o v =y @

| g S
Lo Meervovest eevrvesd eryrreey

ety ‘3(‘14-?]n*-jol‘(ﬂl

i i, | fom————— ——

YT PO (Y T A

PR T Tt P e
e 1 TTY T YN " ~

L
: f srre - - -
8 L b 1= 831, ~!!B|o»aﬂ».;| Sem e pes =
C_ n \ Sl 11l = iEuatLL ‘
——— =X
[\‘ \ |
. ,!
/ \

M.Borowski, CS PUT

Motivation

* Develpment Deployment
, 10 get the development environment set up , 10 deploy the application, provision a server running
install Postgres, MongoDB, and run these 5 Ubuntu, run this Ansible playbook to install the

scripts. Oh wait, you are on Windows? Also dependencies and configure the system, then copy
change these configurations.” the deployment binary and run it with these options.”

¥ ¥

»Run docker compose up »,Run this container image with these options”

8-

Containers

What is containerisation?

 Containerisation is a technology that allows applications to be isolated with
their dependencies (libraries, tools, configurations) in lightweight, portable
units called containers.

 Containers operate in isolated environments, but share the kernel of the host
operating system.

 Purpose: Simplify application deployment, ensure consistency of
environments (dev, test, prod) and ease of portability between different
systems.

Containers

What is containerisation?

A Docker container image is a
lightweight, standalone,
executable package of software
that includes everything needed
to run an application

S6QLAlchemy @) FastAPI

@ python’
QUINEG

MU X

Open Container Initiative (OCI)

 Runtime Specification The Open Container Initiative is an open
- governance structure for the express purpose
* Image Specification of creating open industry standards around

container formats and runtimes.

CONTAINER
INITIATIVE

e Distribution Specification

Evolution of Virtualization
Bare Metal

|—;lo$'t (Physical) Mochine

1
Appl?ca\tion #1 L Applica‘tiom #2 '
d Binaries / Libraries
I

' Opero\‘ttnﬁ Sys‘tem

[Pw./sicoJ Hardware. b

Evolution of Virtualization
Bare Metal

+ Hellish dependency conflicts [/<4 (Physical) Mackine

—

Applica‘tion # '

Binaries / Librares

N =

* | ow utilization efficiency Aoolicotion #1
PP iCaoLon

» Large blast radius n -

e Slow start up & shut down d
speed (minutes) l

Ope_r‘o\‘tinf, St/s‘te_m

* \ery slow provisioning &
decommissioning (hours to
days)

PhysicoJ Hardware *

Evolution of Virtualization

Virtual Machines

— —

Host (Phys?cod) Moachine

Type 1 | Virtual Mochine #1 : :V?r‘tual Mochine #2

AWS Nitro System

ﬁ mW a re ; Binaries / Librom‘es-

Applica‘tion #1 Applica‘tior\ #2

Binaries / Libroaries

vSphere

Opero\‘timj Sys‘te,m Ope_ra‘tin? Sys‘te_m

]

Microsoft
Victual Hardware

—— Hyper-V

Type 2

N¢ VirtualBox

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Virtual Hardware
|

Evolution of Virtualization

Virtual Machines

 No dependency conflicts
o Better utilization efficiency
 Small blast radius

» Faster startup and shutdown
(Mminutes)

* Faster provisioning &
decommissioning (minutes)

Host (Plnysical) Machine

Victual Machine #1

Applica‘tiom #1

Binaries / Libraries

=4

Operating Sys‘te_m

_=’

Virtual Hardware

|' || Virtual Machine #2

ApplicatIOA #2

Binaries / Libraries

Oper‘o\‘timj Sc/s‘tem

Virtual Hardware

Ope,rod:iv\g Sys‘te_m GP "‘type_ 9" hype,rvisor)

Pkys?cal Horrdware

Evolution of Virtualization

Containers

Desktop Container Platforms

-" docker

Container Runtimes

cnntainerm

) cri-o

Host (V'r'tual or Physical) Machine

' Container #1

Apphca‘tioa #1

U —

- | Binaries / Libraries

.............................

| Binaries / Libraries

.............................

Con‘tamer #2

Appl?ca‘tion wa .

.............................

Container Runtime

Oper‘a‘bing Sc,s‘tem

Wirtual or Pht/sical) Hordwo

Differences between containers and virtual machines (VMs)

Containers VMs

They share the kernel of the host operating system.| Each VM has its own operating system kernel.

They are light and fast (they start up in They are heavier and slower (they run in seconds/
milliseconds). minutes).
They require fewer resources (CPU, RAM, disk). They require more resources.

Isolation at process level. System-wide isolation.

Advantages of containerisation

* Portability: Containers work the same on any environment (local, cloud,
Server).

» Better resource utilisation: Containers are lightweight, so you can run more of
them on the same hardware.

 Speed: Containers start up in milliseconds.

e |solation: Applications in containers do not affect each other.

* Consistency of environments: No 'it works on my computer' issues.

Disadvantages of containerisation

» Kernel sharing: If the host system's kernel has a vulnerability, this can affect
the security of containers.

