Wprowadzenie do Scilab: funkcje i wykresy

Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki

Politechnika Poznańska, Instytut Informatyki

Narzędzia Informatyki

Agenda

- Korzystanie z funkcji
- Definiowanie funkcji
- Biblioteki funkcji
- Zarządzanie zmiennymi wyjściowymi
- Polecenie return
- Wykresy
 - Tworzenie wykresów
 - Formatowanie wykresu
 - Eksport wykresów
 - Tworzenie wykresów z wieloma seriami
 - Tworzenie wykresów z podwykresami
 - Tworzenie wykresów 3D
 - Polecenia Scilab do tworzenia wykresów

Korzystanie z funkcji

- Jeśli blok tych samych operacji jest wykonywany wielokrotnie, to warto te operacje zapisać w postaci funkcji. Dzięki temu będzie można ją wykorzystać wielokrotnie.
- Najprostszy sposób wywołania funkcji to: wynik = funkcja (parametr).
- Parametry wejściowe funkcji nie są przez nią modyfikowane.
- Funkcje mogą przyjmować wiele parametrów wejściowych i zwracać więcej niż jedną wartość. W takim przypadku ogólniejsza postać wywołania jest najstępująca:

[wyn_1, ..., wyn_n] = funkcja (param_1, ..., param_m).

Polecenia Scilab do zarządzania funkcjami

Nazwa funkcji	Działanie
function	początek definicji funkcji
endfunction	koniec definicji funkcji
argn	liczba parametrów wejściowych lub wyjściowych
varargin	zmienna liczba parametrów wejściowych
varargout	zmienna liczba parametrów wyjściowych
fun2string	zwraca definicję funkcji jako ciąg znaków
get_function_path	zwraca ścieżkę do pliku z definicją funkcji 🐅 🚽
getd	zwraca funkcje zdefiniowane w danym katalogu
head_comments	zwraca komentarze z nagłówka funkcji
listfunctions	zwraca właściwości wszystkich funkcji
macrovar	zwraca zmienne danej funkcji

Tablica 1 : Polecenia Scilab do zarządzania funkcjami

< 3 >

Definiowanie funkcji

- Do definiowania funkcji wykorzystuje się słowa kluczowe *function* i *endfunction*.
- Każda funkcja składa się z *nagłówka* oraz *ciała* funkcji. Nagłowkiem funkcji jest jej nazwa wraz ze zdefiniowanymi parametrami wejściowymi oraz wyjściowymi. Na ciało funkcji składają się wszystkie polecenia zawarte między nagłowkiem funkcji a słowem kluczowym *endfunction*.
- Funkcje można definiować na 3 możliwe sposoby:
 - bezpośrednio w konsoli Scilab
 - w oddzielnym pliku uruchamianym w edytorze
 - za pomocą polecenia exec

Definiowanie pierwszej funkcji

Przykład 1

- Przejdź do konsoli Scilab.
- Zdefiniuj poniższą funkcję:

```
function r = kwadrat (x)
r = x<sup>2</sup>
endfunction
```

• Wywołaj powyższą funkcję i sprawdź, czy zwróciła poprawny wynik.

Funkcje

Definiowanie funkcji

Definiowanie pierwszej funkcji - wynik

Konsola Scilab	Przegladarka zmiennych			× 5 5	
	Nazwa	Rozmiar	Тур	Widoczność	
>function r = kwadrat (x)	w	1x1	Double	local	
>r=x^2					
>endfunction					
>w = kwadrat (7)					
w =					
49.					
>					
	1 Katawia wata ani				
	mistoria polecen	45 //		3 6 X	
	-function r = kwadrat	t (x)			
	-r=x^2				
	w = kwadrat(7)				
	1 · · · · ·				

Narzędzia Informatyki

Definiowanie pierwszej funkcji

Przykład 2

- Przejdź do konsoli Scilab.
- Zdefiniuj poniższą funkcję:

```
function r = kwadrat2 (x)
```

```
y = x^2
```

endfunction

 Spróbuj wywołać powyższą funkcję. Czy operacja zakończyła się poprawnie?

Wywołanie funkcji z przykładu 2 zakończyło się niepowodzeniem, gdyż nie przypisaliśmy wartości do zmiennej wyjściowej. Interpreter Scilab sprawdza, czy parametry wyjściowe zostały zdefiniowane.

