Scheduling multiple divisible loads
M.Drozdowski, M.Lawenda, F.Guinand

Technical Report RA-007/04

Scheduling multiple divisible loads

M.Drozdowski', M.Lawenda?, F.Guinand?

Abstract

Scheduling multiple divisible loads on a star network of processors
is studied in this paper. It is shown that this problem is computation-
ally hard. Special cases solvable in polynomial time are identified.

Keywords: divisible loads, scheduling, computational complexity.

1 Introduction

Divisible loads are computations that can be divided into parts of arbitrary
sizes and the parts can be processed independently in parallel. Divisible
load theory (DLT) emerged as a new paradigm in parallel processing which
links scheduling, communication optimization, and performance modeling.
Surveys of DLT literature can be found in [1, 3, §].

In this paper we consider scheduling multiple divisible loads in a star
network. Each load, which represents a separate parallel application, will
be called a task. The set of tasks is 7 = {711,...,T,}. Each task T is
represented by the volume of load V; that must be processed.

The tasks (loads) are to be processed on a set of distributed computers
interconnected by a star network. For the simplicity of presentation we will
be using name processor when referring to a computer - communication link
pair. The set of processors is P = {Py,..., P,}. In the center of the star
a scheduling controller (or master, or server) Py called originator is located.
Tasks in 7 may be reordered by the originator to achieve good performance
of the computations. Originator splits the loads of the tasks into parts and

!Institute of Computing Science, Poznari University of Technology, ul.Piotrowo 3A,
60-965 Poznan, Poland. This research was partially supported by a grant of Pol-
ish State Committee for the Scientific Research. Corresponding author. Email:
Maciej.Drozdowski@cs.put.poznan.pl

2Poznani Supercomputing and Networking Center, ul.Noskowskiego 10, 61-794 Poznafi,
Poland.

3Laboratoire d’informatique du Havre, UFR Sciences et Techniques, Universite du
Havre, 25 rue P. Lebon, BP 540, 76058 Le Havre cedex, France.

sends them to processors Py, ..., P, for remote processing. Only some subset
P; € P of all processors may be used to process task 7. We will denote by
a;; the size of task T} part sent to processor F;. «;; are expressed in load
units (e.g. bytes). a;; = 0 implies that P, ¢ P;. The sizes of load parts
sum up to the task load, i.e. >/, a;; = V;. Not only P; is selected by the
originator, but also the sequence of activating the processors in P; is chosen
by the originator. In star topology processors P, ..., P, communicate only
with the originator Fy. Originator is not computing. Were it otherwise, the
computing capability of the originator can be represented as an additional
processor.

Each processor, is described by three parameters: computing rate, com-
munication rate of the link to the originator, communication startup time.
Computing and communication rates are expressed in time units per load
unit (e.g. seconds per bytes), and are reciprocals of speeds. Startup time is
expressed in time units. Depending on the heterogeneity of the computing
environment, three forms of the star system can be distinguished (we use
scheduling theory naming convention |2, 7]):

Unrelated processors — communication rates and startup times are specific
for the communication link and for the task. Similarly, processor computing
rates depend on the processor and task. We will denote by C;; communication
rate, and by .S;; the startup time, of the link to processor P; perceived by task
T;. Transferring o;; load units to P; takes S;; + Cjjcy; time units. A;; will
denote the processing rate of processor P; perceived by task 7;. Computing
for load o, lasts A;ja;;. The case of unrelated processors is the most general
one. Both the processors, and the tasks are different due to the differences
in the problems being solved, and the computer or network architecture,

Uniform processors — communication rates C}, startup times S;, and com-
puting rates A; are specific for the processors but are the same for all tasks.
In other words V7, Ay; = Ay, Cy; = Cy, Sy = S;, for P € P. The class of
uniform processors is a special case of the more general class of unrelated
processors. Uniform processors represent identical, or similar, parallel pro-
grams executed on heterogeneous system.

Identical processors — communication rates, startup times, and computing
rates are the same for all processors and tasks. Thus, VpcpA;, = A, C; =
C,S; = S. Thus, identical processors are further specialization of the uniform
processors. Identical processors represent, e.g., the same parallel program
executed in homogeneous environment for different input data.

We assume that processors have sufficient memory buffers and computa-

tions do not have to start immediately after receiving the load. Note that
even for uniform and identical processors n tasks are not equivalent to a sin-
gle task with load > 7_; V; because each task is a separate scheduling entity
and requires a separate set of communications.

By constructing a schedule the originator decides on: the sequence of the
tasks, the sets of processors assigned to the tasks, the sequence of processor
activation, and the load parts sizes. Let us now point out several possible
assumptions on the structure of the schedule.

In some cases the time of returning the results may be so short in compari-
son with the load scattering and computing phases, that the result returning
may be neglected in the construction of the schedule. This assumption is
commonly used in modeling divisible load computations |1, 3, 8|. It has been
observed in the earlier DLT papers that if the result returning time may be
neglected, then the schedule for a single task is the shortest when all the pro-
cessors complete computations at the same moment. This requirement may
be extended to the multiple loads case. We will say that a schedule has si-
multaneous completion property if the computations on all parts of each task
finish simultaneously. Simultaneous completion of the computations may be
also justified by technological reasons: When a parallel application finishes
at the same time on all processors, then managing it in a parallel computer
batch system is simpler than if it were finished on different processors in
different moments of time.

It is assumed in this paper that the originator constructs permutation
schedules (see e.g. [2, 7| for classic definition). We mean by permutation
schedule that a task is sent to the processors only once, and the sequence of
the tasks is the same on all processors. Consequently, communications and
computations are nonpreemptive, i.e. cannot be suspended and restarted
later. If P, ¢ P; and o;; = 0, then a dummy computation interval of length
0 is inserted on P;. An example of permutation schedule is shown in Fig.1.

On the other hand, the process of result returning may be equally time
consuming as load distribution and computations. In such cases we will as-
sume that the amount of returned results is 3;a;;, which means that the
volume of results is proportional to the amount of received load, and coeffi-
cient f3; is application specific. The result returning phase must be explicitly
scheduled. Also in this case we will consider permutation schedules, by which
we mean that the order of the tasks in distribution, computation, and result
collection phases is the same. We assume that transfer rates and startup
times are the same for sending the load to the processors, and for returning

Plon o o o | o fo | oo

P1 a, (07

P, ide | o ide | oy

P, 0y 0 idle‘ o \
T, L T

Figure 1: An example of a permutation schedule.

of the results.

Our objective is minimization of the schedule length, denoted by C,...

Scheduling multiple divisible loads has already been considered in DLT
for communications without startup times. In [1, 9] it was assumed that
task execution sequence was first-in first-out, processors were uniform, and
task computations finish simultaneously. Furthermore, all processors were
used by each task. In a multi-job scheme |1, 9] communications of some
task T overlap with computations of task 7j_; preceding 7j in the execution
sequence. This allows to start computations for 7; on processors P, ..., Py,
immediately after the end of task 7;_;. Processors P, 1,..., P, are idle
until receiving their load share of 7. Using the formulae provided in [1, 9]
the distribution of the load for 7} can be found in O(m) time, for a given m/.
The actual value of m’ can be found iteratively in at most m steps. Thus,
for a sequence of n tasks the complexity of the algorithm is O(m?n).

In [10] the same assumptions on the task sequence, processor selection,
simultaneous computation completion, and zero startup time were made.
Under the above assumptions a multiinstallment load distribution strategy
has been proposed to ensure that all processors work continuously on tasks
T5,...,T,. When the overlap of computations on Tj_; with the communica-
tions of T} is too short to send the whole load V; to the processors, and thus
avoid idle time (i.e. if m’ < m), then the load is divided into multiple smaller
installments. Since communications last shorter, all processors may receive
some load earlier, and may work continuously on 7). Unfortunately, it was
observed in |10] that this strategy does not work for certain combinations of
task, and processor parameters. Furthermore four heuristics have been pro-
posed in [10]. Tt was demonstrated by a set of simulations that for processing
multiple loads multiinstallment strategy gives the shortest schedule in most

of the cases.

In |6] a probabilistic analysis is given for multiple loads arriving at mul-
tiple nodes of a fully-connected network of identical processors.

In this work we analyze multpile divisible load scheduling problem along
the lines of computational complexity theory. Further organization of this
paper is the following. In Section 2 computationally hard cases are identified.
In Section 3 some polynomially solvable cases of the problem are presented.
Bounds on the quality of approximation algorithms are given in Section 4.

2 Complexity

In this section we identify several cases of multiple divisible load scheduling
problem which are computationally hard (strictly saying NP-hard, or NP-
hard in a strong sense [4]). In our proofs of the computational complexity
we will be using an NP-complete PARTITION problem, and strongly NP-
complete 3-PARTITION problem, defined as follows [4]:

PARTITION
INSTANCE: A finite set £ = {ey,...,e,} of positive integers.
QUESTION: Is there a subset ' C E such that

dej= > ej:%iej:F? (1)

jEE JEE—E

3-PARTITION

INSTANCE: A finite set E = {ej,...,es,} of positive integers, such that
“ej=Fqand F/A<e; < F/2for j=1,...,3q.

QUESTION: Can E be partitioned into ¢ disjoint subsets £}, ..., E, such that

Yeep ¢ =Flori=1....¢7

Theorem 1 Multiple divisible load scheduling problem is NP-hard even for
one (m = 1) unrelated processor, when result returning is considered.

Proof. For m = 1 multiple divisible load scheduling problem is obviously
in NP because NDTM has to guess the sequence of tasks execution. We
will show that multiple divisible load scheduling problem is NP-hard by a
polynomial time transformation from PARTITION, defined as follows:
n=q+1,

])0 S]I’l—’_Canl’l S]H+BHC]HV}’I
Pl AllVl eee AI'V AV, Aka cee Al/V/

il In" n

F F+1 2F+1

Figure 2: Illustration to the proof of Theorem 1.