* |ess isolation than in VM: Containers are not completely isolated from the
host system.

 Management complexity: With a large number of containers, orchestration
tools (e.g. Kubernetes) are needed.

Examples of the use of containerisation

 Development: Consistent environments for developers.
* Jesting: Isolated test environments.
* Production: Deployment of microservices in the cloud.

* CI/CD: Automating build and deployment processes.

Structure of the Docker ecosystem

Docker ecosystem - key components

* Docker is a comprehensive containerisation management
tool with several main components:

container
* Images

|

e Containers manages

e \VVolumes

e Networks network

e Docker Hub

. manages
e Dockerfile

 Docker Compose

 These components work together to enable the creation,
launch and management of applications in containers.

image

manages —J

data volumes

J

manages

Images

Docker images - the basis of containers

 What is an image?

An image is a ready-made template containing the application, its dependencies, libraries and configuration.
Images are immutable - once created, they cannot be modified.
Possibility of using one image as a base for creating another image.

 How are images created?

They are created using a Dockerfile, which contains instructions for building the image.
Example:
docker build -t my-application

* Where are the images stored?

Locally on disk (in the Docker cache).
In registries/hubs, such as Docker Hub, where they can be shared and downloaded.

 Examples of images:
* nginx - web server

* python:3.9 - an image with Python 3.9 installed.

Containers

Containers - running instances of images

* What is a container?

A container is a running instance of a Docker image.
Containers are isolated from each other and from the host system, but share the system kernel.
Possibility of running multiple containers on the same computer (from the same or different images).

* How do | run a container?

Command:
docker run <image_name>

Example:
docker run -d nginx (runs the container with the Nginx image in the background).

« Container lifecycle:
« Start (docker run).
» Stopping (docker stop).
* Deletion (docker rm).

* Usage examples:

Running a web application.
Testing an application in an isolated environment.

Volumes

Volumes - data management in Docker

e What are volumes?

Volumes are a mechanism to permanently store data in Docker.

Data in volumes is independent of the container lifecycle.

Possibility of mapping between the system directory and the directory seen by the running image as seen by the running Docker image (container);
ensuring persistence of data (persistence), e.g. written in the container to the database

 Why use volumes?

To preserve data even after a container is deleted.
To share data between multiple containers.

e How to create volumes?

Command:
docker volume create <volume name>

To mount a volume to a container:
docker run -v <volume_name>:<path_in_container>

« Usage example:

« Storing database data (e.g. PostgreSQL) in a volume.

Networks

Networks in Docker - communication between containers

e \What are Docker networks?

A mechanism that enables communication between containers.
Each container can be connected to one or more networks.

* Types of networks:

Bridge - the default network for containers on a single host.
Host - containers share a network with a host.
Overlay - network for containers distributed across multiple hosts (e.g. in Docker Swarm).

* How do you create networks?

Command:
docker network create <network name>

Connecting a container to a network:
docker run --network <network name>

* Usage example:

* A web application communicating with a database via the Docker network.

Docker Hub

Docker Hub - image repository

& Arc File Edit View Spaces Tabs Archive Extensions Window Help - Q & S$r.12mar 21:24

e What is the Docker Hub? O 5 ¢ A EE

@dockerhub Q search Docker Hub Y- i1 Signin

A public repository for Docker images.
You can find ready-made images of popular
applications (e.g. Nginx, MySQL, Python) there.

e How to use the Docker Hub? Docker's curated GenAl catalog

Everything you need to build, scale, and deploy Al with ease.

Downloading images:
docker pull <image_name>

» Uploading your own images:
docker push <image_name> Spotlight

Gen Al CLOUD DEV OPMEN Al/M JEV OPM S0 WARE SUP CHA
Build up to 39x faster with Docker Build Cloud LLM everywhere: Docker and Hugging Face Take action on prioritized insights

 Examples:

Introducing Docker Build Cloud: A new solution to Set up a local development environment for Hugging Bridge the gap between development workflows and
speed up build times and improve developer Face with Docker security needs
productivity

Trusted content

Docker Official Image

* docker pull nginx - downloads an Nginx image.

Sponsored 0SS
docker.

e docker push my-app - uploads own image to ® buildcloud
Docker Hub.

Content Management System

Data Science Machine Learning & Al

Dockerfile

Dockerfile - a recipe for an image

e What is a Dockerfile?

A text file containing instructions for building a

Jocker image. . Dockerfile
Each instruction creates a new image layer.

* Key instructions: FROM python:3.9
 FROM - specifies the underlying image. COPY . /app

* RUN - executes commands during the build. WORKDIR /app

» COPY - copies files from the host to the RUN pip install -r requirements.txt
image. CMD ["python", "app.py"]

« CMD - specifies the default command to run
In the container.

Docker Compose

Docker Compose - managing multiple containers

 What is Docker Compose? yam|

version: "3"

A tool for defining and running

services:

multi-container applications. veb:
image: nginx
It uses the docker-compose.yml ports:

file for configuration. - "80:80"
db:

1mage: postgres
vo lumes:
- db_data:/var/lib/postgresql/data
volumes:
db data:

