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Divisible load theory

Divisible load theory (DLT) – is a performance and optimization
(scheduling) model of data-parallel applications.

In DLT it is assumed that:

1 computations can be divided into parts of arbitrary sizes,

2 these parts can be executed independently in parallel.

Load – is usually some data to be processed.
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Divisible load theory

Consequently in divisible computations:
⇒ grain of parallelism is small,
⇒ data dependencies are negligible,
⇒ schedule optimization consists in adjusting sizes of the
processed load parts to the speeds of communication and
computation.

Examples of divisible applications:
• distributed searching for patterns in text, audio, graphic etc. files,
• data retrieval systems,
• database, measurements, image processing,
• some linear algebra algorithms, and simulation.1

1more on the applications in the following
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Basic scheduling model
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We assume a single level tree (a.k.a. star) interconnection.
• P0 - originator (master), distributes load, does not compute,
• P1, . . . ,Pm - processors (workers) receive and process the load
• V - load size (e.g. in bytes)
• Si + xCi - communication delay for sending load x to Pi

• Aix - computation time for load x on Pi

For the simplicity of the exposition let us assume (for a moment)
that results return time is negligible.
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A schedule with negligible return times
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αi - size of load part sent to processor Pi

Cmax - schedule length

The challenge: choose αi s such that Cmax is the shortest possible.

Optimality principle: since result return time is negligible, all
computations finish at roughly the same time.
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Solution by solving a system of linear equations

αiAi = Si+1 + αi+1(Ai+1 + Ci+1) for i = 1, . . . ,m − 1 (1)
m∑
i=1

αi = V (2)

The above system of linear equations can be solved in O(m) time
due to its special structure. Closed-form solutions exist.∗

Note that if Si > 0, then a feasible solution (i.e. with ∀αi > 0)
may not exist, because load size V is too small to activate all
processors.

* For example, αi (for i = m, . . . , 1) can be expressed as a linear function kiαm + li of αm , where km = 1, lm = 0,

ki = ki+1
Ai+1+Ci+1

Ai
, li =

Si+1
Ai

+ li+1
Ai+1+Ci+1

Ai
. Then we have

αm =
V −

∑m
i=1 li∑m

i=1 ki
. (3)
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Why is DLT an attractive scheduling model?

There are many models for scheduling parallel applications.
Is DLT any better?

The advantages of DLT are as follows:

DLT is comprehensive – many details of computing platform
can be represented in DLT, e.g.:
– alternative load scattering algorithms,
– alternative communication interconnection topologies,
– heterogeneity of the system,
– memory limitations.

DLT is a good compromise between complexity and accuracy.

DLT is computationally easy.2

2
Easy in the basic formulations, but NP-hard in heterogeneous cases with fixed time and cost overheads.
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DLT validity

Is DLT correctly representing real-world applications?

Let us consider the following verification framework:

Measure system, and application parameters Ai ,Si ,Ci for
machines i = 1, . . . ,m.

Split the load size V into parts of sizes α1, . . . , αm according
the model formulas (1)-(3).

Calculate expected (theoretical) execution time CT
max .

Execute the application with the calculated work split
α1, . . . , αm and measure real schedule length CR

max .

How far is CR
max from CT

max?
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How to represent returning of the results
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Figure: a)LIFO, b)FIFO orders of returning results.

β(α) is the size of the results as a function of the input load size.
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Model relative error
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Platform: Transputer system (ca. 1996)
Application: search for a pattern in a text file, LIFO
Error: < 1% feasible.
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Model relative error
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Platform: IBM SP2, PVM (ca. 1997)
Application: LZW compression
Error: 9− 13% feasible.
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Model relative error
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Platform: Windows NT, MPI (ca. 1999)
Application: database join
Error: < 10% feasible.
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Model relative error
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Platform: Silicon Graphics Origin 3000, various communication
technologies (ca. 2003)
Application: search for pattern in a text file
Error: < 5% feasible.
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Conclusion on model accuracy

Conclusion:

overall accuracy of DLT model is good

usually accuracy improves with problem size V
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Why MapReduce?

