
Scheduling multiple divisible loadsM.Drozdowski, M.Lawenda, F.GuinandTechnical Report RA-007/04

Scheduling multiple divisible loadsM.Drozdowski1, M.Lawenda2, F.Guinand3AbstractScheduling multiple divisible loads on a star network of processorsis studied in this paper. It is shown that this problem is computation-ally hard. Special cases solvable in polynomial time are identi�ed.Keywords: divisible loads, scheduling, computational complexity.1 IntroductionDivisible loads are computations that can be divided into parts of arbitrarysizes and the parts can be processed independently in parallel. Divisibleload theory (DLT) emerged as a new paradigm in parallel processing whichlinks scheduling, communication optimization, and performance modeling.Surveys of DLT literature can be found in [1, 3, 8].In this paper we consider scheduling multiple divisible loads in a starnetwork. Each load, which represents a separate parallel application, willbe called a task. The set of tasks is T = {T1, . . . , Tn}. Each task Tj isrepresented by the volume of load Vj that must be processed.The tasks (loads) are to be processed on a set of distributed computersinterconnected by a star network. For the simplicity of presentation we willbe using name processor when referring to a computer - communication linkpair. The set of processors is P = {P1, . . . , Pm}. In the center of the stara scheduling controller (or master, or server) P0 called originator is located.Tasks in T may be reordered by the originator to achieve good performanceof the computations. Originator splits the loads of the tasks into parts and1Institute of Computing Science, Pozna« University of Technology, ul.Piotrowo 3A,60-965 Pozna«, Poland. This research was partially supported by a grant of Pol-ish State Committee for the Scienti�c Research. Corresponding author. Email:Maciej.Drozdowski@cs.put.poznan.pl2Pozna« Supercomputing and Networking Center, ul.Noskowskiego 10, 61-794 Pozna«,Poland.3Laboratoire d'informatique du Havre, UFR Sciences et Techniques, Universite duHavre, 25 rue P. Lebon, BP 540, 76058 Le Havre cedex, France.2

sends them to processors P1, . . . , Pm for remote processing. Only some subset
Pj ⊆ P of all processors may be used to process task Tj . We will denote by
αij the size of task Tj part sent to processor Pi. αij are expressed in loadunits (e.g. bytes). αij = 0 implies that Pi 6∈ Pj . The sizes of load partssum up to the task load, i.e. ∑m

i=1 αij = Vj . Not only Pj is selected by theoriginator, but also the sequence of activating the processors in Pj is chosenby the originator. In star topology processors P1, . . . , Pm communicate onlywith the originator P0. Originator is not computing. Were it otherwise, thecomputing capability of the originator can be represented as an additionalprocessor.Each processor, is described by three parameters: computing rate, com-munication rate of the link to the originator, communication startup time.Computing and communication rates are expressed in time units per loadunit (e.g. seconds per bytes), and are reciprocals of speeds. Startup time isexpressed in time units. Depending on the heterogeneity of the computingenvironment, three forms of the star system can be distinguished (we usescheduling theory naming convention [2, 7]):Unrelated processors � communication rates and startup times are speci�cfor the communication link and for the task. Similarly, processor computingrates depend on the processor and task. We will denote by Cij communicationrate, and by Sij the startup time, of the link to processor Pi perceived by task
Tj. Transferring αij load units to Pi takes Sij + Cijαij time units. Aij willdenote the processing rate of processor Pi perceived by task Tj . Computingfor load αij lasts Aijαij . The case of unrelated processors is the most generalone. Both the processors, and the tasks are di�erent due to the di�erencesin the problems being solved, and the computer or network architecture,Uniform processors � communication rates Ci, startup times Si, and com-puting rates Ai are speci�c for the processors but are the same for all tasks.In other words ∀Tj

Aij = Ai, Cij = Ci, Sij = Si, for Pi ∈ P. The class ofuniform processors is a special case of the more general class of unrelatedprocessors. Uniform processors represent identical, or similar, parallel pro-grams executed on heterogeneous system.Identical processors � communication rates, startup times, and computingrates are the same for all processors and tasks. Thus, ∀Pi∈PAi = A, Ci =
C, Si = S. Thus, identical processors are further specialization of the uniformprocessors. Identical processors represent, e.g., the same parallel programexecuted in homogeneous environment for di�erent input data.We assume that processors have su�cient memory bu�ers and computa-3

tions do not have to start immediately after receiving the load. Note thateven for uniform and identical processors n tasks are not equivalent to a sin-gle task with load ∑n
j=1 Vj because each task is a separate scheduling entityand requires a separate set of communications.By constructing a schedule the originator decides on: the sequence of thetasks, the sets of processors assigned to the tasks, the sequence of processoractivation, and the load parts sizes. Let us now point out several possibleassumptions on the structure of the schedule.In some cases the time of returning the results may be so short in compari-son with the load scattering and computing phases, that the result returningmay be neglected in the construction of the schedule. This assumption iscommonly used in modeling divisible load computations [1, 3, 8]. It has beenobserved in the earlier DLT papers that if the result returning time may beneglected, then the schedule for a single task is the shortest when all the pro-cessors complete computations at the same moment. This requirement maybe extended to the multiple loads case. We will say that a schedule has si-multaneous completion property if the computations on all parts of each task�nish simultaneously. Simultaneous completion of the computations may bealso justi�ed by technological reasons: When a parallel application �nishesat the same time on all processors, then managing it in a parallel computerbatch system is simpler than if it were �nished on di�erent processors indi�erent moments of time.It is assumed in this paper that the originator constructs permutationschedules (see e.g. [2, 7] for classic de�nition). We mean by permutationschedule that a task is sent to the processors only once, and the sequence ofthe tasks is the same on all processors. Consequently, communications andcomputations are nonpreemptive, i.e. cannot be suspended and restartedlater. If Pi 6∈ Pj and αij = 0, then a dummy computation interval of length0 is inserted on Pj. An example of permutation schedule is shown in Fig.1.On the other hand, the process of result returning may be equally timeconsuming as load distribution and computations. In such cases we will as-sume that the amount of returned results is βjαij , which means that thevolume of results is proportional to the amount of received load, and coe�-cient βj is application speci�c. The result returning phase must be explicitlyscheduled. Also in this case we will consider permutation schedules, by whichwe mean that the order of the tasks in distribution, computation, and resultcollection phases is the same. We assume that transfer rates and startuptimes are the same for sending the load to the processors, and for returning4

