Using ML to Design a Flexible LOC Counter

,0700X

Mirosław Ochodek Miroslaw Staron Dominik Bargowski Wilhelm Meding Regina Hebig

Workshop on Machine Learning Techniques for Software Quality Evaluation

Software size

The Problem

Four Error (ve up to	r tool s. me o ~20	s dian) %	<text><text><text><text><section-header><text></text></section-header></text></text></text></text>	Manufacturentity de Ansenue la de Manufacture la de Santa manufacture la de Sa
Source code	UCC	Unders	tandCode A	Ana- Universal CLC
Linux Kernel	1.85%	2.89%	2.02%	8.15%
Mozilla Firefox	0.99%	5.37%	8.78%	9.01%
Open Office	1 18%	12.36%	9.03%	8 82%

19.93%

1.42%

0.07%

14.34%

9.35%

9.55%

		NCLOC			
Greatest Common Divisor in Java	LOC	ELOC	CLOC	LLOC	BLOC
/*	~		~		
* Returns the greatest common divisor	~		~		
*/	~		✓		
<pre>public static long gcd(long a, long b) {</pre>	~	✓		~	
	~				~
if (b==0)	~	~		~	
return a;	~	~		~	
else	~	~			
<pre>// invoke recursively</pre>	~		✓		
<pre>return gcd(b, a % b);</pre>	~	~		~	
}	~	~			
	11	6	4	4	1

Output: 2512 LOC

Android

Chrome

0.08%

0.45%

Introduces (unknown) measurement error, problems with reliability of the measurement, difficulties in measuring multi-language code base...

Potential solutions

A tool based on Programming Language (PL) parsers

- Explicitly known rules for counting that can be somehow formulated
- 100% accurate according to the rules
- Requires implementation for each PL
- Can be also implemented to allow for some configuration of rules (however, probably somehow limited)

A machine learning (ML) approach

- It is difficult to explicitly define the rules (either not known or too complex)
- Learns from examples (require training set)
- Classification error depending on the quality of training set
- Doesn't require new implementation for new language (however, may require a new training set)

Potential solutions

A tool based on Programming Language (PL) parsers

- Explicitly known rules for counting that can be somehow formulated
- 100% accurate according to the rules
- Requires implementation for each PL
- Can be also implemented to allow for some configuration of rules (however, probably somehow limited)

A machine learning (ML) approach

- It is difficult to explicitly define the rules (either not known or too complex)
- Learns from examples (require training set)
- Classification error depending on the quality of training set
- Doesn't require new implementation for new language (however, may require a new training set)

5

Idea of the solution

- Flexible lines of code counter (CCFlex)
 - A user teaches the tool which lines should be counted based on a sample (a training set)

Idea of the solution

CCFlex	
Output Rules Training code	
Files	Output /Users/mochodek/Downloads/ccflex/./examples/validation/java/RhinoForGWT/ProcessingProcessingInterface.java (LOC = 204 / 411)
204 / 411: ProcessingProcessingInterface.jav	a 1 9 package com.kissaki;
19 / 81: AbstractAction.java	2 😧
16 / 64: AutoCompleteField.java	3 () freq_semi_colon > 0 AND comment = false then Count (Certainty 0.99)
7 / 65: IRunnableContext.iava	4 😧
	5 9 public interface ProcessingInterface{
109 / 265: LaunchDelegate.java	6 😧
48 / 57: Veh.java	7 😧
248 / 599: JRCalculator.java	8 😧
4 / 158: JaveScriptCompiledDate java	9 9 public void Processing(JavaScriptObject aElement, String aCode);
130. Javaocriptoompileubata.java	
196 / 266: JdkJavaType.java	11 9 public void parse(JavaScriptObject aCode, String p);
492 / 601: Sql2JavaHelper.java	12 😧
93 / 237: CookieLocaleResolver.java	13 9 public void imageModeCorner (JavaScriptObject x, JavaScriptObject y, JavaScriptObject w, JavaScriptObject whAreSizes);
74 / 304: ModelAndView izva	14 😧
282 / 629: RequestMappingInfo.iava	15 Public void imageModeCorners(JavaScriptObject x, JavaScriptObject y, JavaScriptObject w, JavaScriptObject whAreSizes);
	16 0

Feature acquisition

Feature acquisition

•	Plain text	(F01-F04):
---	------------	------------

- File extension
- Full and trimmed length (characters)
- Tokens

• Programming language (F05-F19):

- Assignment,
- Brackets,
- Class,
- Comment,
- Semicolons,

ID	Name	Туре	Description
F01	File extension	Nominal	The extension of the file (e.g., java, cpp, etc.)
F02	Full length	Numeric	The number of characters in the line.
F03	Length	Numeric	The number of characters in the line after removing all leading and trailing white characters.
F04	Tokens	Numeric	The number of tokens in the line (the line is split based on white characters).
F05	Semicolons	Numeric	The number of semicolons in the line.
F06	Comments	Boolean	The line includes any of //, /*, */ or after trimming starts with *.
F07	Assignments	Numeric	the number of single assignment signs in the line (=).
F08	Brackets	Numeric	The number of brackets: (,)in the line.
F09	Square brackets	Numeric	The number of square brackets: [,] in the line.
F10	Curly brackets	Numeric	The number of curly brackets: {, } in the line.
F11	Class	Boolean	The word "class" appears in the line.
F12	For	Boolean	The word "for" appears in the line.
F13	If	Boolean	The word "if" appears in the line.
F14	While	Boolean	The word "while" appears in the line.
F15	Case	Boolean	The word "case" appears in the line.
F16	Try	Boolean	The word "try" appears in the line.
F17	Catch	Boolean	The word "catch" appears in the line.
F18	Expect	Boolean	The word "expect" appears in the line.
F19	Member access	Numeric	Counts members accessors: . or \rightarrow

Feature acquisition

Bag of words approach (automatic)

- Tokenize: ()[]{}!@#\$%^&*-=;:'"\|~,.<>/?
- Treat split character as a token
- Calculate thresholds:
 - Frequencies of tokens in the code base (min. 5)
 - % of files a token is present in (min. 25%)
- If thresholds are met:
 - F_i: the number of times the token_i occurs in a line

Preliminary validation

- **RQ1:** What level of prediction quality can be achieved by the proposed approach?
- **RQ2:** How the automatic features acquisition affects the classification quality?
- **RQ3:** How the choice of classification algorithm affects the classification quality?

Code databases

- 2402 physical lines of code in total
 - Eclipse: 475 LOC,
 - Jasper Reports 757 LOC,
 - Spring MVC: 1170 LOC
- ELOC (Count 1492 / Ignore 910)
- Subjective (Count 1237, Ignore 1165)

Validation schemes

10 x 10-fold cross-validation (18 schemes)

- two datasets
 - ELOC
 - Subjective;
- three feature sets
 - All: F01–F19 and acquired automatically;
 - Auto: F01–F04 and acquired automatically;
 - Predefined: F01–F19;
- three classification algorithms (PART, JRip, J48).

Prediction quality measures

- Accuracy
- Precision
- Recall
- F-score
- Matthews Correlation Coefficient (MCC)

RQ1: What level of prediction quality can be achieved by the proposed approach?

Dataset	Features set	Classifier	Accuracy %	Precision	Recall	F-Measure	MCC
ELOC	All	PART	99.55±0.45	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	All	JRip	$99.53 {\pm} 0.47$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	All	J48	$99.60 {\pm} 0.41$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Predefined	PART	99.53±0.46	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Predefined	JRip	$99.56 {\pm} 0.46$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Predefined	J48	99.60±0.41	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Auto	PART	$99.38 {\pm} 0.47$	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$
ELOC	Auto	JRip	$99.28 {\pm} 0.47$	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98 {\pm} 0.01$
ELOC	Auto	J48	99.18±0.54	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98 {\pm} 0.01$
Subjective	All	PART	97.34±1.14	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjective	All	JRip	$96.54{\pm}1.20$	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjective	All	J48	$97.18 {\pm} 1.07$	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94{\pm}0.02$
Subjective	Predefined	PART	95.05 ± 1.45	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Predefined	JRip	$95.32{\pm}1.44$	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.02$	$0.91 {\pm} 0.03$
Subjective	Predefined	J48	$95.10{\pm}1.42$	$0.97 {\pm} 0.02$	$0.94 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Auto	PART	97.33±1.08	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjective	Auto	JRip	96.38±1.14	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.96 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjective	Auto	J48	$97.08 {\pm} 1.09$	$0.98 {\pm} 0.01$	$0.96 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94{\pm}0.02$

Dataset	Features set	Classifier	Accuracy %	Precision	Recall	F-Measure	MCC
ELOC	All	PART	99.55±0.45	$1.00{\pm}0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	0.99±0.01
ELOC	All	JRip	99.53±0.47	1.00 ± 0.01	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	All	J48	99.60±0.41	1.00	ony high og		$0.99 {\pm} 0.01$
ELOC	Predefined	PART	99.53±0.46	1.0	ery nigh ac	curacy:	$0.99 {\pm} 0.01$
ELOC	Predefined	JRip	99.56±0.46	1.00	95.05 - 99	.60%	$0.99 {\pm} 0.01$
ELOC	Predefined	J48	99.60±0.41	1.00			$0.99 {\pm} 0.01$
ELOC	Auto	PART	99.38±0.47	1.00 High	er accuracy	y for ELOC	$0.99 {\pm} 0.01$
ELOC	Auto	JRip	99.28±0.47	1.00 ± 0.01	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	0.98 ± 0.01
ELOC	Auto	J48	99.18±0.54	$1.00{\pm}0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98 {\pm} 0.01$
Subjective	All	PART	97.34±1.14	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjective	All	JRip	96.54±1.20	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjective	All	J48	97.18±1.07	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94{\pm}0.02$
Subjective	Predefined	PART	95.05±1.45	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Predefined	JRip	95.32±1.44	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.02$	$0.91 {\pm} 0.03$
Subjective	Predefined	J48	95.10±1.42	$0.97 {\pm} 0.02$	$0.94{\pm}0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Auto	PART	97.33±1.08	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjective	Auto	JRip	96.38±1.14	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.96 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjective	Auto	J48	97.08±1.09	$0.98 {\pm} 0.01$	$0.96 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94{\pm}0.02$

Dataset	Features set	Classifier	Accuracy %	Precision	Recall	F-Measure	MCC
ELOC	All	PART	99.55±0.45	1.00 ± 0.01	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	0.99±0.01
ELOC	All	JRip	$99.53 {\pm} 0.47$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	All	J48	$99.60 {\pm} 0.41$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC			3±0.46	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Very high Pi	recision ar	nd +0.46	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Recall (0	.93-1.00)	1	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Slight prefere	ence towa	rds 8±0.47	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$
ELOC	Prec	ision	8±0.47	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98 {\pm} 0.01$
ELOC	Small standa	rd deviatio	ons 8±0.54	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98 {\pm} 0.01$
Subjecti	official scarrad		4±1.14	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjectiv	ve All	JRip	96.54±1.20	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjectiv	ve All	J48	$97.18 {\pm} 1.07$	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94 {\pm} 0.02$
Subjectiv	ve Predefined	PART	95.05 ± 1.45	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjectiv	ve Predefined	JRip	$95.32{\pm}1.44$	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.02$	$0.91 {\pm} 0.03$
Subjectiv	ve Predefined	J48	$95.10{\pm}1.42$	$0.97 {\pm} 0.02$	$0.94{\pm}0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjectiv	ve Auto	PART	97.33±1.08	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjectiv	ve Auto	JRip	96.38±1.14	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.96 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjectiv	ve Auto	J48	$97.08 {\pm} 1.09$	$0.98 {\pm} 0.01$	$0.96 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94 {\pm} 0.02$

RQ2: How the automatic features acquisition affects the classification quality?

Dataset	Features set	Classifier	Accuracy %	Precision	Recall	F-Measure	MCC
ELOC	All	PART	99.55±0.45	1,00+0.01	1 00-10 00	1 00+0 00	$0.99 {\pm} 0.01$
ELOC	All	JRip	99.53±0.47				$0.99 {\pm} 0.01$
ELOC	All	J48	99.60±0.41	All fea	tures provi	ided the	0.99±0.01
ELOC	Predefined	PART	99.53±0.46	1. best	results for	r both	$0.99 {\pm} 0.01$
ELOC	Predefined	JRip	$99.56 {\pm} 0.46$	1.	datasets		$0.99 {\pm} 0.01$
ELOC	Predefined	J48	99.60±0.41	1.			$0.99 {\pm} 0.01$
ELOC	Auto	PART	99.38±0.47	1.00 ± 0.01	$0.99 {\pm} 0.01$	0.99±0.01	0.99±0.01
ELOC	Auto	JRip	$99.28 {\pm} 0.47$	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98 {\pm} 0.01$
ELOC	Auto	J48	99.18±0.54	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	0.98 ± 0.01
Subjective	All	PART	97.34±1.14	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjective	All	JRip	96.54±1.20	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjective	All	J48	97.18±1.07	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94 {\pm} 0.02$
Subjective	Predefined	PART	95.05 ± 1.45	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Predefined	JRip	$95.32{\pm}1.44$	0.97	0.02±0.02		0.91±0.03
Subjective	Predefined	J48	95.10 ± 1.42				0.90 ± 0.03
Subjective	Auto	PART	97.33±1.08	0.9. Pred	efined slig	htly better	$0.95 {\pm} 0.02$
Subjective	Auto	JRip	96.38±1.14	0.98 for	ELOC and v	worse for	$0.93 {\pm} 0.02$
Subjective	Auto	J48	97.08±1.09	0.98	Subject	ive	0.94 ± 0.02