In this part of the presentation we intend to show, on the example
of MapReduce, that DLT can be applied to analyze a wide class of
Big Data applications.
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What is MapReduce

• MapReduce is a programming model for processing large data
sets on big numbers of computers, introduced by Google [DG04].

• MapReduce exploits data parallelism.

• Popular MapReduce implementations is Apache Hadoop.

• MapReduce is a component of the NoSQL databases (CouchDB,
HBase, MongoDB) and libraries for big data processing (Apache
Giraph, MRQL).
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What is MapReduce

MapReduce applications have two steps:

In the Map step a Map function transforms the input dataset,
into a set of intermediate (key1, value1) pairs.

In the Reduce step:
- the intermediate values are sorted by key1,
- a Reduce function merges the intermediate pairs with equal
value of key1, to produce pairs (key1, value2).
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Examples of MapReduce Application

Example 1: Word frequency in a set of documents.
- Map function emits intermediate pair (word , 1) for each word in
the input file(s).
- Reduce function sorts intermediate pairs by word , sums the 1s for
a given word , and produces pairs (word , count).

Example 2: Inverted index.
In the inverted index computation all documents comprising
certain word must be identified.
- Map function emits pairs (word , docID), where docID is a
document identifier (e.g. a URL).
- Reduce function sorts all (word , docID), and emits a pair
(word , list docIDs), where list docIDs is a list of docIDs.
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Execution Overview of MapReduce

Network
file system

Input load Map phase Reduce phaseintermediate files
(on mapper disks)

.
.
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....

....split 1

split V

Mapper 1 Reducer 1

fileforReducer 1

outputfile 1

outputfile 2

outputfile r

fileforReducer 1

fileforReducer 2

fileforReducer r

fileforReducer r

Mapper 2 Reducer 2

Mapper m Reducer r

(on mapper disks)

• Load is split into load units (size lu).

• The output of the Map function is partitioned into r files.

• Each reducer processes certain range of (key1, ...) values.
Usually something like hash(key1) mod r is used.
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Assumptions & Notation

Here the input files are divisible

Pi processor i , processors are identical

` bisection width - maximum number of communication
channels concurrently in use

1/C communication speed for two processors in the ”empty”
network

`/C maximum total bandwidth for concurrent channels in the
whole network

m number of mappers

r number of reducers

V the total size of load to be processed (e.g. in bytes)

lu size of a load unit (16-64MB [DG04])
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MapReduce Schedule Structure
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Startup

mapper computation reducer computation

reducer computation

reducer computationmapper computation

mapper computation

startup

mappers compute
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Mapper and the reducer codes are uploaded together.

S - computation startup time for each processor (mS for all).
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Mapping

Map computation for a single load unit

reading computing

Pi

si ci*lu

Ai*lu

amap
*lu . . .. . .

amap, ci , si ’microscopic’ computing rate, communication
rate, communication startup time for processor Pi ;
in seconds per byte (amap, ci ), and seconds (si );

Ai = si
lu + amap + ci ’macroscopic’ computing rate of

processor Pi executing a mapper application;

αi size (e.g. in bytes) of load assigned to Pi ;

γ mapper result multiplicity fraction, γαi is size of
Pi output;
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Mapper-Reducer load transfer (shuffle)

mapper computation reducer computation

reducer computation

reducer computationmapper computation
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reducer reads reducer writes

reducer writes
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γαi/r size of reducers’ input from mapper Pi , i = 1, . . . ,m,

γV /r total size of the input for each reducer,

γαiC/r time of transferring load αi from mapper Pi to a reducer
without bandwidth limitation.

Only one channel can be opened from a mapper, and to a reducer.
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Reducing

mapper computation reducer computation

reducer computation

reducer computationmapper computation

mapper computation

startup

mappers compute

mappers to reducers transfer

reducers compute

reducers store results
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reducer writes
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sred reducer computation startup time

ared reducer computing rate (includes storing results)

τ(x) = ared(x log x) reducer computing time vs input size x

tR = sred + τ(γV /r) reducers running time

Storing reducer results in the network file system is contention-free.
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Observations

Our goal is to:
- partition input load V into mapper chunks α1, . . . , αm

- schedule mapper to reducer communications (shuffle phase),
- so that the whole schedule length T is as short as possible.
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Communication Schedule
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Load Partitioning