P1

P2

P3

P0

T1 T2 T3

a11 a32

a32

a22 a13

a13

a23

a23

a33

a33

a22

a11

a31

a31

a21

a21idle idle

idleFigure 1: An example of a permutation schedule.of the results.Our objective is minimization of the schedule length, denoted by Cmax.Scheduling multiple divisible loads has already been considered in DLTfor communications without startup times. In [1, 9] it was assumed thattask execution sequence was �rst-in �rst-out, processors were uniform, andtask computations �nish simultaneously. Furthermore, all processors wereused by each task. In a multi-job scheme [1, 9] communications of sometask Tj overlap with computations of task Tj−1 preceding Tj in the executionsequence. This allows to start computations for Tj on processors P1, . . . , Pm′immediately after the end of task Tj−1. Processors Pm′+1, . . . , Pm are idleuntil receiving their load share of Tj. Using the formulae provided in [1, 9]the distribution of the load for Tj can be found in O(m) time, for a given m′.The actual value of m′ can be found iteratively in at most m steps. Thus,for a sequence of n tasks the complexity of the algorithm is O(m2n).In [10] the same assumptions on the task sequence, processor selection,simultaneous computation completion, and zero startup time were made.Under the above assumptions a multiinstallment load distribution strategyhas been proposed to ensure that all processors work continuously on tasks
T2, . . . , Tn. When the overlap of computations on Tj−1 with the communica-tions of Tj is too short to send the whole load Vj to the processors, and thusavoid idle time (i.e. if m′ < m), then the load is divided into multiple smallerinstallments. Since communications last shorter, all processors may receivesome load earlier, and may work continuously on Tj . Unfortunately, it wasobserved in [10] that this strategy does not work for certain combinations oftask, and processor parameters. Furthermore four heuristics have been pro-posed in [10]. It was demonstrated by a set of simulations that for processingmultiple loads multiinstallment strategy gives the shortest schedule in most5

of the cases.In [6] a probabilistic analysis is given for multiple loads arriving at mul-tiple nodes of a fully-connected network of identical processors.In this work we analyze multpile divisible load scheduling problem alongthe lines of computational complexity theory. Further organization of thispaper is the following. In Section 2 computationally hard cases are identi�ed.In Section 3 some polynomially solvable cases of the problem are presented.Bounds on the quality of approximation algorithms are given in Section 4.2 ComplexityIn this section we identify several cases of multiple divisible load schedulingproblem which are computationally hard (strictly saying NP-hard, or NP-hard in a strong sense [4]). In our proofs of the computational complexitywe will be using an NP-complete Partition problem, and strongly NP-complete 3-Partition problem, de�ned as follows [4]:PartitionInstance: A �nite set E = {e1, . . . , eq} of positive integers.Question: Is there a subset E ′ ⊆ E such that
∑

j∈E′

ej =
∑

j∈E−E′

ej =
1

2

q∑

j=1

ej = F ? (1)3-PartitionInstance: A �nite set E = {e1, . . . , e3q} of positive integers, such that∑3q
j=1 ej = Fq and F/4 < ej < F/2 for j = 1, . . . , 3q.Question: Can E be partitioned into q disjoint subsets E1, . . . , Eq such that∑
ej∈Ei

ej = F for i = 1, . . . , q?Theorem 1 Multiple divisible load scheduling problem is NP-hard even forone (m = 1) unrelated processor, when result returning is considered.Proof. For m = 1 multiple divisible load scheduling problem is obviouslyin NP because NDTM has to guess the sequence of tasks execution. Wewill show that multiple divisible load scheduling problem is NP-hard by apolynomial time transformation from Partition, de�ned as follows:
n = q + 1, 6

F+1F 2 +1F

P1

P0
S C V1 1n n n+ S C V1 1n n n n+b

A V1n n
... ...A V11 1 A V1k kA V1j j A V1l lFigure 2: Illustration to the proof of Theorem 1.

Vj = 1, βj = 1 for j = 1, . . . , n,
S1j = 0 for j = 1, . . . , n,
C1j = 0 for j = 1, . . . , q, C1n = F ,
A1j = ej for j = 1, . . . , q, A1n = 1.We ask if a schedule with length at most y = 2F + 1 exists. Suppose, thatthe partition instance has a positive answer. Then a feasible schedule oflength 2F + 1 can be constructed as shown in Fig.2.Suppose the scheduling problem instance has a positive answer. Then task
Tn is continuously performed because S1n +VnC1n +VnA1n +S1n +βnVnC1n =
2F + 1 = y. As computations are nonpreemptive, tasks T1, . . . , Tq must �teither into interval [0, F], or interval [F + 1, 2F + 1]. For the set of tasks
T[0,F] which computations are performed in [0, F] we have ∑

Tj∈T[0,F]
A1jVj =

∑
Tj∈T[0,F]

ej = F . Analogously, for the tasks in interval [F + 1, 2F + 1]:∑
Tj∈T[F+1,2F+1]