Vi=1,8=1forj=1,...,n,
Slj:Oforjzl,...,n,
Ciyj=0forj=1,...,¢, Ci, =F,
Ayj=ejforj=1,...,q, A, = 1.
We ask if a schedule with length at most y = 2F + 1 exists. Suppose, that
the PARTITION instance has a positive answer. Then a feasible schedule of
length 2F' + 1 can be constructed as shown in Fig.2.
Suppose the scheduling problem instance has a positive answer. Then task

T,, is continuously performed because Sy, +V,,C1,, + V,, A1, + S1n + 8. Vi Ch =
2F +1 = y. As computations are nonpreemptive, tasks 77,...,T;, must fit
either into interval [0, F|, or interval [F' + 1,2F + 1]. For the set of tasks
Tjo,r) which computations are performed in [0, F] we have Yp ez, . A1;V; =
Yrieton € = F. Analogously, for the tasks in interval [+ 1,2F + 1]

TyeTippr arin AV = 2TjeTipiropey € = £+ Thus, a PARTITION instance
also has a positive answer. Consequently, our scheduling problem is NP-
hard. O

Theorem 2 [f result returning time is negligible, then multiple divisible load
scheduling problem for two (m = 2) unrelated processors is NP-hard in the
strong sense.

Proof. We prove the theorem by reduction from 3-PARTITION. We assume
(without loss of generality) that F' > ¢, F' > 1. Were it otherwise, e; can be
multiplied by ¢ > 1 to fulfil this requirement. The instance of the scheduling
problem can be constructed as follows:

n=4¢+1,V,=1forj=1,...,n,

Slj = OO,SQJ' = O,Clj = OO,ng = 6j,A1j = OO,AQj = F3€j fOI‘j = 1,...,3(].
S1,39+1 = 0,523941 = 00, C1 3941 = 1, Ca 3441 = 00,

A sgr1 = F*+ F, Ay 3001 = 00,

Slj = O,ng = O0,0lj = F4,02j = OO,Alj = F4—|-F,A2j = 0 fOI"j =
3q+2,...,4q,

E, E,

Plllelle ||a] F' | elle |le F' F

v . v . v

| F+F F+F

v v v 3 3 3 v v v 3 3 3 3

P, Fe | F'e |Fe Fe, Fe |Fe Fe

Wi

I II q

Figure 3: Illustration to the proof of Theorem 2.

Sl,4q+1 = o0, S2,4q+1 =0, C1,4q+1 = o0, C2,4q+1 = F47 A1,4q+1 = o0, A2,4q+1 =1,
y=q(F*+F)+2.

We ask whether a schedule not longer than y exists. If 3-PARTITION instance
has positive answer then a feasible schedule of length y may look like the
one in Fig.3. Observe that P, can start processing tasks immediately after
its first communication. Thus, there can be also other schedules not longer
than y when a 3-PARTITION exists.

Suppose, a feasible schedule not longer than y exists. Due to the values
of parameters A;;, C;;, S;;, tasks Ty, ..., T5, can be executed on P» only, and
tasks T341, . - ., Tug+1 on Py only. The total time of computing on Pj is ¢(F*+
F)+ 1=y —1, while the shortest load distribution operation last one unit
of time. As a result, P; must compute all the time with the exception of the
first time unit when the load of 73,4, is sent. The sum of all communication
times is equal to y — 1. Thus, originator must communicate all the time with
the exception of the last time unit when task T),; must be executed.

Total computing requirement put on P, by tasks 71, ..., Ty, is ¢F™*. After
excluding the first communication of 73,1, P» can be idle at most ¢F" + 1
time units. To avoid idling on P;, sending the load for the second task
executed on P, must start at time F' + 1 at the latest. Therefore, no more
load can be sent to P, than for three tasks. Suppose that two tasks T3, Tj
are started on P, before sending the load for the second task on Py, and T;
is started first. Then, there would be excessive idle time on P, since the
end of T; computations till the end of the communication operation of the
second task executed by P;. F*+ e; is the span of the interval since the end
of T; communication operation till the end of the communication operation
of the second task executed by P;. F3(e; + e;) is the time of computing
operations which can be executed on P, in this interval. The idle time on
P, would be at least F* + e; — F(e; + ¢;). Since F' > g and F > 1 we have

8

Fi4e; —F3e+e)>F'—FF—1)=F>F?*+ F?*> qF + 1, while
the idle time on P, cannot be greater than ¢F' 4+ 1. Hence, exactly three
communications to P, must be done before sending the second task to P;.

The sum of computation times of the three tasks allocated to P, must be
equal to F*. If it is less, then it is at most F*—F™ which results in F® > ¢F+1
idle time on P, while communication of the second task allocated to P; with
the originator. Suppose it is more, then sending their loads last longer than
F and the reading operation of the second task allocated to P; cannot start
in time, which results in additional idle time on P;. Consequently, schedule
of length y cannot exist. We conclude that the three tasks must be processed
in exactly F'* time units.

The same reasoning can be applied to the following tasks assigned to P;.
The load distribution operations of these tasks cannot be started later than
by 1+ iF*+ (i+ 1)F fori = 1,...,q — 1. This creates free time interval
for at most three communications of the tasks assigned to P,. Also no less
than three tasks can be started by the originator, otherwise there will be
excessive idle time on P, during the next load sending operation of a task
assigned to P;. The processing times of the three tasks must be exactly equal
to [, otherwise either P, or the originator must be idle. We conclude that
for each triplet of tasks T;, T}, T}, assigned to I the processing time satisfies
F3(e; + e + ex) = F*. Hence, 3-PARTITION instance also has a positive
answer.]

In the following theorem we consider a simpler case of uniform processors,
but with simultaneous completion required, i.e. each task must be finished
at the same time on all used processors.