Partitioning of the load can be calculated from the linear program:

minimize titv(m,r)+1 (4)

iS + Aiαi = ti for i = 1, . . . ,m (5)

γC

r
αk ≤ ti+1 − ti for i = 1, . . . , itv(m, r), k ∈ vti(i) (6)

m∑
i=1

αi = V (7)

where:
itv(i , j) - the number of the interval in which mapper i and

reducer j communicate (can be tabulated in O(mr))
vti(i) - the set of mappers sending messages in interval i
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Modeling Setting

In this section we give examples of MapReduce performance
analysis using the above scheduling model.

Reference application and system parameters:
lu =16E6 (load unit size 16 MB),
m = 1000 (1000 mappers),
r = ` = 100 (100 reducers, at most 100 concurrent channels),
S = 1 (application startup 1s per processor),
C = cmap =1E-6 (communication speed 1MB/s),
γ = 0.1 (mapper output is 10% of the input size),
amap = ared =1E-5 (computing rate 10µs/Byte),
smap = sred =1E-2 (computation startup time for each load unit on

the mappers, and for the reducers are 10ms),
V = 1E15 (load size is 1PB).
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Speedup vs m, r
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Observation:
- with growing m speedup levels-off around r ,
- speedup grows with increasing r .
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Speedup vs m, γ
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Observation:
- the smaller γ is, the less results are transferred to the reducers,
⇒ when γ is small, systems with m� r can be effectively used,
⇒ γ is a key parameter for scalability of MapReduce computations.
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Speedup vs bisection width ` and communication rate C
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Observation:
- the faster the communication is (the smaller C is) the smaller the
impact of the bisection width `.
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Observations on DLT & MapReduce

DLT can be applied to analyze MapReduce computations.

The amount of results γV produced by the mappers is a key
parameter controlling performance of MapReduce.

γ ≈ 1⇒ number of mappers m need not be greater than the
number of reducers r .
γ ≈ 1⇒ MapReduce computations scale well with the number
of reducers r .

Increasing bisection width ` has similar effect as increasing
communication speed 1/C .
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Why analyzing energy consumption?

Example
Average power usage of the first 9 supercomputers from the
current (November 2021) top500 list is over 10MW.

At the current prices in Poland this would cost ≈ 31k EUR daily,
and ≈11.5M EUR annually.
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Why analyzing energy consumption?

• Energy consumption is a factor limiting growth of contemporary
data centers, and supercomputing facilities.

• Economizing on energy use is an indispensable element of the
future high performance computing.

• Divisible Load Theory can be used as an analytical tool to model
and economize on energy usage.
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Simple model of energy usage in DLT
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Originator is not computing here.

Schedule length T (m) and load split α1, . . . , αm can be computed
as explained in the ”Basics” Section.
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Definitions, energy use features

We assume:
• the shortest schedule ⇒ we know T (m), α1, . . . , αm

• energy is split into:
→ idle state energy
→ running state energy used beyond the idle state.

PC power consumed by active processors,

PN power consumed by active network equipment,

k reduction in energy consumption in the idle state, i.e.
PC/k , and PN/k is the power consumed in the idle
state,

EI idle state energy,

ERC energy beyond the idle state consumed when
processors are running,

ERN energy beyond the idle state consumed when network
is running.
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Deriving energy consumption, originator not computing

Idle state - base energy consumption
During the whole schedule of length T (m), the originator, m idle
processors and the idle network consume energy

EI = T (m)((m + 1)PC + PN)/k . (8)

Running state - network
Processor activation and load distribution time is

Tcomm =
m∑
i=1

(S + Cαi ) = mS + CV . (9)

The energy consumed above the network idle state is

ERN = PN
k − 1

k
Tcomm = PN

k − 1

k
(mS + CV ). (10)
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Deriving energy consumption, originator not computing ...

Running state - processors
→ Originator is active during load distribution time mS + CV .
→ Other processors: processor Pi is active for time S + αi (C + A).

The computation energy consumption beyond the idle state is

ERC = PC
k − 1

k

(
mS + CV +

m∑
i=1

(S + (C + A)αi )

)

= PC
k − 1

k
(2mS + (2C + A)V ). (11)

Total energy consumption

E = EI + ERN + ERC . (12)
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Do power usage assumptions hold?

Table: Power versus problem size.

Size αi 50MB 200MB 800MB
App. PC [W] cov [%] PC [W] cov [%] PC [W] cov [%]

quicksort 126.8 0.6 127.1 0.9 127.4 1.2
string search 125.7 0.7 126.0 0.5 125.6 0.5
md5 127.4 0.4 126.2 0.6 126.2 0.7
edge detection 131.9 0.5 131.2 0.7 130.7 0.6
matrix transpose 128.9 0.7 128.8 0.6 128.9 0.7
idle PC/k = 73.0 W, cov = 2.7%, k ≈ 1.8
hibernation PC/k = 6.3 W, cov = 8.4%, k ≈ 20.2

AMD Phenom II X4 945 3.00GHz, 8GB RAM DDR2 800MHz,
FreeBSD 8.1 (ca 2012)



45/66

Basics Verification MapReduce Time-energy Isoefficiency Concluding

Energy E vs. schedule length T (m),V = 1E13
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A = 1, C = 1E-6, S = 1E2,PN = 50, PC = 200, k = 3, V = 1E13
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Energy E vs. schedule length T (m),V = 1E3
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Energy E vs. schedule length T (m), conclusions

Intuitively, it could be expected that shorter schedules engage more
processors, and hence, shorter schedules should use more energy.

Surprisingly, E as a function of T (m) has a minimum.

With growing processor number m schedule length T (m) is
decreasing, idle times decrease, energy E (initially) decreases.

idleactive - communication

activeP1

P0

active

.
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Energy E vs. schedule length T (m), conclusions

Intuitively, it could be expected that shorter schedules engage more
processors, and hence, shorter schedules should use more energy.

Surprisingly, E as a function of T (m) has a minimum.

With growing processor number m schedule length T (m) is
decreasing, idle times decrease, energy E (initially) decreases.

idleactive - communication
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P3
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active

active

active

We can save energy by parallel processing!
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Outline of the presentation

1 basic formulation of DLT

2 experimental verification of DLT

3 DLT in MapReduce

4 time and energy minimization

5 isoefficiency maps
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Why isoefficiency maps? Key idea

In this part of the presentation DLT applicability in tracing
complex performance interactions is demonstrated.

Thus DLT becomes analytical performance model.

Isoefficiency maps are visual representations of complex
interactions by use of isolines, i.e. as set of points of equal value of
some measure (e.g. performance) in 2D projection of system and
application parameters.
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Isoline maps examples – in cartography

Figure: Contour lines join points of equal elevation above sea level
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Isoline maps examples – in meteorology

Figure: Isotherms France on 27.VI.2019
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Isoline maps examples – in thermodynamics

Figure: Enthalpy-entropy chart for water and steam
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Why isoefficiency maps? Motivation

• Thus, such visualizations proved very effective in building
understanding of sensitivities and relationships of complex
phenomena in other areas of science and technology (isotherms,
isobars, isogons, . . . )

• We want to do the same! To grasp quickly and communicatively
the impacts of system and application parameters on HPC
performance.

• While earlier approaches to the HPC performance analysis
studied scalability with machine number (speedup) at fixed
problem size.
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Basic Performance Indexes

Ability to scale parallel computations is measured by
• speedup:

S(m) =
T (1)

T (m)
(13)

• efficiency:

E(m) =
S
m

=
T (1)

m × T (m)
, (14)

where T (i) is execution time on i machines.

S should grow with m (preferably linearly).

E should be as close to 1 as possible.

Yet, in most cases speedup saturates at certain number of machines m, efficiency decreases with m.



55/66

Basics Verification MapReduce Time-energy Isoefficiency Concluding

Isoefficiency Function

Parallel performance depends on the problem size – bigger
problems allow to exploit more processors with higher efficiency.
Isoefficiency function was invented [GK93] to grasp this
relationship.