Funkcje

Definiowanie funkcji

Definiowanie pierwszej funkcji - wynik

Konsola Sollab Przegladarka zmiennych				× 5 5	
		Nazwa	Rozmiar	Тур	Widoczność
>function r = kwadrat2 (x)		w	1x1	Double	local
>y = x^2					
>endrunction					
->w = kwadrat2(4)					
error 4					
Viezdefiniowana zmienna: r					
at line 4 of function kwadrat2 called by :					
<pre>w = kwadrat2(4)</pre>					
>					
	Historia	poleceń			X 5 5
		09/11/2012 15:59:	42 //		
		function r = kwadra	at2 (x)		
		y = x ⁺⁺ 2 endfunction			
		w = kwadrat2(4)			
	· · · ·				

Narzędzia Informatyki

Biblioteki funkcji

- Biblioteka funkcji jest zbiorem funkcji przechowywanych w wielu plikach, które są ze sobą powiązane w logiczny sposób.
- Biblioteki funkcji tworzy się, aby udostępnić zbiór pewnych wyspecjalizowanych funkcji. Takie podejście znacznie ułatwia tworzenie nowych skryptów, gdyż nie ma konieczności definiowania od nowa tych samych funkcji za każdym razem gdy są potrzebne.
- Pliki z definicjami funkcji powinny mieć rozszerzenie .sci.
- W każdym pliku może znajdować się wiele definicji funkcji, jednakże tylko pierwsza jest traktowana jako publiczna (czyli jest widoczna na zewnątrz). Pozostałe funkcje są funkcjami prywatnymi.
- Nazwa pliku z definicją funkcji powinna być taka sama jak nazwa funkcji publicznej.

Definiowanie bliblioteki funkcji

Nazwa funkcji	Działanie
genlib	generowanie biblioteki z funkcjami z danego katalogu
lib	wczytanie danej biblioteki funkcji

Tablica 2 : Polecenia Scilab do zarządzania bibliotekami funkcji

Aby zdefiniować bibliotekę funkcji należy:

- skompilować pliki z definicjami funkcji do plików binarnych za pomocą polecenia genlib;
- załadować bibliotekę funkcji do środowiska Scilab za pomocą polecenia *lib*.

Definiowanie pierwszej biblioteki funkcji

Przykład 3

- Stwórz katalog mojabiblioteka zawierający 2 pliki z definicjami funkcji.
- Pierwszy plik kwadrat.sci zawiera następującą definicję:

```
function r = kwadrat ( x )
r = x^2
endfunction
```

Drugi plik suma.sci zawiera następującą definicję:

```
function r = suma (x)
r = x+x
```

endfunction

Stwórz bibliotekę funkcji "mojabiblioteka".

Definiowanie pierwszej biblioteki funkcji

Przykład 3 c.d.

- Przejdź do konsoli Scilab i wykonaj polecenie:
 -->genlib("mojabiblioteka",".\mojabiblioteka").
- Powyższe polecenie generuje pliki binarne ze zdefiniowanymi funkcjami, plik *lib* z binarną wersją biblioteki oraz plik tekstowy *names* zawierający listę funkcji zdefiniowanych w bibliotece.
- Po wykonaniu polecenia genlib funkcje są gotowe do użycia.

W przypadku, gdy biblioteka funkcji była już wcześniej wygenerowana, to nie ma konieczności jej ponownego budowania, lecz można ją od razu wczytać do środowiska Scilab za pomocą metody *lib*: -->mojabiblioteka = lib(".\mojabiblioteka").

Biblioteki funkcji

Definiowanie pierwszej biblioteki funkcji - wynik

Przeglądarka plików		× 5 9		
ktyka Warzedzia Informaty	ki \20122013\scilab \przykłady \mojabiblioteka	\ ▼		
Nazwa	^			
mojabiblioteka				
kwadrat.sci	Konsola Scilab			
suma.sci	>genlib("mojabibliote) ans = T >	ca",".\mojabib	lioteka")	
Narzedzia Informatyki	Wor	owadzenie do Scil	ah 1	4 / 30

Funkcje

Biblioteki funkcji

Wczytanie istniejącej biblioteki funkcji - wynik

```
Wykonanie rozruchu:
 ładowanie środowiska początkowego
-->mojabiblioteka = lib(".\mojabiblioteka")
mojabiblioteka =
Lokalizacja plików funkcyjnych: D:\Dydaktyka\NarzedziaInformatyki\20122013\scilab\przykłady\mojabib
 kwadrat suma
-->kwadrat(7)
 ans =
    49.
-->suma(7)
 ans =
   14.
-->function r = s_k (x)
-->y = suma(x)
-->r = kwadrat(y)
-->endfunction
-->s_k(3)
 ans =
    36.
-->
```

Zarządzanie zmiennymi wyjściowymi

Przykład 4

• Zdefiniuj następującą funkcję:

function [s, i] = sumil (a, b)

- s = a+b
- i = a*b

endfunction

- Istnieje możliwość odczytania 0, 1 lub 2 zmiennych wyjściowych.
- W przypadku, gdy nie odczytujemy żadnej zmiennej, to wartość pierwszego parametru wyjściowego zapisywana jest do zmiennej ans.
- Sprawdź w konoli Scilab wszystkie możliwości odczytywania zmiennych wyjściowych.

