a2

2C

a1 1A

a2 2A

a3 3A

a4 4A

a3 3C a4 4CS2 S3 S4

p2

p3

0 2 4 6 8 10

unavailable

unavailable

unavailable

unavailableunavailable

12 14 16 18 20 22 24 26

P0

Figure 1: Schedule for the example with cost limit G ≥25.7669.time using the methods presented in Section 2. We will provide polynomial timetransformations from an NP-complete problem Partition de�ned as follows [9]:Instance: A �nite set E = {e1, . . . , eq} of positive integers.Question: Is there a subset E′ ⊆ E such that
∑

i∈E′

ei =
∑

i∈E−E′

ei =
1

2

q
∑

i=1

ei = F? (8)We will use DLS abbreviation for divisible load scheduling. Some parameters are notbinding for some of the studied cases of DLS. We do not repeat de�nitions of suchparameters, and unless speci�ed otherwise, it is assumed that Bi = di = ∞, Ci =
fi = li = pi = ri = 0, for all Pi ∈ P . In the following w present NP-hard cases ofDLS problem.DLS with processor release times (DLSPRT)Instance: Heterogeneous star P , load size V , time interval T , non-zero processorrelease times [r1, . . . , rm].Question: Can load V be processed on P in at most T units of time?Theorem 1 Problem DLSPRT is NP-hard.Proof. The proof is based on the polynomial time transformation from the partitionproblem. The instance of DLSPRT is constructed in time O(q) as follows: m = q; Ai =
1

ei
, Ci = 0, Si = ei, ri = F for i = 1, . . . , q; T = F + 1, V = F .Suppose Partition has a positive answer. Then the processors corresponding tothe elements in set E′ receive the load in ∑

i∈E′ Si =
∑

i∈E′ ei = F = T − 1 unitsof time. Their total speed is ∑

i∈E′

1

Ai
=

∑

i∈E′ ei = F . Thus, V = F units of loadcan be processed in the last time unit of the schedule (cf. Fig.2). On the other hand,when the answer to DLSPRT is positive then some set P ′ of processors is activatedin at most T = F + 1 units of time, to process at least F units of the load. Note

S1 Si

1_
A=e

i
i

ei

TF

F

1 time

load

.

.
.
.

.
.
.

Figure 2: Illustration to the proof of Theorem 1that all processors become available at ri = T − 1. Since ∀Pi∈PSi ≥ 1, any processoractivated in the last time unit of the schedule does not process any load. Thus,the duration of all communications to the processors in P ′ does not exceed T − 1:
∑

Pi∈P′ Si =
∑

Pi∈P′ ei ≤ T − 1 = F . The whole load V is processed in the lasttime unit of the schedule because processors become available at ri = T − 1. Hence,
V =

∑

Pi∈P′

1

Ai
=

∑

Pi∈P′ ei ≥ F . As 1

Ai
= Si = ei, for i = 1, . . . , m, the answer topartition is also positive. 2Before proceeding to the next special case of DLS let us study the amount ofload that can be distributed, and processed on a star network with Ci = 0, andprocessors available until �nite time di, for i = 1, . . . , m. Let us assume that thesequence of processor activation is �xed, but the set of processors to be activated isyet to be decided. Without loss of generality, let the sequence be P1, . . . , Pm. Letbinary variable xi = 1 denote that processor Pi has been activated in the sequence

P1, . . . , Pm, and xi = 0 that processor Pi is not activated, for i = 1, . . . , m. Theamount of load V that can be distributed, and processed in time T is
V =

m
∑

i=1

xidi

Ai

−

m
∑

1≤i≤j≤m

xixj

Si

Aj

(9)In the above equation term ∑m

i=1

xidi

Ai
is the amount of load that would be processedby the selected processors provided that they were activated simultaneously at thebeginning of the schedule (i.e. communication is timeless). Still, the communicationis not timeless. Startup time Si of the selected processor Pi delays the activationof all processors Pj for j ≥ i . Therefore, Si decreases the total load that could beprocessed by xi

∑m

j=i xj
Si

Aj
. Term ∑m

1≤i≤j≤m xixj
Si

Aj
in (9) is the amount of lost loadthat could not be processed due to the communication delays. Equation (9) has agraphical interpretation shown in Fig.3. The shaded area is the amount of lost load

∑m

1≤i≤j≤m xixj
Si

Aj
.DLS with processor deadlines (DLSPD)Instance: Heterogeneous star P , load size V , �nite processor deadlines [d1, . . . , dm].Question: Can load V be processed on P before the deadlines [d1, . . . , dm]?