Automatic features acquisition

WEKA WrapperSubsetEval (classifier: J48) and the BestFirst method (selection based on Accuracy and RMSE, five folds, threshold = 0.01).

ELOC, All	ELOC, Predefined	ELOC, Auto	Subjective, All	Subjective, Predefined	Subjective, Auto
Brackets	Brackets	Freq. of "*"	Assignment	Assignment	Freq. of "*"
Comments	Comments	Freq. of "("	Freq. of "*"	Comments	Freq. of "available"
Semicolons	Full length	Freq. of ";"	Freq. of "available"	If	Freq. of ":"
Full length	Semicolons	Freq. of "/"	Freq. of ":"	While	Freq. of "="
		Full length	Freq. of "has"	Full length	Freq. of "has"
			Freq. of "implied"	Length	Freq. of "implied"
			Freq. of "license"	Semicolons	Freq. of "license"
			Freq. of "none"	Tokens	Freq. of "none"
			Freq. of "reserved"		Freq. of "reserved"
			Freq. of "return"		Freq. of "return"
			Freq. of "see"		Freq. of "see"
			Freq. of "software"		Freq. of "software"
			Full length		Full length
			Length		Length
			Tokens		Tokens

RQ3: How the choice of classification algorithm affects the classification quality?

Dataset	Features set	Classifier	Accuracy %	Precision	Recall	F-Measure	MCC
ELOC	All	PART	$99.55 {\pm} 0.45$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	All	JRip	$99.53 {\pm} 0.47$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	All	J48	99.60±0.41	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Predefined	PRT	99.53±0.46	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Predefined	7	$99.56 {\pm} 0.46$	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
ELOC	Predefined		99.60±0.41	$1.00 {\pm} 0.01$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.99 {\pm} 0.01$
I			99.38±0.47	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$
I Near	ly no differ	ences	$99.28 {\pm} 0.47$	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98{\pm}0.01$
I betwee	n the select	ted ones	99.18±0.54	$1.00 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.99 {\pm} 0.01$	$0.98{\pm}0.01$
5			97.34±1.14	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
S PAR	RT >? J48 >?	JRip	96.54±1.20	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.93 {\pm} 0.02$
9			$97.18 {\pm} 1.07$	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94{\pm}0.02$
Subjective	Predefined	PART	95.05 ± 1.45	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Predefined	JRip	$95.32{\pm}1.44$	$0.97 {\pm} 0.02$	$0.93 {\pm} 0.02$	$0.95 {\pm} 0.02$	$0.91 {\pm} 0.03$
Subjective	Predefined	J48	95.10 ± 1.42	$0.97 {\pm} 0.02$	$0.94 {\pm} 0.02$	$0.95 {\pm} 0.01$	$0.90 {\pm} 0.03$
Subjective	Auto	PART	$97.33 {\pm} 1.08$	$0.98 {\pm} 0.01$	$0.97 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.95 {\pm} 0.02$
Subjective	Auto	JRip	96.38±1.14	$0.98 {\pm} 0.01$	$0.95 {\pm} 0.02$	$0.96 {\pm} 0.01$	$0.93 {\pm} 0.02$
Subjective	Auto	J48	$97.08 {\pm} 1.09$	$0.98 {\pm} 0.01$	$0.96 {\pm} 0.02$	$0.97 {\pm} 0.01$	$0.94{\pm}0.02$

Limitations & hard cases

- Block comments
- Multiple meaningful lines of code in one line
- A single meaningful line in many lines

Questions