A1jVj =
∑

Tj∈T[F+1,2F+1]
ej = F . Thus, a partition instancealso has a positive answer. Consequently, our scheduling problem is NP-hard. 2Theorem 2 If result returning time is negligible, then multiple divisible loadscheduling problem for two (m = 2) unrelated processors is NP-hard in thestrong sense.Proof. We prove the theorem by reduction from 3-partition. We assume(without loss of generality) that F > q, F > 1. Were it otherwise, ej can bemultiplied by q > 1 to ful�l this requirement. The instance of the schedulingproblem can be constructed as follows:

n = 4q + 1, Vj = 1 for j = 1, . . . , n,
S1j = ∞, S2j = 0, C1j = ∞, C2j = ej, A1j = ∞, A2j = F 3ej for j = 1, . . . , 3q.
S1,3q+1 = 0, S2,3q+1 = ∞, C1,3q+1 = 1, C2,3q+1 = ∞,
A1,3q+1 = F 4 + F, A2,3q+1 = ∞,
S1j = 0, S2j = ∞, C1j = F 4, C2j = ∞, A1j = F 4 + F, A2j = ∞ for j =
3q + 2, . . . , 4q, 7

...
ei ej ek ep es erF

4

E1 E2

F
4

F
4

F F
4
+ F F

4
+

F e
3

i F e
3

j F e
3

k F e
3

p F e
3

s F e
3

z

1
I II q

P1

P2

P0

F e
3

rFigure 3: Illustration to the proof of Theorem 2.
S1,4q+1 = ∞, S2,4q+1 = 0, C1,4q+1 = ∞, C2,4q+1 = F 4, A1,4q+1 = ∞, A2,4q+1 = 1,
y = q(F 4 + F) + 2.We ask whether a schedule not longer than y exists. If 3-partition instancehas positive answer then a feasible schedule of length y may look like theone in Fig.3. Observe that P2 can start processing tasks immediately afterits �rst communication. Thus, there can be also other schedules not longerthan y when a 3-partition exists.Suppose, a feasible schedule not longer than y exists. Due to the valuesof parameters Aij , Cij, Sij, tasks T1, . . . , T3q can be executed on P2 only, andtasks T3q+1, . . . , T4q+1 on P1 only. The total time of computing on P1 is q(F 4+
F) + 1 = y − 1, while the shortest load distribution operation last one unitof time. As a result, P1 must compute all the time with the exception of the�rst time unit when the load of T3q+1 is sent. The sum of all communicationtimes is equal to y−1. Thus, originator must communicate all the time withthe exception of the last time unit when task T4q+1 must be executed.Total computing requirement put on P2 by tasks T1, . . . , T3q is qF 4. Afterexcluding the �rst communication of T3q+1, P2 can be idle at most qF + 1time units. To avoid idling on P1, sending the load for the second taskexecuted on P1 must start at time F + 1 at the latest. Therefore, no moreload can be sent to P2 than for three tasks. Suppose that two tasks Ti, Tjare started on P2 before sending the load for the second task on P1, and Tiis started �rst. Then, there would be excessive idle time on P2 since theend of Tj computations till the end of the communication operation of thesecond task executed by P1. F 4 + ej is the span of the interval since the endof Ti communication operation till the end of the communication operationof the second task executed by P1. F 3(ei + ej) is the time of computingoperations which can be executed on P2 in this interval. The idle time on
P2 would be at least F 4 + ej − F 3(ei + ej). Since F > q and F > 1 we have8

F 4 + ej − F 3(ei + ej) > F 4 − F 3(F − 1) = F 3 ≥ F 2 + F 2 > qF + 1, whilethe idle time on P2 cannot be greater than qF + 1. Hence, exactly threecommunications to P2 must be done before sending the second task to P1.The sum of computation times of the three tasks allocated to P2 must beequal to F 4. If it is less, then it is at most F 4−F 3 which results in F 3 > qF+1idle time on P2 while communication of the second task allocated to P1 withthe originator. Suppose it is more, then sending their loads last longer than
F and the reading operation of the second task allocated to P1 cannot startin time, which results in additional idle time on P1. Consequently, scheduleof length y cannot exist. We conclude that the three tasks must be processedin exactly F 4 time units.The same reasoning can be applied to the following tasks assigned to P1.The load distribution operations of these tasks cannot be started later thanby 1 + iF 4 + (i + 1)F for i = 1, . . . , q − 1. This creates free time intervalfor at most three communications of the tasks assigned to P2. Also no lessthan three tasks can be started by the originator, otherwise there will beexcessive idle time on P2 during the next load sending operation of a taskassigned to P1. The processing times of the three tasks must be exactly equalto F 4, otherwise either P2 or the originator must be idle. We conclude thatfor each triplet of tasks Ti, Tj, Tk assigned to P2 the processing time satis�es
F 3(ei + ej + ek) = F 4. Hence, 3-partition instance also has a positiveanswer. 2In the following theorem we consider a simpler case of uniform processors,but with simultaneous completion required, i.e. each task must be �nishedat the same time on all used processors.Theorem 3 If result returning time is negligible and simultaneous comple-tion is required, then multiple divisible load scheduling on uniform processorsis NP-hard already for two (n = 2) tasks, even if the sequence of the tasksis known.Proof. First we will calculate the amount of a single application load thatcan be distributed, and processed on a star network with Ci = 0, until time
τ . Without loss of generality, let us assume that the sequence of processoractivation is P1, . . . , Pm. The amount of load V that can be distributed, andprocessed in time τ is

V =
m∑

i=1

τ

Ai

−
m∑

i=1

m∑

j=i

Si

Aj

(2)9

Term ∑m
i=1

τ
Ai

is the amount of load that could be processed if all processorswere activated simultaneously at time 0. Startup time Si of the selectedprocessor Pi delays the activation of all processors Pj for j ≥ i. There-fore, Si decreases the total load that could be processed by ∑m
j=i