Theorem 3 If result returning time is negligible and simultaneous comple-
tion is required, then multiple divisible load scheduling on uniform processors
is NP-hard already for two (n = 2) tasks, even if the sequence of the tasks
15 known.

Proof. First we will calculate the amount of a single application load that
can be distributed, and processed on a star network with C; = 0, until time
7. Without loss of generality, let us assume that the sequence of processor
activation is P, ..., P,,. The amount of load V' that can be distributed, and
processed in time 7 is

V=) -3y (2)
i=1 A i=1j=i “*J

Term >7" | 1 is the amount of load that could be processed if all processors
were activated simultaneously at time 0. Startup time S; of the selected
processor P; delays the activation of all processors P; for j > . There-

fore, .S; decreases the total load that could be processed by >0, % Term
R Dy AZ in (2) is the amount of the load that could not be processed

due to the communication delays. Suppose that % = S; for all . Formula
(2) reduces to

V m
2

1
T Si——
— 2

1=

MS I

TMB

7

3

||M3

2——252 (3)

Note that V' in (3) does not depend on the sequence of processor activation.
We will show NP-hardness of the problem by a polynomial time trans-

formation of PARTITION problem. Assume that e; > 2 for¢=1,...,q. Were

it otherwise, all e; may be multiplied by 2 without changing the answer to

the PARTITION instance. The transformation of a PARTITION instance to a

scheduling problem instance is as follows:

n=2m=4q,

S—eZ,A—i:e,C 0, fori=1,.
‘/1_4F2__ 7,17,"/2 F
y=3F+1.

As already mentioned the sequence of task execution is given: T; precedes
T,. We ask if a schedule of length at most y exists.

Suppose the answer is positive for PARTITION problem. A feasible sched-
ule for the instance of the scheduling problem is shown in Fig.4. Processors
corresponding to set E’ in PARTITION are used by 75. Let us check that
the schedule is feasible. T7 completes computations at time 7 = 3F. If we
supply the values of startup times .S;, and processing rates A; into equation
(2), we get equation (3), and further 3F 32" e; — 2(3 e,)> — 230 e
6F? — 2(2F)* — 337 e? = V4. Thus, Ty is execu’red feasibly. The commu-
nicatlons of T} ﬁnlsh at time 2F, therefore communications of 77 which take
Sicr Si = F fit in F'+1 time units of available time. In the last time unit of
interval [7,y| the selected processors process > ;¢ A%_ =Y cm € = F units
of load. Hence, also T is executed feasibly.

10

-~
!

B
P
P,
. E
. ide
b,
2F 3A 3

Figure 4: Tllustration to the proof of Theorem 3.

Suppose that a schedule of length y exists. Task Tj is executed first.
All m processors must be used by T;. Suppose it is otherwise, and some
processor is not exploited. Without loss of generality we can renumber the
processors such that P, is the unused processors. By (3) the volume of the
processed load for Ty is at most V| = yZ?:ll SZ- — it S —iyrt S =
BF + 1) ey — %(zmllel) — 222 nle? = (3F + 1)2 e — (3F +
Dem — 5(Xm e)? — 350 €2 + 5(e2, +2em mle) + 5k = Vi + 2F —
(BF + 1)em + €2, +en Xl e = V1—|—2F—em(3F+1 22162') =V +
2F — en(F 4+ 1) < Vi because e, > 2. Hence, all m processors must be
used. If all processors are used then 7} communications complete by 2F,
and due to simultaneous completion requirement, its computations finish at
time 3F. This leaves interval [2F,3F + 1] free for communications, and
interval [3F,3F + 1] for computations on T,. Note that ¥;S; > 1, and any
communication in interval [3F, 3F + 1] gives no contribution to the processed
load of task Ty. Consequently communications of set P’ of the processors
selected for executing T, must satisfy > ,cp S; = > ;epr €; < F'. The load of T}
processed in interval [3F, 3F +1] must satisfy > ;cps A%_ = iepr € > F. Thus,
the answer is positive for PARTITION instance if the elements corresponding
to the processors in set P’ are selected to set E'. O

The case of arbitrary processor sequence is not simpler. We explain it in
the following observation.

11

Observation 4 If result returning time is negligible and simultaneous com-
pletion is required, then multiple divisible load scheduling on uniform proces-
sors is NP-hard even for two (n = 2) tasks, and arbitrary sequence of the
tasks.

Proof. The proof for the previous problem can be adjusted to the current
situation. If the sequence of tasks is (T3, 71), then the length of the schedule is
at least the length of the communications of 75 plus the length of the schedule
for T7. The duration of T} processing is at least 3F" (see the proof of Theorem
3). Communications of Ty last at least minp ep{S;} = min;ep{e;} > 1, and
schedule length is at least 3F + 2. Thus, only sequence (7}, 7T3) allows for
a schedule of length at most 3F 4 1, the proof of Theorem 3 applies, and a
schedule of length 3F' + 1 exists if and only if PARTITION exists. a

We can conclude from the above results that scheduling multiple divisible
loads is computationally hard. The main source of the computational com-
plexity are sequencing the tasks, selecting the processors to use, sequencing
processor activation.

3 Polynomial cases

3.1 Fixed activation order, no result returning

When the task execution sequence, the set of used processors, and the pro-
cessor activation orders are known, then the optimum distribution of the load
can be found by using linear programming. Let us first study the case when
simultaneous completion of the computations is not required, and results re-
turning time can be ignored. For the sake of notation simplicity, and without
loss of generality, let us assume that the order of task execution coincides
with task numbers. The set of processors exploited by Tj is P;. The order
of processor activation can be different for each task. Let the number of the
ith processor activated for task 7; be given by function f(j,7). The amount
of load from task 7 = 1,...,n sent to processor ¢ = 1,...,m is denoted
by «;; > 0. The optimum distribution of the load can be found using the
following linear program:

minimize C,qz

subject to

12

1—1 |Pjl k
D> (S + 6.0 Criag) + D (Sraan + painCrain)+

j=1li=1 =1
+Zaf(l,k)jAf(l,k)j S Cmax [= 1, e, Ny k= 1, ooy ‘P]| (4)
3=l
1€P;

In inequalities (4) term >/} szil(Sf(j’i)j+Oéf(j’i)ij(j’i)j) is the time of send-
ing the load for tasks 1,...,l — 1. Sum Zle(Sf(l,i)l + arainCruan) is the
time of sending the load to processors f(l,7) activated as ¢ = 1,...,k in
the sequence of processors executing task [. Z?:l k) Arar; is the time
of computing the load parts of tasks [,...,n, sent to processor f(l,k), ac-
tivated as k-th for task {. Thus, inequalities (4) ensure that computations
complete before the end of the schedule. By constraints (5) all tasks are fully
processed. Let us consider an example.

Example 1. m = 3,n = 2,|P;| = m, f(j,i) = 1, for j = 1,2, ie.,
all processors are used, and the order of processor activation coincides with
processor numbers for both tasks. Processors are identical: V;;A;; = 1,
V:;iCii = 1, Vi ;Si; = 1. Vi = 32,V = 2. For these values the solution
from (4)—(5) is: a1 = 18.5,0(21 = 9.75,0&31 = 3.75,&12 = 2.0,0(22 = 0,0(32 =
0, Crrae = 40. The two last communications of 75 contain no load, because
i9g = 0, agg = 0, but still contribute startup times S; = Sy = 1. Thus, this
is not the best solution, and processor P; need not be used in processing 75.
After removing P from Py we get from (4)-(5) the optimum solution: aq; ~
18.333, an1 =~ 9.333, 31 = 4.333, 15 = 1.667, age =~ 0.333, Crue =~ 39.333,
shown in Fig.5. Exclusion of both P;, and P, from processing T, does not
reduce schedule length anymore. O

Let us observe that in the optimum schedule for Example 1 computations
on 17 do not finish on all processors at the same time. It demonstrates that
simultaneous completion of the computations on all processors for all tasks
is not necessary for the optimality of the solution.

Suppose that tasks are of equal size Vr,V; = V' processors are identical,
and V7, P; = P, i.e., are all processors are used by all tasks. We experimen-
tally studied patterns that appear in the optimal solutions under the above

13

F, o, o Oy o, 0,
P] (o ,
[)2 ldle Gz] 022
P o,
19333 29667 35 37667 39 39333

Figure 5: Optimal schedule for Example 1 (does not preserve proportion).

conditions. When communication delays are big in comparison with comput-
ing time then not all processors are exploited. It is the case when C' > %.
When communication delays are of similar order as computations then load
of each task is distributed nearly equally between the processors. The excep-
tions are the leading and trailing tasks. In the leading tasks distribution is
unequal so that waiting for the first load chunk to process is minimized. In
the trailing tasks the distribution is also unequal such that processors stop
computing at the same time. This is demonstrated in Fig.6a where changes
of o;; from task to task are shown. Each line in Fig.6 represents the load
from the consecutive tasks assigned to a certain processor. When commu-
nication delays are short in comparison with computing times, e.g. when
Ck %, then total load of all tasks is distributed nearly equally between the
processors, but computations of each task are concentrated on one processor.
This is demonstrated in Fig.6b. Such a situation is not very comfortable for
a user of a parallel application because a distribution optimal globally (for
all tasks) is not a solution which is using parallelism.

It was assumed in (4)-(5) that the computation completion times are
arbitrary. If simultaneous completion is required, then a linear programming
formulation can be given to deal with the simultaneous completion. Let
z; denote the completion of computations on task 7;. The following linear
program solves the case with simultaneous completion:
minimize C,qu
subject to

211+ af(l,k)lAf(l,k)l S Z] [= 2, e, N k = 1, ooy ‘PJ| (6)

14

1 3 5 7 9 01 .13 15 17 19 21 2
J

a) b)

Figure 6: Distribution of the load (c;;) vs task number (j); m = 3,n =
24,V =1E4,C =S =1.a) A=3,b) A=1E2.

-1 |Pjl k
> (SiGag + ariCriag) + 2 (Srwan + pwinCrain)+
j=1i=1 i=1
+Zaf(l,k)jAf(l,k)j <z l=1,....,n, k=1,..., ‘7)]| (7)
=l
Zn = Cma:c (8)
o=V, j=1,...,n (9)
Z’EP]'

By inequalities (6), the computations of task 7; can be feasibly performed
in interval [z_1, z]. Inequalities (7) ensure that communications and com-
putations of task 7; are completed by time z,. By (8) the end of the last task
is also the end of the schedule. The tasks are fully processed by (9).