S1

d1

Si Sm

di

dm

1_
Ai

1_
Am

1_
A1

time

speed

. . .

. . .

.

. . .

.
.
.

.
.
.

Figure 3: Illustration to the proof to Theorem 2Theorem 2 Problem DLSPD is NP-hard even if the sequence of processor activationis known.Proof. We assume that the sequence of processor activation is given. Without lossof generality it is P1, . . . , Pm. We will proveNP-hardness of DLSPD by a polynomialtime transformation of Partition problem. The transformation is as follows: Si =
2ei, Ai = 1

2ei
, di = 2F + ei, for i = 1, . . . , m. V = 2F 2. By substituting these valuesin equation (9) we obtain:

V =

4F

m
∑

i=1

xiei + 2

m
∑

i=1

xie
2

i − 4

m
∑

1≤i≤j≤m

xixjeiej =

4F

m
∑

i=1

xiei + 2

m
∑

i=1

x2

i e
2

i − 4

m
∑

i=1

x2

i e
2

i − 4

m
∑

1≤i<j≤m

xixjeiej =

4F

m
∑

i=1

xiei − 2

m
∑

i=1

x2

i e
2

i − 4

m
∑

1≤i<j≤m

xixjeiej =

2F 2 − 2(
m

∑

i=1

xiei − F)2 (10)In the second line of the above equation we used the fact that xi = x2

i for xi ∈ {0, 1}.By activating the processors corresponding to the elements in set E′ in partitionproblem we have xi = 1 for i ∈ E′, and xi = 0 otherwise, in formula (10). If thereis a positive answer to partition, then ∑m

i=1
xiei =

∑

i∈E′ xiei = F . Therefore,
V = 2F 2 units of load are distributed and processed before processor deadlines, asdemonstrated in equation (10). And vice versa, when a feasible schedule exists inwhich V = 2F 2 units of the load is processed, then by inequality (10), it is possibleonly if ∑m

i=1
xiei = F , and the answer to partition is positive. 2

DLS with processor startup times (DLSPST)Instance: Heterogeneous star P , load size V , time interval T , non-zero processorcomputation startup times [p1, . . . , pm].Question: Can load V be processed on P in time at most T ?Theorem 3 Problem DLSPST is NP-hard.Proof. This theorem can be proved by a modi�cation of the proof of Theorem2. In Theorem 2 the maximum computation time available on Pi, provided thatcommunication is timeless, is di. In the case of problem DLSPST this amount oftime is equal to T − pi. By setting T = 3F , and pi = F − ei > 0 we obtain that
T − pi = 2F + ei > 0. Note that T − pi here is equal to di in the proof of Theorem2. If we set other parameters of P ′ as in the proof of Theorem 2, then the rest of thisproof follows from the proof of Theorem 2. 2DLS with fixed processor charges (DLSFPC)Instance: Heterogeneous star P , load size V , time interval T , non-zero charges
[f1, . . . , fm] for using the processors, total cost G.Question: Can load V be processed on P in time at most T and cost at most G?Theorem 4 Problem DLSFPC is NP-hard.Proof. The problem is based on the polynomial transformation of the partition:
m = q, T = 1, G = F, V = F, Ai = 1

ei
, Ci = Si = 0, fi = ei, for i = 1, . . . , m.Note that communications are timeless, and processors have one time unit for com-putations. Thus, the load processed is V =

∑

Pi∈P′

1

Ai
=

∑

Pi∈P′ ei, where Pi ∈ P ′is the set of activated processors. The cost of activating these processors is G =
∑

Pi∈P′ fi =
∑

Pi∈P′ ei. Thus, if the cost is G ≤ F , and the size of processed load
V ≥ F , then a positive answer to partition must exist. And vice versa, positiveanswer to partition implies a positive answer to DLSFPC. 2Maximum Speed Problem (MS)Instance: Heterogeneous star P , time interval T , speed R.Question: Is there a subset P ′ of P with total speed at least R that can be activatedin time at most T ?Theorem 5 MS problem is NP-hard.Proof. MS problem is in NP because NDTM must guess set P ′, of processors. Thenit is enough to check if ∑

i∈P′ Si < T , and ∑

i∈P′

1

Ai
> R.An instance of the MS Problem can be constructed on the basis of Partitioninstance in the following way: m = q; Ai = 1

ei
, Ci = 0, Si = ei for i = 1, . . . , q.

R = F, T = F . The instance can be constructed in polynomial time O(q).Suppose the answer to the Partition problem is positive. Then, there is set E′satisfying equation (8). If we activate the processors corresponding to the elementsin set E′, then their total speed is ∑

i∈E′

1

Ai
=

∑

i∈E′ ei = F = R. The time neededto activate these processors is ∑

i∈E′ Si =
∑

i∈E′ ei = F = T . Thus, the set ofprocessors satisfying the conditions of MS exists.

On the other hand, let us assume that the answer to MS problem is positive.Hence, there is set P ′ such that ∑

i∈P ′

1

Ai
=

∑

i∈P ′ ei ≥ R = F , and ∑

i∈P ′ Si =
∑

i∈P ′ ei ≤ T = F . Consequently, ∑

i∈P ′ ei = F and the answer to the Partitionproblem is also positive. 2DLS with communication startup times (DLSCST)Instance: Heterogeneous star P , load size V , time interval T , processing rates Ai,startup times Si, are positive for all processors.Question: Can load V be processes on P in time at most T ?Conjecture 6 Problem DLSCST is NP-hard.We conjecture that problem DLSCST is NP-hard due to its similarity to MSproblem: on one hand the activated processors must have su�cient speed to processgiven volume of load V , on the other hand their work time T is limited.For the end of this section let us consider a special case of DLSCT. When Si =
1

Ai
, Ci = 0, for i = 1, . . . , m, this problem can be solved in pseudopolynomial time.Though this case seems to be very peculiar from the practical point of view, but stillit may give some insight into the combinatorial nature and the complexity of theproblem.Proposition 7 DLSCT problem can be solved in pseudopolynomial time if Si =

1

Ai
, Ci = 0 for i = 1, . . . , m.Proof. Consider formula (9). When Si = 1

Ai
for all i, then the load processed intime T is

V =
m

∑

i=1

xiT

Ai

−

m
∑

1≤i≤j≤m

xixj

Si

Aj

=

T

m
∑

i=1

xiSi −

m
∑

1≤i≤j≤m

xixjSiSj =

T

m
∑

i=1

xiSi −
m

∑

i=1

xiS
2

i −
m

∑

1≤i<j≤m

xixjSiSj =

T

m
∑

i=1

xiSi −
1

2

m
∑

i=1

x2

i S
2

i −

m
∑

1≤i<j≤m

xixjSiSj −
1

2

m
∑

i=1

xiS
2

i −
1

2
T 2 +

1

2
T 2 =

1

2
T 2 −

1

2
(T −

m
∑

i=1

xiSi)
2 −

1

2

m
∑

i=1

xiS
2

i (11)In deriving the above equation we used the observation that xi = x2

i for xi ∈ {0, 1}.Note that V does not depend on the sequence of the processor activations. It dependsonly on the set of used processors for which xi = 1 because only these processors

S1 T

T

X

Si Sj

1_
A=S

i
i

1_
A=S

j
j

1_
A=S

1
1

time

speed

. . .

. . .

.

. . .

.
.

.
.

.
.

Figure 4: Illustration to Proposition 7contribute to ∑m
i=1

xiSi, and ∑m
i=1

xiS
2

i . The sequence of processor activation isimmaterial for these sums.The maximum load V can be found by calculating function H(j, τ) which is theminimum sum of ∑j

i=1
xiS

2

i such that ∑j

i=1
xiSi = τ . Function H(j, τ) can becalculated using the following recursive equations:

H(j, τ) =

H(j − 1, τ) for τ < Sj

min

{

H(j − 1, τ),
H(j − 1, τ − Sj) + S2

j

for τ ≥ Sj
(12)for j = 1, . . . , m, τ = 1, . . . , T . H(0, τ) = ∞, for τ = 1, . . . , T , H(j, 0) = 0 for

j = 0, . . . , m. Then, the load processed for particular values of j, τ is V (j, τ) =
min{0, 1

2
(T 2 − H(j, τ) − (T − τ)2)}. The optimum load is found for τ ′ ∈ {1, . . . , T}such that V (m, τ ′) is maximum. The set of processors to be exploited can be foundby backtracking using equation (12), from the value of H(m, τ ′) corresponding withthe optimum V (m, τ ′). A processor is used in computation if H(j, τ) = H(j − 1, τ −

Sj) + S2

j , then we backtrack recursively to H(j − 1, τ − Sj), and so on until locating
H(j′, τ ′) ∈ {0,∞}. This method can be implemented to run in time O(mT). 2Based on formula (11) we can draw one more observation. The problem of max-imization of T 2 − (T −

∑m

i=1
xiSi)

2 −
∑m

i=1
xiS

2

i has a geometric interpretation (seeFig.4). Suppose a square Y of area T 2 is given. The diagonal sequence of squaresin Fig.4 is equivalent to ∑m
i=1

xiS
2

i . These squares must �t in rectangle Y . Thelast square X has area (T −
∑m

i=1
xiSi)

2. Maximization of T 2 − (T −
∑m

i=1
xiSi)

2 −
∑m

i=1
xiS

2

i is equivalent to determining a subset of {S1, . . . , Sm} such that the sumof the areas of the squares along the diagonal is minimal. To our best knowledge, thecomplexity of this problem, remains unknown.