Definition

Isoefficiency function I (e,m) is size of the problem required to
maintain efficiency E(m) = e on m processors.
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Isoefficiency Function

Example
A parallel algorithm finding MST in a graph with v vertices has
complexity:
T (m, v) = c1v

2/m + c2v logm
Efficiency is E(m, v) = e = c1v

2/(c1v
2 + c2vm logm).

Isoefficiency function is I (e,m) = c2em logm/(c1(1− e)).

• Thus, classic isoefficiency function I (e,m) determines
relationship between problem size and machine number.

• We will extend it to arbitrary pairs of parameters.



57/66

Basics Verification MapReduce Time-energy Isoefficiency Concluding

Isoefficiency Map Construction

• T (m,A,C ,S ,V ) – schedule length obtained from (1)-(3) for: m
machines, A,C ,S system & application parameter, and problem
size V .

• T (1,A,C ,S ,V ) = S + CV + AV – schedule length on a single
machine.

• Efficiency:

E(m,A,C ,S ,V ) = T (1,A,C , S ,V )/(m × T (m,A,C ,S ,V )).
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Isoefficiency Map Construction

• Isoefficiency function:

I (e, x , y) = {(x , y) : E(m,A,C ,S ,V ) = e, (15)

∀p ∈ Param \ {X ,Y } p = const}. (16)

where:
X ,Y - a pair of interesing parameters to be presented in a 2D map
(x , y) - a pair of particular values of parameters X ,Y
Param - set of all system parameters
p = const - constant value of one particular parameter p in the set
Param \ {X ,Y }

• Due to the complex nature of (1)-(3) closed-form formulas of
I (e, x , y) exist only for some pairs for parameters, for the others
I (e, x , y) was found numerically.
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Isoefficiency map: V vs m
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m

infeasible

V

A
=

1
,
C

=
0
.0

2
,
S

=
1

When m grows also V should grow for constant efficiency. But not all machine numbers m can be feasibly used even
for very large V (because S > 0).
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Isoefficiency map: A vs C
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Computing speed 1/A and communication speed 1/C can compensate each other, but only if they both are very slow.
In typical conditions they are disconnected.



61/66

Basics Verification MapReduce Time-energy Isoefficiency Concluding

Isoefficiency map: C vs m
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When m is small even slow communication allows for good efficiency (left). In typical conditions speed of communication
must increase (C decreases) to use big numbers of machines (center). Ultimately, use of arbitrarily large m cannot be
allowed by increasing communication speed (because S > 0, right).
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Isoefficiency map: S vs m
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Startup (fixed overhead) S must quickly decrease with machine number m for constant efficiency. Ultimately, use of
arbitrarily large m cannot be allowed by decreasing startup time S (because C > 0).
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Can there be Iso-Maps for other performance measures?

• We constructed isoefficiency maps for one measure of HPC
performance: the efficiency.

• Can this be repeated for other HPC performance indicators?

• Yes! For example, for energy – maps of equal energy
consumption can be constructed.

• We already know how to calculate energy usage, so it is doable
to calculate what one system parameter should be as a function of
another parameter, to obtain certain energy consumption while the
remaining parameters are fixed.
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Iso-Energy map: k vs m
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k – reduction in electric power consumption when idle.
When increasing processor number m we reduce overheads and energy consumption, this can be wasted by less effective
machine idle states (k decreases, left). Yet, ultimately for large machine numbers, constant energy consumption cannot
be achieved by just more effective idle state (k is growing, right).
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Conclusions

1 In this presentation Divisible Load Theory (DLT) was
introduced

2 DLT was applied to analyze Big Data applications
(MapReduce)

3 DLT was applied to analyze energy consumption in parallel
processing

4 DLT was used to build iso-efficiency maps and facilitate
understanding of complex relationships between system and
application parameters
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Conclusions

1 In this presentation Divisible Load Theory (DLT) was
introduced

2 DLT was applied to analyze Big Data applications
(MapReduce)

3 DLT was applied to analyze energy consumption in parallel
processing

4 DLT was used to build iso-efficiency maps and facilitate
understanding of complex relationships between system and
application parameters

Indeed, DLT is a very versatile theory.
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The End

Thank you for your attention.

Please remember about Bharadwaj Veeravalli talk this afternoon
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