Let us now return to Example 1. For linear program (6)-(9) a solution
11 = 19,@21 = 9,0(31 = 4, 19 = 1,0[22 = 17Cmaw =40 is obtained, which is
longer than in Fig.5. Hence, requiring simultaneous completion of computa-
tions on all processors may prevent obtaining an optimum schedule.

3.2 Fixed activation order, with result returning

The methods used in the previous section can be extended to deal with the
returning of the results. Without loss of generality we assume that tasks are

15

executed in the order of their numbers, and such is the order of sending the

loads from the originator to the processors. Yet, the set of processors used

by a task, the sequence of processor activation, and the sequence of result

collection can be arbitrary. Let us denote by:

Tjaa - the last task which distributes the load before task T} distributes its

load,

Tjra - the last task which returns its results to the originator before task 7}

distributes its load,

Tjar - the last tasks which distributes the load before task Tj returns its

results,

T} - the last task which returns its results to the originator before returning

task T; results,

tf - the time moment when distribution of task 7} load starts,

tf - the time moment when collection of task T; results starts,

ti; - the time moment when P; finishes computing load a;,

f(j,i) - the number of the ith processor activated for task Tj,

g(7,17) - the processor returning results as ith in the sequence, for task 7;.
Optimum distribution of the load can be found by solving the following

linear program:

minimize C,,qq

subject to

IP;aal
tjD > tded + Z (Sf(jddj)jdd + Oéf(jde)jddCf(jde)jdd) j=1,...,n, (10)
=1
"Pjrdl
D
t5 2 tggrapygrat Y (SygraagratBeggrasraCygrara)
i=k
J=lomk=1,.... [P (1)
"der‘
tf Z tJDdr + Z (Sf(jdr,i)jd'” + O‘f(jd’“,z‘)jdrCf(jd’“,z‘)jdr) j = 1, Lo, n (12)
=1
R ‘Pjr'r‘
t5 > togr it D (So(grripjr + Bag(grr,iyjr Cogirr iyjrr)
i=k

j:17...7n7k:1,...,‘73jrr| (13)
tf >ty J=1,...,n, k€P (14)

16

k
D
by = 7 + 3 (SrGas + rGiCroag) + QrGmiAsGm;

=1
j=1,...,n, keP; (15)
Pn
Crnae = tg(n,k)n + Z(Sg(n,z)n + ﬁag(n,i)ncg(n,i)n> k=1,..., |7Dn| (17)
i=k

day=V; j=1,...,n (18)

1€P;

Inequalities (10), (11) guarantee that distribution of 7} load may take place
only after all the preceding communication operations. Similarly, (12), (13)
ensure that collection of T} results follow after the preceding communication
operations. By inequalities (14) returning of the results can start when any
results are available. Computation of some part of the task 7} on processor k
can finish only after receiving the load part and computing it by inequalities
(15). By inequalities (16) computations exploiting the same processor do not
overlap. The end of the schedule is set by the end of returning the results of
the last task by inequalities (17). All the load is processed by equation (18).

3.3 Continuous computing

In this section we assume identical processors, simultaneous completion, us-
ing all processors by each task, and negligible result returning time. More-
over, it is assumed that the tasks occupy processors continuously from the
start of computations on the first task, till the end of the last task. We will
call this situation continuous computing. We are going to propose conditions
under which an optimum schedule can be constructed for the continuous
computing. The conditions we propose are sufficient but not necessary. This
means that in the set of optimum schedules with continuous computing there
is a subset satisfying our conditions. Let us start with some observations.

Observation 5 When computing is continuous, only the sequence of the
tasks decides on the optimality of the schedule.

Proof. Since all processors are used by each task, the selection of processor
set is immaterial. For each task the sequence of processor activation can
be arbitrary because processors are identical, and used in the same interval

17

P, \ \ \ P, \ \ \
B iy « ey B <& 2y
< X « E N N e F
P, T T P, 4 L
a) b)

Figure 7: Illustration to the proof of Theorem 6.

due to simultaneous completion. With the exception of the first task in the
sequence the load assigned to any processor is % for task Tj, and a decision
on task chunk sizes is not necessary. a

Continuous computing is possible when the load of any task 7} is dis-
tributed to the processors before starting of the computations on 7. Exe-
cuting the tasks according to the increasing sizes (V;) will be called SPT (for
Shortest Processing Time) sequence.

Theorem 6 If computing is continuous, and Vr,erV; > _STC then SPT

m
mazximizes the interval between the completion of the task communication,
and starting of its computations.

AV

m

Sm

Proof. The requirement VyerV; > 275

can be rewritten as Vr,er

Sm + C'Vj;, which means that load distribution time is shorter than compu-
tation using all processors in the same interval. This requirement should be
satisfied by real parallel applications which have high computing demands.
Consider two tasks T3, T} executed continuously one after another. For the
simplicity of presentation let us denote by e = Sm+CV;, £ = %, f=Sm+
CV;, F = %. Note that e < E, f < F. A task preceding T;,T; completes
its communication xy units of time before the end of its computations (cf.
Fig.7). Suppose that T; precedes T; (cf. Fig.7a). The time from the end of
T; communication to the start of T; computation is xy; = xg —e. The length
of the interval since the end of 7, communication till the beginning of Tj
computation is x19 = o+ EF —e — f. The worse of the two interval lengths is
min{z1, z12}. Now suppose that the order of the two tasks is inverted. Then
the lengths of the intervals are (cf. Fig.7b) x9; = xo— f, 202 = 20+ F —e— f.

18

The smaller of the intervals is min{zs;, z92}. Let us analyze the conditions
under which it is better to execute the two tasks in the order (7;,7}), than
in the order (7},7;), i.e. when min{zy1, 12} > min{xs;,z22}. Note that
changing the order of the two tasks does not influence the rest of the schedule.

Let us assume that min{zqy, 12} = x1; then zg —e < zg+ E — e — f,
hence f < E. Suppose that min{zo;, xo2} = x9; then xo— f < xg+F —e— f,
hence e < F. Sequence (71;,Tj;) is better when z1; = 29 — e > 291 = 29 — f
from which we get e = Sm+V,C < f = Sm+V;C, and V; < V;. Thus, SPT
sequence is desired. Suppose that min{xs;, x9o} = x99 then e > F. Sequence
(T;,T;) is better if 217 = 2p — e > 299 = 29+ F' —e— f, and f > F which is
in contradiction with f = Sm+ CV; < % =F.

Let us assume that min{zyy, 12} = 212 then f > E. If min{wzyy, x90} =
xg1 then e < F. Sequence (7;,7j) is better when 210 = 29 + E —e — f >
o1 = xg — f, from which we get £ > e. Altogether we have e < E < f,
and V; < V;. Finally, if min{xe, 292} = 299, and e > F. If we put together
the conditions for this case we have: e < F,e > F. f < F,f > E. Using
e< E < f,and e > F > f we get a contradiction. We may conclude that by
using interchanges between all pairs of consecutive tasks (excluding the first
task), any continuous computing sequence can be changed to a continuous
computing SPT sequence. O

Let us assume that tasks are ordered according to SPT rule, i.e. V; <
Vo < ... < V,. The conditions of the optimality of SPT sequence in contin-
uous computing are the following.

Theorem 7 SPT is the optimum task sequence for continuous computing if

VetV > 15_%, and x; > Sm + V;11C for j =1,...,n — 1, where x; =
CVi— 841+)™~ (1+)]+ (m—1)S

VA .
ey y2j =xj 1+-2==Sm=V;C forj=2,...,n—1
Proof. It follows from Observation 5 that only the task sequence has to be
chosen for continuous computing. According to Theorem 6 SPT sequence
maximizes the distance between task communication completion and com-

putation start. Thus if it is possible to maintain continuous computing at
all, then SPT will also do it, provided that Vr,c7V; > AS—TC Yet, it has not

been determined by Theorem 6 what is the first task in the sequence (i.e. the
one which precedes the first pair (7;,7;) satisfying SPT order). Note that
the longer the first task is, the longer communication delays are, and the
longer the processors must wait idle for the initiation of the computations.

19

5 X, X
PEE I 3 > >
. | St S+Ca, | Smt+CY, SmCV |\ SntCV, | oee Sm+CV,
P, Ao,
P, Ao,
1 - Aam—l,l
= AV, AV v,
P, A o AN m
T T,) T,

Figure 8: Illustration to the proof of Theorem 7.

If the first task in the sequence has the smallest load, then the idle area in
the whole schedule is the shortest possible because there is no idle time after
the first task. Hence, the SPT sequence V; < V5, < ... <V, is optimal.

It still remains to ensure that continuous computing is possible. It is the
case if x; > Sm + V1O, for j =1,...,n — 1, where z; is the time between
end of task 7; communication, and the start of its computation (cf. Fig.8).
It means that communication of 7}, finishes before its computation has to
start. The length x; of the interval for the communication of T}, is equal
to x; = x;_ 1—|—V—A— m — CV, for j =2,...,n— 1. Length x; of the first
interval is z; = Aozml Now we calculate «,,;. Since computations on 73
must finish simultaneously on all processors we have

AO{ﬂ:S—FOKZ'_i_Ll(A—l—O) 2:1,,m—1

a;1 can be expressed as a function of ay,;:

C G m—icl C..
P m—i M~ i o _
(6751 am1(1+A) +A]z:%) (1+A) 7 1,...,m 1
The size of the first task is
m C S m— m—z—
Vi=Yam+ G+ 33 0
i=1 i=1 j=0
this can be reduced to
B A C.,, SA C C (m—1)S
Vl—Oémlg[(lﬂLz) — 1]+ Yol [(1+A) (1+Z)]_T'

20

Hence

Vi— S+ D™ — 1+ D)+

I = AOéml =

O

34 m=1

Observation 8 If result returning time is negligible, then multiple divisible
load scheduling problem for one (m = 1) unrelated processor is solvable in
O(nlogn) time by Johnson’s algorithm [5].

Proof. If the results are not returned, and only one machine (m = 1) is
available, then execution of a task reduces to two operations: communica-
tion operation involving originator F,, followed by computation operation
involving P;. This situation is equivalent to two-machine flowshop. Two-
machine flowshop is solvable in O(nlogn) time by Johnson’s algorithm [5]
(or see e.g. [2, 7]). O

For the completeness of the presentation let us note that in our case
Johnson’s algorithm divides the set of tasks into two subsets: 7; comprising
the tasks for which Sy;,+C4,;Vi; < Ay;Vi;, and set 75 comprising the remaining
tasks. Tasks in 77 are executed in the order of increasing Sy; + C4;V4;, while
tasks in 75 are ordered according to decreasing A;;V7;. 77 is executed first.

This special case can be also applied if for technical reasons, the parallel
applications should start and finish on all processors simultaneously.

4 Approximability

In this section we study the bounds on the quality of approximation algo-
rithms for multiple divisible load scheduling problem. By a greedy heuristic
we mean an algorithm which is not unnecessarily delaying communications
and computations. This means that if there is some load to be distributed
and communication medium is available, then the load is immediately dis-
tributed, if there is some load already at a processor and the processor is
free, then the computation on the load is immediately started.

21

Theorem 9 Length CH of a schedule built by any greedy heuristic H solv-
ing multiple divisible load scheduling problem on identical processors satisfies:

H
M <mn+m-—n+1,

C*

max

where C7, .. is the optimum schedule length.

X
Proof. Intervals of two types can be distinguished in any schedule for our
problem: Intervals of total length E- when initiator performs communica-
tions, and intervals of total length £ 4 when initiator is free because all proces-
sors compute. In the case of identical processors E¢ = 37, (3 pep, S+CV).
Note that nS+C 3%, V; < C} . because the loads must be sent to at least
one processor. In the worst case some heuristic may try activating all proces-
sors while only a single processor is necessary for each task. Consequently,
Yo opep, S—nS =831 (Pl —1) < (m—1)nCy,,,. Some heuristic may
also tend to use less processors than necessary. In the worst case |P;| = 1,
and E, < 3% | AV;. Note that >°7_, An‘fj < CF e Hence E4 < mCh ...
Altogether we have CH = Eo+FE, < C* _+n(m—1)C:, +mCr . from
which the theorem follows. O

The results of Theorem 9 can be further strengthened. If S = 0, then in

the above proof 3%, Y pep, S —nS = 0, and the ratio of schedule lengths

can be narrowed to % <m+1 IfVyerCV;+mS < %A, i.e. when

max

computations dominate in the parallel application, then Eo < Z;‘:l(mS +

CV;) < X5, %A < CF .- Consequently gizz <m-+ 1

5 Conclusions

In this paper we studied some combinatorial aspects of scheduling multiple
divisible loads. It has been demonstrated that this problem is computation-
ally hard for dedicated processors, and uniform processors with simultaneous
completion requirement. Polynomially solvable cases have been presented:
when the order of task execution, the used processors and their activation
sequence are given, the optimum distribution can be found by applying lin-
ear programming. The case of a single processor boils down to a well known
operations research problem of scheduling in two-machine flowshop. Though
it may seem trivial, this special case may be useful in practical situations

22

when parallel computations both start and complete in roughly the same
time on all processors. Finally, bounds on the performance of heuristics for
the problem have been searched for.

Still, some problems remain open: the complexity status remains un-
known for the problems of scheduling on uniform processors without simul-
taneous completion, and scheduling on identical processors. Improving the
bounds on approximability can be subject of the further study. From the
practical point of view, the problems considered in this paper have to be
solved in reasonable time using little information about the parallel system
and the applications. Algorithms for scheduling with a limited knowledge
can be the subject of the future research.

References

|1| V.Bharadwaj, D.Ghose, V.Mani, T.Robertazzi, Scheduling divisible
loads in parallel and distributed systems. IEEE Computer Society Press,
Los Alamitos CA, 1996.

[2| J.Blazewicz, K.Ecker, E.Pesch, G.Schmidt, J.Weglarz, Scheduling Com-
puter and Manufacturing Processes, Springer-Verlag: Heidelberg, 1996.

[3] M.Drozdowski, Selected problems of scheduling tasks in multi-
processor computer systems, Series: Monographs, No.321, Poz-
nan University of Technology Press, Poznan, (1997), (see also
http://www.cs.put.poznan.pl/ maciejd/h.ps).

[4] M.R.Garey, D.S.Johnson, Computers and Intractability: A guide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

[5] S.M.Johnson, Optimal two- and three-stage production schedules with
setup times included, Naval Research Logistics Quarterly 1 (1954) 61-67.

|6] K.Ko, T.G.Robertazzi, Scheduling in an Environment of Multiple Job
Submission, Proceedings of the 2002 Conference on Information Sciences
and Systems, Princeton University, Princeton NJ, March 2002.

|7| M.Pinedo, Scheduling: theory, algorithms, and systems, Prentice Hall,
Englewood Cliffs, 1995.

23

|8] T.Robertazzi, Ten reasons to use divisible load theory, IEEE Computer
36 (2003) 63-68.

[9] J.Sohn, T.Robertazzi, A Muli-Job Load Sharing Strategy for Divisible
Jobs on Bus Networks, Department of Electrical Engineering, SUNY at
Stony Brook, Stony Brook, New York, Technical Report 697, 1994.

[10] B.Veeravalli, G.Barlas, Efficient Scheduling Strategies for Processing
Multiple Divisible Loads on Bus Networks, Journal of Parallel and Dis-
tributed Computing 62, 132-151 (2002)

24