4 ConclusionsIn this paper we studied the problem of divisible load scheduling on a star networkfor the schedule length and the schedule cost criteria. It has been demonstratedthat the optimum load distribution can be found in polynomial time by using linearprogramming, on condition that the set of used processors and the sequence of theiractivation are known. However, in many cases determining this set and the activationorder is computationally hard.References[1] Bharadwaj V., Ghose D., Mani V., Optimal Sequencing and Arrangement in Dis-tributed Single-Level Tree Networks with Communication Delays, IEEE Trans.on Parallel and Distributed Systems, 5, 9, 1994, 968-976.[2] Bharadwaj V., Ghose D., Mani V., Robertazzi T., Scheduling divisible loads inparallel and distributed systems, IEEE Computer Society Press, Los Alamitos,1996.[3] Bharadwaj V., Ghose D., Robertazzi T., Divisible load theory: A new paradigmfor load scheduling in distributed systems. Cluster Computing, 6, 1, 2003, 7-17.[4] Bªa»ewicz J., Drozdowski M., Distributed processing of divisible jobs with com-munication startup costs, Discrete Applied Mathematics, 76, 1-3, 1997, 21-41.[5] Bªa»ewicz J., Drozdowski M., Ecker K., Management of Resources in ParallelSystems, in: J.Bªa»ewicz, K. Ecker, B. Plateau, D. Trystram, Handbook on Par-allel and Distributed Processing, Springer, Heidelberg, 2000, 263-341.[6] Charcranoon S., Robertazzi T., Luryi S., Load sequencing for a parallel process-ing utility, Journal of Parallel and Distributed Computing, 64, 1, 2004, 29-35.[7] Drozdowski M., Selected problems of scheduling tasks in multiprocessor computersystems, Pozna« University of Technology Press, Series: Monographs, No.321,Pozna« (1997). Also: http://www.cs.put.poznan.pl/�maciejd/txt/h.ps[8] Drozdowski M., Wolniewicz P., Optimum divisible load scheduling on heteroge-neous stars with limited memory, 2002, accepted in European Journal of Opera-tional Research.[9] Garey M.R., Johnson D.S., Computers and Intractability: A guide to the theoryof NP-completeness, Freeman, San Francisco, 1979.[10] Robertazzi T., Ten reasons to use divisible load theory, IEEE Computer, 36, 5,2003, 63-68.[11] Sohn J., Robertazzi T., Luryi S., Optimizing computing costs using divisible loadanalysis, IEEE Trans. on Parallel and Distributed Systems, 9, 3, 1998, 225-234.

[12] Xiaolin L., Studies on Divisible Load Scheduling Strategies in Distributed Com-puting Systems: Design, Analysis and Experiments, PhD thesis, National Uni-versity of Singapore, 2001.Appendix. Notation
Ai - processing rate (reciprocal of speed) of Pi,
αi - load assigned to Pi,
Bi - memory size of Pi,
Ci - communication rate (reciprocal of bandwidth) of the link to Pi,
Cmax = max{ti} - schedule length,
Cmax - an upper limit on schedule length,
di - deadline of Pi, upper limit of Pi availability for computations,
E - set of integers in Partition problem,
ei - value of element i in Partition problem,
F = 1

2

∑q
i=1

ei - a number de�ned for Partition problem,
fi - �xed part of the cost of using processor Pi,
G =

∑

i∈P′(fi + αili) - total cost of the schedule on processors in set P ′,
G - an upper limit on cost G

li - coe�cient of the linear part of the cost of using Pi,
m - number of processing nodes,
P - set of available processing nodes,
P ′ - set of nodes participating in the computations,
Pi - processing element i,
pi - computation startup time on processor Pi,
q - the number of elements in partition problem,
ri - release time of Pi, lower limit of Pi availability for computations,
Si - communication startup time of the link to Pi,
T - upper limit of the schedule length,
ti - completion of the computations on Pi,
V - total load size.

