
M.Borowski, CS PUT

Introduction to containerisation



Motivation
• Develpment 
 
„To get the development environment set up 
install Postgres, MongoDB, and run these 5 
scripts. Oh wait, you are on Windows? Also 
change these configurations.” 
 
 
 
 
„Run docker compose up”

• Deployment  
 
„To deploy the application, provision a server running 
Ubuntu, run this Ansible playbook to install the 
dependencies and configure the system, then copy 
the deployment binary and run it with these options.” 
 
 
 
 
 
„Run this container image with these options”



Containers
What is containerisation?

• Containerisation is a technology that allows applications to be isolated with 
their dependencies (libraries, tools, configurations) in lightweight, portable 
units called containers.


• Containers operate in isolated environments, but share the kernel of the host 
operating system.


• Purpose: Simplify application deployment, ensure consistency of 
environments (dev, test, prod) and ease of portability between different 
systems.



Containers
What is containerisation?

• A Docker container image is a 
lightweight, standalone, 
executable package of software 
that includes everything needed 
to run an application



Open Container Initiative (OCI)
• Runtime Specification


• Image Specification


• Distribution Specification

• The Open Container Initiative is an open 
governance structure for the express purpose 
of creating open industry standards around 
container formats and runtimes.



Evolution of Virtualization
Bare Metal



Evolution of Virtualization
Bare Metal

• Hellish dependency conflicts


• Low utilization efficiency


• Large blast radius


• Slow start up & shut down 
speed (minutes)


• Very slow provisioning & 
decommissioning (hours to 
days)



Evolution of Virtualization
Virtual Machines



Evolution of Virtualization
Virtual Machines

• No dependency conflicts


• Better utilization efficiency


• Small blast radius


• Faster startup and shutdown 
(minutes)


• Faster provisioning & 
decommissioning (minutes)



Evolution of Virtualization
Containers



Differences between containers and virtual machines (VMs)

Containers VMs

They share the kernel of the host operating system. Each VM has its own operating system kernel.

They are light and fast (they start up in 
milliseconds).

They are heavier and slower (they run in seconds/
minutes).

They require fewer resources (CPU, RAM, disk). They require more resources.

Isolation at process level. System-wide isolation.



Advantages of containerisation

• Portability: Containers work the same on any environment (local, cloud, 
server).


• Better resource utilisation: Containers are lightweight, so you can run more of 
them on the same hardware.


• Speed: Containers start up in milliseconds.


• Isolation: Applications in containers do not affect each other.


• Consistency of environments: No 'it works on my computer' issues.



Disadvantages of containerisation

• Kernel sharing: If the host system's kernel has a vulnerability, this can affect 
the security of containers.


• Less isolation than in VM: Containers are not completely isolated from the 
host system.


• Management complexity: With a large number of containers, orchestration 
tools (e.g. Kubernetes) are needed.



Examples of the use of containerisation

• Development: Consistent environments for developers.


• Testing: Isolated test environments.


• Production: Deployment of microservices in the cloud.


• CI/CD: Automating build and deployment processes.



Structure of the Docker ecosystem
Docker ecosystem - key components

• Docker is a comprehensive containerisation management 
tool with several main components:


• Images


• Containers


• Volumes


• Networks


• Docker Hub


• Dockerfile


• Docker Compose


• These components work together to enable the creation, 
launch and management of applications in containers.



Images
Docker images - the basis of containers

• What is an image? 
 
An image is a ready-made template containing the application, its dependencies, libraries and configuration. 
Images are immutable - once created, they cannot be modified. 
Possibility of using one image as a base for creating another image.


• How are images created? 
 
They are created using a Dockerfile, which contains instructions for building the image. 
Example:  
docker build -t my-application


• Where are the images stored? 
 
Locally on disk (in the Docker cache). 
In registries/hubs, such as Docker Hub, where they can be shared and downloaded.


• Examples of images:


• nginx - web server


• python:3.9 - an image with Python 3.9 installed.



Containers
Containers - running instances of images

• What is a container? 
 
A container is a running instance of a Docker image. 
Containers are isolated from each other and from the host system, but share the system kernel. 
Possibility of running multiple containers on the same computer (from the same or different images).


• How do I run a container? 
 
Command:  
docker run <image_name> 
 
Example:  
docker run -d nginx (runs the container with the Nginx image in the background).


• Container lifecycle:


• Start (docker run).


• Stopping (docker stop).


• Deletion (docker rm).


• Usage examples: 
 
Running a web application. 
Testing an application in an isolated environment.



Volumes
Volumes - data management in Docker

• What are volumes? 
 
Volumes are a mechanism to permanently store data in Docker. 
Data in volumes is independent of the container lifecycle. 
Possibility of mapping between the system directory and the directory seen by the running image as seen by the running Docker image (container); 
ensuring persistence of data (persistence), e.g. written in the container to the database


• Why use volumes? 
 
To preserve data even after a container is deleted. 
To share data between multiple containers.


• How to create volumes? 
 
Command: 
docker volume create <volume_name> 
 
To mount a volume to a container:  
docker run -v <volume_name>:<path_in_container>


• Usage example:


• Storing database data (e.g. PostgreSQL) in a volume.



Networks
Networks in Docker - communication between containers

• What are Docker networks? 
 
A mechanism that enables communication between containers. 
Each container can be connected to one or more networks.


• Types of networks: 
 
Bridge - the default network for containers on a single host. 
Host - containers share a network with a host. 
Overlay - network for containers distributed across multiple hosts (e.g. in Docker Swarm).


• How do you create networks? 
 
Command:  
docker network create <network name> 
 
Connecting a container to a network:  
docker run --network <network name>


• Usage example:


• A web application communicating with a database via the Docker network.



Docker Hub
Docker Hub - image repository

• What is the Docker Hub? 
 
A public repository for Docker images. 
You can find ready-made images of popular 
applications (e.g. Nginx, MySQL, Python) there.


• How to use the Docker Hub? 
 
Downloading images:  
docker pull <image_name>


• Uploading your own images:  
docker push <image_name>


• Examples:


• docker pull nginx - downloads an Nginx image.


• docker push my-app - uploads own image to 
Docker Hub.



Dockerfile
Dockerfile - a recipe for an image

• What is a Dockerfile? 
 
A text file containing instructions for building a 
Docker image. 
Each instruction creates a new image layer.


• Key instructions:


• FROM - specifies the underlying image.


• RUN - executes commands during the build.


• COPY - copies files from the host to the 
image.


• CMD - specifies the default command to run 
in the container.



Docker Compose
Docker Compose - managing multiple containers

• What is Docker Compose? 
 
A tool for defining and running 
multi-container applications. 
 
It uses the docker-compose.yml 
file for configuration.