Si

Aj
. Term

∑m
i=1

∑m
j=i

Si

Aj
in (2) is the amount of the load that could not be processeddue to the communication delays. Suppose that 1

Ai
= Si for all i. Formula(2) reduces to

V =

τ
m∑

i=1

Si −
m∑

i=1

m∑

j=i

SiSj =

τ
m∑

i=1

Si −
1

2
(

m∑

i=1

Si)
2 −

1

2

m∑

i=1

S2
i (3)Note that V in (3) does not depend on the sequence of processor activation.We will show NP-hardness of the problem by a polynomial time trans-formation of Partition problem. Assume that ei > 2 for i = 1, . . . , q. Wereit otherwise, all ei may be multiplied by 2 without changing the answer tothe partition instance. The transformation of a partition instance to ascheduling problem instance is as follows:

n = 2, m = q,
Si = ei, Ai = 1

Si
= 1

ei
, Ci = 0, for i = 1, . . . , q

V1 = 4F 2 − 1
2

∑m
i=1 e2

i , V2 = F
y = 3F + 1.As already mentioned the sequence of task execution is given: T1 precedes
T2. We ask if a schedule of length at most y exists.Suppose the answer is positive for partition problem. A feasible sched-ule for the instance of the scheduling problem is shown in Fig.4. Processorscorresponding to set E ′ in partition are used by T2. Let us check thatthe schedule is feasible. T1 completes computations at time τ = 3F . If wesupply the values of startup times Si, and processing rates Ai into equation(2), we get equation (3), and further 3F

∑m
i=1 ei −

1
2
(
∑m

i=1 ei)
2 − 1

2

∑m
i=1 e2

i =
6F 2 − 1

2
(2F)2 − 1

2

∑m
i=1 e2

i = V1. Thus, T1 is executed feasibly. The commu-nications of T1 �nish at time 2F , therefore communications of T1 which take∑
i∈E′ Si = F �t in F +1 time units of available time. In the last time unit ofinterval [τ, y] the selected processors process ∑

i∈E′

1
Ai

=
∑

i∈E′ ei = F unitsof load. Hence, also T2 is executed feasibly.10

P1

P2

P0

Pm

... idle

2F 3F 3 1F+

E'

T1 T2

Figure 4: Illustration to the proof of Theorem 3.Suppose that a schedule of length y exists. Task T1 is executed �rst.All m processors must be used by T1. Suppose it is otherwise, and someprocessor is not exploited. Without loss of generality we can renumber theprocessors such that Pm is the unused processors. By (3) the volume of theprocessed load for T1 is at most V ′
1 = y

∑m−1
i=1 Si−

1
2
(
∑m−1

i=1 Si)
2− 1

2

∑m−1
i=1 S2

i =
(3F + 1)

∑m−1
i=1 ei −

1
2
(
∑m−1

i=1 ei)
2 − 1

2

∑m−1
i=1 e2

i = (3F + 1)
∑m

i=1 ei − (3F +
1)em − 1

2
(
∑m

i=1 ei)
2 − 1

2

∑m
i=1 e2

i + 1
2
(e2

m + 2em

∑m−1
i=1 ei) + 1

2
e2

m = V1 + 2F −
(3F + 1)em + e2

m + em

∑m−1
i=1 ei = V1 + 2F − em(3F + 1 −

∑m
i=1 ei) = V1 +

2F − em(F + 1) < V1 because em > 2. Hence, all m processors must beused. If all processors are used then T1 communications complete by 2F ,and due to simultaneous completion requirement, its computations �nish attime 3F . This leaves interval [2F, 3F + 1] free for communications, andinterval [3F, 3F + 1] for computations on T2. Note that ∀iSi ≥ 1, and anycommunication in interval [3F, 3F +1] gives no contribution to the processedload of task T2. Consequently communications of set P ′ of the processorsselected for executing T2 must satisfy ∑
i∈P ′ Si =

∑
i∈P ′ ei ≤ F . The load of T2processed in interval [3F, 3F +1] must satisfy ∑

i∈P ′

1
Ai

=
∑

i∈P ′ ei ≥ F . Thus,the answer is positive for partition instance if the elements correspondingto the processors in set P ′ are selected to set E ′. 2The case of arbitrary processor sequence is not simpler. We explain it inthe following observation. 11

Observation 4 If result returning time is negligible and simultaneous com-pletion is required, then multiple divisible load scheduling on uniform proces-sors is NP-hard even for two (n = 2) tasks, and arbitrary sequence of thetasks.Proof. The proof for the previous problem can be adjusted to the currentsituation. If the sequence of tasks is (T2, T1), then the length of the schedule isat least the length of the communications of T2 plus the length of the schedulefor T1. The duration of T1 processing is at least 3F (see the proof of Theorem3). Communications of T2 last at least minPi∈P{Si} = mini∈E{ei} > 1, andschedule length is at least 3F + 2. Thus, only sequence (T1, T2) allows fora schedule of length at most 3F + 1, the proof of Theorem 3 applies, and aschedule of length 3F + 1 exists if and only if partition exists. 2We can conclude from the above results that scheduling multiple divisibleloads is computationally hard. The main source of the computational com-plexity are sequencing the tasks, selecting the processors to use, sequencingprocessor activation.3 Polynomial cases3.1 Fixed activation order, no result returningWhen the task execution sequence, the set of used processors, and the pro-cessor activation orders are known, then the optimum distribution of the loadcan be found by using linear programming. Let us �rst study the case whensimultaneous completion of the computations is not required, and results re-turning time can be ignored. For the sake of notation simplicity, and withoutloss of generality, let us assume that the order of task execution coincideswith task numbers. The set of processors exploited by Tj is Pj . The orderof processor activation can be di�erent for each task. Let the number of the
ith processor activated for task Tj be given by function f(j, i). The amountof load from task j = 1, . . . , n sent to processor i = 1, . . . , m is denotedby αij ≥ 0. The optimum distribution of the load can be found using thefollowing linear program:minimize Cmaxsubject to 12

l−1∑

j=1

|Pj |∑

i=1

(Sf(j,i)j + αf(j,i)jCf(j,i)j) +
k∑

i=1

(Sf(l,i)l + αf(l,i)lCf(l,i)l)+

+
n∑

j=l

αf(l,k)jAf(l,k)j ≤ Cmax l = 1, . . . , n, k = 1, . . . , |Pj| (4)
∑

i∈Pj

αij = Vj j = 1, . . . , n (5)In inequalities (4) term ∑l−1
j=1

∑|Pj |
i=1 (Sf(j,i)j +αf(j,i)jCf(j,i)j) is the time of send-ing the load for tasks 1, . . . , l − 1. Sum ∑k

i=1(Sf(l,i)l + αf(l,i)lCf(l,i)l) is thetime of sending the load to processors f(l, i) activated as i = 1, . . . , k inthe sequence of processors executing task l. ∑n
j=l αf(l,k)jAf(l,k)j is the timeof computing the load parts of tasks l, . . . , n, sent to processor f(l, k), ac-tivated as k-th for task l. Thus, inequalities (4) ensure that computationscomplete before the end of the schedule. By constraints (5) all tasks are fullyprocessed. Let us consider an example.Example 1. m = 3, n = 2, |Pj| = m, f(j, i) = i, for j = 1, 2, i.e.,all processors are used, and the order of processor activation coincides withprocessor numbers for both tasks. Processors are identical: ∀i,jAij = 1,

∀i,jCij = 1, ∀i,jSij = 1. V1 = 32, V2 = 2. For these values the solutionfrom (4)-(5) is: α11 = 18.5, α21 = 9.75, α31 = 3.75, α12 = 2.0, α22 = 0, α32 =
0, Cmax = 40. The two last communications of T2 contain no load, because
α22 = 0, α32 = 0, but still contribute startup times S1 = S2 = 1. Thus, thisis not the best solution, and processor P3 need not be used in processing T2.After removing P3 from P2 we get from (4)-(5) the optimum solution: α11 ≈
18.333, α21 ≈ 9.333, α31 ≈ 4.333, α12 ≈ 1.667, α22 ≈ 0.333, Cmax ≈ 39.333,shown in Fig.5. Exclusion of both P3, and P2 from processing T2 does notreduce schedule length anymore. 2Let us observe that in the optimum schedule for Example 1 computationson T1 do not �nish on all processors at the same time. It demonstrates thatsimultaneous completion of the computations on all processors for all tasksis not necessary for the optimality of the solution.Suppose that tasks are of equal size ∀Tj

Vj = V processors are identical,and ∀Tj
Pj = P, i.e., are all processors are used by all tasks. We experimen-tally studied patterns that appear in the optimal solutions under the above13

P1

a11 a12

a12a11

a21 a22

a22a21

a31

a31

T1

P2

T2

P3

19.333 29.667 35 3937.667 39.333

P0

idle

Figure 5: Optimal schedule for Example 1 (does not preserve proportion).conditions. When communication delays are big in comparison with comput-ing time then not all processors are exploited. It is the case when C � A
m
.When communication delays are of similar order as computations then loadof each task is distributed nearly equally between the processors. The excep-tions are the leading and trailing tasks. In the leading tasks distribution isunequal so that waiting for the �rst load chunk to process is minimized. Inthe trailing tasks the distribution is also unequal such that processors stopcomputing at the same time. This is demonstrated in Fig.6a where changesof αij from task to task are shown. Each line in Fig.6 represents the loadfrom the consecutive tasks assigned to a certain processor. When commu-nication delays are short in comparison with computing times, e.g. when

C � A
m
, then total load of all tasks is distributed nearly equally between theprocessors, but computations of each task are concentrated on one processor.This is demonstrated in Fig.6b. Such a situation is not very comfortable fora user of a parallel application because a distribution optimal globally (forall tasks) is not a solution which is using parallelism.It was assumed in (4)-(5) that the computation completion times arearbitrary. If simultaneous completion is required, then a linear programmingformulation can be given to deal with the simultaneous completion. Let

zl denote the completion of computations on task Tl. The following linearprogram solves the case with simultaneous completion:minimize Cmaxsubject to
zl−1 + αf(l,k)lAf(l,k)l ≤ zl l = 2, . . . , n, k = 1, . . . , |Pj| (6)14

0

1E3

1 3 5 7 9 11 13 15 17 19 21 23
j

aij

a1j

a2j

a3j

2E3

3E3

4E3

5E3

6E3

7E3

8E3

9E3

1E4

a1j

a2j

a3j

0

1E3

1 3 5 7 9 11 13 15 17 19 21 23

aij

2E3

3E3

4E3

5E3

6E3

7E3

8E3

9E3

1E4

ja) b)Figure 6: Distribution of the load (αij) vs task number (j); m = 3, n =
24, V = 1E4, C = S = 1. a) A = 3, b) A = 1E2.

l−1∑

j=1

|Pj |∑

i=1

(Sf(j,i)j + αf(j,i)jCf(j,i)j) +
k∑

i=1

(Sf(l,i)l + αf(l,i)lCf(l,i)l)+

+
n∑

j=l

αf(l,k)jAf(l,k)j ≤ zl l = 1, . . . , n, k = 1, . . . , |Pj| (7)
zn = Cmax (8)

∑

i∈Pj

αij = Vj j = 1, . . . , n (9)By inequalities (6), the computations of task Tl can be feasibly performedin interval [zl−1, zl]. Inequalities (7) ensure that communications and com-putations of task Tl are completed by time zl. By (8) the end of the last taskis also the end of the schedule. The tasks are fully processed by (9).Let us now return to Example 1. For linear program (6)-(9) a solution
α11 = 19, α21 = 9, α31 = 4, α12 = 1, α22 = 1, Cmax = 40 is obtained, which islonger than in Fig.5. Hence, requiring simultaneous completion of computa-tions on all processors may prevent obtaining an optimum schedule.3.2 Fixed activation order, with result returningThe methods used in the previous section can be extended to deal with thereturning of the results. Without loss of generality we assume that tasks are15

executed in the order of their numbers, and such is the order of sending theloads from the originator to the processors. Yet, the set of processors usedby a task, the sequence of processor activation, and the sequence of resultcollection can be arbitrary. Let us denote by:
Tjdd - the last task which distributes the load before task Tj distributes itsload,
Tjrd - the last task which returns its results to the originator before task Tjdistributes its load,
Tjdr - the last tasks which distributes the load before task Tj returns itsresults,
Tjrr - the last task which returns its results to the originator before returningtask Tj results,
tDj - the time moment when distribution of task Tj load starts,
tRj - the time moment when collection of task Tj results starts,
tij - the time moment when Pi �nishes computing load αij ,
f(j, i) - the number of the ith processor activated for task Tj,
g(j, i) - the processor returning results as ith in the sequence, for task Tj .Optimum distribution of the load can be found by solving the followinglinear program:minimize Cmaxsubject to

tDj ≥ tDjdd +

|P
jdd |∑

i=1

(Sf(jdd,i)jdd + αf(jdd,i)jddCf(jdd,i)jdd) j = 1, . . . , n, (10)
tDj ≥tg(jrd,k)jrd+

|P
jrd |∑

i=k

(Sg(jrd,i)jrd +βαg(jrd,i)jrdCg(jrd,i)jrd)

j = 1, . . . , n, k = 1, . . . , |Pjrd| (11)
tRj ≥ tDjdr +

|P
jdr |∑

i=1

(Sf(jdr ,i)jdr + αf(jdr ,i)jdrCf(jdr ,i)jdr) j = 1, . . . , n (12)
tRj ≥ tg(jrr ,k)jrr +

|Pjrr |∑

i=k

(Sg(jrr,i)jrr +βαg(jrr,i)jrrCg(jrr,i)jrr)

j = 1, . . . , n, k = 1, . . . , |Pjrr | (13)
tRj ≥ tg(j,1)j j = 1, . . . , n, k ∈ Pl (14)16

tkj ≥ tDj +
k∑

i=1

(Sf(j,i)j + αf(j,i)jCf(j,i)j) + αf(j,k)jAf(j,k)j

j = 1, . . . , n, k ∈ Pj (15)
tkj ≥ tkjdd + αkjAkj l = 1, . . . , n, k ∈ Pj ∩ Pjdd (16)

Cmax ≥ tg(n,k)n +
|Pn|∑

i=k

(Sg(n,i)n + βαg(n,i)nCg(n,i)n) k = 1, . . . , |Pn| (17)
∑

i∈Pj

αij = Vj j = 1, . . . , n (18)Inequalities (10), (11) guarantee that distribution of Tj load may take placeonly after all the preceding communication operations. Similarly, (12), (13)ensure that collection of Tj results follow after the preceding communicationoperations. By inequalities (14) returning of the results can start when anyresults are available. Computation of some part of the task Tj on processor kcan �nish only after receiving the load part and computing it by inequalities(15). By inequalities (16) computations exploiting the same processor do notoverlap. The end of the schedule is set by the end of returning the results ofthe last task by inequalities (17). All the load is processed by equation (18).3.3 Continuous computingIn this section we assume identical processors, simultaneous completion, us-ing all processors by each task, and negligible result returning time. More-over, it is assumed that the tasks occupy processors continuously from thestart of computations on the �rst task, till the end of the last task. We willcall this situation continuous computing. We are going to propose conditionsunder which an optimum schedule can be constructed for the continuouscomputing. The conditions we propose are su�cient but not necessary. Thismeans that in the set of optimum schedules with continuous computing thereis a subset satisfying our conditions. Let us start with some observations.Observation 5 When computing is continuous, only the sequence of thetasks decides on the optimality of the schedule.Proof. Since all processors are used by each task, the selection of processorset is immaterial. For each task the sequence of processor activation canbe arbitrary because processors are identical, and used in the same interval17

Ti
TiTj

Tj

P1
P1

P0
P0

E F

e ef f

x0
x0

x11
x21x12

x22

Pm
Pm

... ...a) b)Figure 7: Illustration to the proof of Theorem 6.due to simultaneous completion. With the exception of the �rst task in thesequence the load assigned to any processor is Vj

m
for task Tj , and a decisionon task chunk sizes is not necessary. 2Continuous computing is possible when the load of any task Tj is dis-tributed to the processors before starting of the computations on Tj. Exe-cuting the tasks according to the increasing sizes (Vj) will be called SPT (forShortest Processing Time) sequence.Theorem 6 If computing is continuous, and ∀Tj∈T Vj > Sm

A
m
−C

then SPTmaximizes the interval between the completion of the task communication,and starting of its computations.Proof. The requirement ∀Tj∈T Vj > Sm
A
m
−C

can be rewritten as ∀Tj∈T
AVj

m
>

Sm + CVj , which means that load distribution time is shorter than compu-tation using all processors in the same interval. This requirement should besatis�ed by real parallel applications which have high computing demands.Consider two tasks Ti, Tj executed continuously one after another. For thesimplicity of presentation let us denote by e = Sm+CVi, E = AVi

m
, f = Sm+

CVj, F = AVj

m
. Note that e < E, f < F . A task preceding Ti, Tj completesits communication x0 units of time before the end of its computations (cf.Fig.7). Suppose that Ti precedes Tj (cf. Fig.7a). The time from the end of

Ti communication to the start of Ti computation is x11 = x0 − e. The lengthof the interval since the end of Tj communication till the beginning of Tjcomputation is x12 = x0 +E−e−f . The worse of the two interval lengths is
min{x11, x12}. Now suppose that the order of the two tasks is inverted. Thenthe lengths of the intervals are (cf. Fig.7b) x21 = x0−f, x22 = x0 +F −e−f .18

The smaller of the intervals is min{x21, x22}. Let us analyze the conditionsunder which it is better to execute the two tasks in the order (Ti, Tj), thanin the order (Tj , Ti), i.e. when min{x11, x12} > min{x21, x22}. Note thatchanging the order of the two tasks does not in�uence the rest of the schedule.Let us assume that min{x11, x12} = x11 then x0 − e < x0 + E − e − f ,hence f < E. Suppose that min{x21, x22} = x21 then x0−f < x0 +F −e−f ,hence e < F . Sequence (Ti, Tj) is better when x11 = x0 − e > x21 = x0 − ffrom which we get e = Sm+ViC < f = Sm+VjC, and Vi < Vj. Thus, SPTsequence is desired. Suppose that min{x21, x22} = x22 then e > F . Sequence
(Ti, Tj) is better if x11 = x0 − e > x22 = x0 + F − e − f , and f > F which isin contradiction with f = Sm + CVj <

AVj

m
= F .Let us assume that min{x11, x12} = x12 then f > E. If min{x21, x22} =

x21 then e < F . Sequence (Ti, Tj) is better when x12 = x0 + E − e − f >
x21 = x0 − f , from which we get E > e. Altogether we have e < E < f ,and Vi < Vj. Finally, if min{x21, x22} = x22, and e > F . If we put togetherthe conditions for this case we have: e < E, e > F, f < F, f > E. Using
e < E < f , and e > F > f we get a contradiction. We may conclude that byusing interchanges between all pairs of consecutive tasks (excluding the �rsttask), any continuous computing sequence can be changed to a continuouscomputing SPT sequence. 2Let us assume that tasks are ordered according to SPT rule, i.e. V1 ≤
V2 ≤ . . . ≤ Vn. The conditions of the optimality of SPT sequence in contin-uous computing are the following.Theorem 7 SPT is the optimum task sequence for continuous computing if
∀Tj∈T Vj > Sm

A
m
−C

, and xj > Sm + Vj+1C for j = 1, . . . , n − 1, where x1 =

CV1−
SA
C

[(1+ C
A

)m−(1+ C
A

)]+(m−1)S

(1+ C
A

)m−1
, xj = xj−1+

VjA

m
−Sm−VjC for j = 2, . . . , n−1.Proof. It follows from Observation 5 that only the task sequence has to bechosen for continuous computing. According to Theorem 6 SPT sequencemaximizes the distance between task communication completion and com-putation start. Thus if it is possible to maintain continuous computing atall, then SPT will also do it, provided that ∀Tj∈T Vj > Sm

A
m
−C

. Yet, it has notbeen determined by Theorem 6 what is the �rst task in the sequence (i.e. theone which precedes the �rst pair (Ti, Tj) satisfying SPT order). Note thatthe longer the �rst task is, the longer communication delays are, and thelonger the processors must wait idle for the initiation of the computations.19

Tj TnT2T1

P1

P0

x1
xj-1

xj xnx2

...

... ...

Pm

Pm-1

Pm-2

... ...

Aam1

__
m
AV2

__
m
AVj

__
m
AVn

S+Cam1 Sm+CV2 Sm+CVj Sm+CVj+1
Sm+CVn

Aam-1,1

Aam-2,1

Aa1,1

S+Cam-1,1

Figure 8: Illustration to the proof of Theorem 7.If the �rst task in the sequence has the smallest load, then the idle area inthe whole schedule is the shortest possible because there is no idle time afterthe �rst task. Hence, the SPT sequence V1 ≤ V2 ≤ . . . ≤ Vn is optimal.It still remains to ensure that continuous computing is possible. It is thecase if xj > Sm + Vj+1C, for j = 1, . . . , n − 1, where xj is the time betweenend of task Tj communication, and the start of its computation (cf. Fig.8).It means that communication of Tj+1 �nishes before its computation has tostart. The length xj of the interval for the communication of Tj+1 is equalto xj = xj−1 + VjA

m
− Sm − CVj for j = 2, . . . , n − 1. Length x1 of the �rstinterval is x1 = Aαm1. Now we calculate αm1. Since computations on T1must �nish simultaneously on all processors we have

Aαi1 = S + αi+1,1(A + C) i = 1, . . . , m − 1

αi1 can be expressed as a function of αm1:
αi1 = αm1(1 +

C

A
)m−i +

S

A

m−i−1∑

j=0

(1 +
C

A
)j i = 1, . . . , m − 1The size of the �rst task is

V1 =
m∑

i=1

αm1(1 +
C

A
)m−i +

S

A

m−1∑

i=1

m−i−1∑

j=0

(1 +
C

A
)jthis can be reduced to

V1 = αm1
A

C
[(1 +

C

A
)m − 1] +

SA

C2
[(1 +

C

A
)m − (1 +

C

A
)] −

(m − 1)S

C
.20

Hence
x1 = Aαm1 =

V1 −
SA
C2 [(1 + C

A
)m − (1 + C

A
)] + (m−1)S

C
1
C

[(1 + C
A
)m − 1]

.

23.4 m = 1Observation 8 If result returning time is negligible, then multiple divisibleload scheduling problem for one (m = 1) unrelated processor is solvable in
O(n logn) time by Johnson's algorithm [5].Proof. If the results are not returned, and only one machine (m = 1) isavailable, then execution of a task reduces to two operations: communica-tion operation involving originator P0, followed by computation operationinvolving P1. This situation is equivalent to two-machine �owshop. Two-machine �owshop is solvable in O(n logn) time by Johnson's algorithm [5](or see e.g. [2, 7]). 2For the completeness of the presentation let us note that in our caseJohnson's algorithm divides the set of tasks into two subsets: T1 comprisingthe tasks for which S1j+C1jV1j < A1jV1j, and set T2 comprising the remainingtasks. Tasks in T1 are executed in the order of increasing S1j + C1jV1j , whiletasks in T2 are ordered according to decreasing A1jV1j . T1 is executed �rst.This special case can be also applied if for technical reasons, the parallelapplications should start and �nish on all processors simultaneously.4 ApproximabilityIn this section we study the bounds on the quality of approximation algo-rithms for multiple divisible load scheduling problem. By a greedy heuristicwe mean an algorithm which is not unnecessarily delaying communicationsand computations. This means that if there is some load to be distributedand communication medium is available, then the load is immediately dis-tributed, if there is some load already at a processor and the processor isfree, then the computation on the load is immediately started.

21

Theorem 9 Length CH
max of a schedule built by any greedy heuristic H solv-ing multiple divisible load scheduling problem on identical processors satis�es:

CH
max

C∗
max

≤ mn + m − n + 1,where C∗
max is the optimum schedule length.Proof. Intervals of two types can be distinguished in any schedule for ourproblem: Intervals of total length EC when initiator performs communica-tions, and intervals of total length EA when initiator is free because all proces-sors compute. In the case of identical processors EC =

∑n
j=1(

∑
Pi∈Pj

S+CVj).Note that nS +C
∑n

j=1 Vj ≤ C∗
max because the loads must be sent to at leastone processor. In the worst case some heuristic may try activating all proces-sors while only a single processor is necessary for each task. Consequently,∑n

j=1

∑
Pi∈Pj

S−nS = S
∑n

j=1(|Pj |−1) ≤ (m−1)nC∗
max. Some heuristic mayalso tend to use less processors than necessary. In the worst case |Pj| = 1,and EA ≤

∑n
j=1 AVj. Note that ∑n

j=1
AVj

m
≤ C∗

max. Hence EA ≤ mC∗
max.Altogether we have CH

max = EC +EA ≤ C∗
max +n(m−1)C∗

max +mC∗
max, fromwhich the theorem follows. 2The results of Theorem 9 can be further strengthened. If S = 0, then inthe above proof ∑n

j=1

∑
Pi∈Pj

S − nS = 0, and the ratio of schedule lengthscan be narrowed to CH
max

C∗

max
≤ m + 1. If ∀Tj∈T CVj + mS <

VjA

m
, i.e. whencomputations dominate in the parallel application, then EC ≤
∑n

j=1(mS +

CVj) ≤
∑n

j=1
VjA

m
≤ C∗

max. Consequently CH
max

C∗

max
≤ m + 1.5 ConclusionsIn this paper we studied some combinatorial aspects of scheduling multipledivisible loads. It has been demonstrated that this problem is computation-ally hard for dedicated processors, and uniform processors with simultaneouscompletion requirement. Polynomially solvable cases have been presented:when the order of task execution, the used processors and their activationsequence are given, the optimum distribution can be found by applying lin-ear programming. The case of a single processor boils down to a well knownoperations research problem of scheduling in two-machine �owshop. Thoughit may seem trivial, this special case may be useful in practical situations22

when parallel computations both start and complete in roughly the sametime on all processors. Finally, bounds on the performance of heuristics forthe problem have been searched for.Still, some problems remain open: the complexity status remains un-known for the problems of scheduling on uniform processors without simul-taneous completion, and scheduling on identical processors. Improving thebounds on approximability can be subject of the further study. From thepractical point of view, the problems considered in this paper have to besolved in reasonable time using little information about the parallel systemand the applications. Algorithms for scheduling with a limited knowledgecan be the subject of the future research.References[1] V.Bharadwaj, D.Ghose, V.Mani, T.Robertazzi, Scheduling divisibleloads in parallel and distributed systems. IEEE Computer Society Press,Los Alamitos CA, 1996.[2] J.Bªa»ewicz, K.Ecker, E.Pesch, G.Schmidt, J.W¦glarz, Scheduling Com-puter and Manufacturing Processes, Springer-Verlag: Heidelberg, 1996.[3] M.Drozdowski, Selected problems of scheduling tasks in multi-processor computer systems, Series: Monographs, No.321, Poz-na« University of Technology Press, Pozna«, (1997), (see alsohttp://www.cs.put.poznan.pl/�maciejd/h.ps).[4] M.R.Garey, D.S.Johnson, Computers and Intractability: A guide to thetheory of NP-completeness, Freeman, San Francisco, 1979.[5] S.M.Johnson, Optimal two- and three-stage production schedules withsetup times included, Naval Research Logistics Quarterly 1 (1954) 61-67.[6] K.Ko, T.G.Robertazzi, Scheduling in an Environment of Multiple JobSubmission, Proceedings of the 2002 Conference on Information Sciencesand Systems, Princeton University, Princeton NJ, March 2002.[7] M.Pinedo, Scheduling: theory, algorithms, and systems, Prentice Hall,Englewood Cli�s, 1995. 23

[8] T.Robertazzi, Ten reasons to use divisible load theory, IEEE Computer36 (2003) 63-68.[9] J.Sohn, T.Robertazzi, A Muli-Job Load Sharing Strategy for DivisibleJobs on Bus Networks, Department of Electrical Engineering, SUNY atStony Brook, Stony Brook, New York, Technical Report 697, 1994.[10] B.Veeravalli, G.Barlas, E�cient Scheduling Strategies for ProcessingMultiple Divisible Loads on Bus Networks, Journal of Parallel and Dis-tributed Computing 62, 132-151 (2002)

24