Zarządzanie zmiennymi wyjściowymi - wynik

Konsola Scilab	Przegladarka zmiennyci	h		× 5 9
	Nazwa	Rozmiar	Тур	Widoczność
>function [s, i] = sumil (a, b)		1x1	Double	loca
>s = a+b	s	1x1	Double	loca
>i = a*b	ans	1x1	Double	loca
>endfunction	w	1x1	Double	loca
>Sumi1(2,3)				
allo -				
5.				
>s = sumil(2,3)				
s =				
5.				
>[S, 1] = Sum11(2,3)				
*				
6.				
s =				
5.				
>	Historia nolaceó			2 8 4
		D5:13 // sumil (a, b))		

(비) (비) (문) (문)

17 / 39

E DQC

Polecenie return

Polecenie *return* służy do przerywania wykonywania danej funkcji. Polecenie to powinno być używane z rozwagą, gdyż komplikuje ono debugowanie działania funkcji.

Przykład 5

• Zdefiniuj następującą funkcję:

```
function r = pierwiastek (x)
if (x < 0) then
disp("Podano liczbę ujemną!")
return
end
r = sqrt(x)</pre>
```

endfunction

 Wykonaj powyższą funkcję dla następujących wartości x=-4, x=0 oraz x=4.

Polecenie return - wynik

	Przegla	idarka zmiennyc	h			× 5 5
		Nazwa	Rozmiar	Т	ур	Widoczność
->function r = pierwiastek (x)	111	ans	1	×1	Double	loca
->if (x<0) then		1	1	x1	Double	loca
->disp("Podano liczbe ujemna!")		s	1	x1	Double	loca
->return	-	w	1	x1	Double	loca
->end						
->r = sqrt(x)						
->endfunction						
->pierwiastek(-4)						
Podano liczbe ujemna!						
error 4						
iezdefiniowana zmienna: r						
: line 4 of function pierwiastek called by :						
lerwiastek(-4)						
->pierwiastek(4)						
ans =						
2.						
Spiennisspels (0)						
opperwidstex (0)						
ui <i>o</i> –	Historia	poleceń				× 5 5
0.	⊡- //,	09/11/2012 16:	09:36 //			
		tunction r = pier if (v<0) then	wiastek (x)			
->		disp("Podano lic:	be uiemna!")			
		return				
		end				
		r = sqrt(x) endfunction				
		pierwiastek(-4)				
		pierwiastek(4)				
		pierwiastek (0)				

Narzędzia Informatyki

Wprowadzenie do Scilab

Wykresy

Wykresy

- Tworzenie wykresów jest bardzo pomocne w analizowaniu danych i tworzeniu raportów.
- Scilab umożliwia tworzenie różnych typów wykresów 2D lub 3D oraz ich dostosowywanie.
- Scilab umożliwia także eksport stworzonych wykresów do różnego typu plików graficznych.

Pierwszy wykres 2D

Przykład 6

- Tworzenie wykresów należy rozpocząć od zdefiniowania funkcji jaka ma zostać wykreślona.
- Przejdź do konsoli Scilab i zdefiniuj następującą funkcję:

```
function r = kwadrat (x)
r = x<sup>2</sup>
endfunction
```

Pierwszy wykres 2D

Przykład 6 c.d.

 W kolejnym kroku definiujemy serię danych dla osi X. Za pomocą fukncji *linspace* tworzymy określoną liczbę punktów z podanego zakresu. Przykładowe polecenie

```
--> xdata = linspace (1, 10, 50)
```

tworzy 50 punktów z zakresu [1;10].

- Stworzona seria danych jest przekazywana jako parametr wejściowy do wcześniej zdefiniowanej funkcji --> ydata = kwadrat (xdata). W rezultacie uzyskujemy wektor 50 wartości y - ydata.
- W ostatnim kroku wywołujemy funkcję tworzącą wykres 2D z uzyskanych wcześniej danych --> plot (xdata, ydata).
- Drugim parametrem zamiast wartości *ydata* mogłabybyć wcześniej zdefiniowana funkcja *kwadrat*.

Wykresy

Tworzenie wykresów

Pierwszy wykres 2D - wynik

Konsola Scilato		* * ×
->function r = kvedrat (x) ->r = x*2 >endfunction xdata = linspace (1, 10, 50) xdata =	Chos grificher numr 0	Widocrinot Jubie local
 column 1 to 4 1. 1.1334735 1.3473469 1.5513274 column 5 to 7 2.1920408 column 5 to 10 2.2857143 2.4633578 2.46350412 column 11 to 13 2.9457347 3.0204032 3.2040146 column 17 to 18 3.957755 4.122449 4.3571226 column 17 to 19 3.957755 4.122449 4.36571229 column 20 to 22 4.4837959 4.4734494 4.8571229 column 20 to 23 5.061636 5.2244898 5.4081638 column 24 to 38 5.9516387 5.7755102 5.9518157 column 24 to 31 	The Integrate Segn 7	
column 32 to 34		

Narzędzia Informatyki

Wprowadzenie do Scilab

Formatowanie wykresów

- System graficzny Scilab umożliwia zorientowany obiektowo dostęp do poszczególnych elementów wykresu. Pozwala on m.in. na zmianę typu linii związanej z danym wykresem, dodanie tytułu wykresu lub podpisów poszczególnych osi, modyfikację zawartość legendy, itp.
- Wiele spośród własności wykresu można modyfikować różnymi funkcjami takimi jak:
 - Funkcja *title* wstawia podany tytuł wykresu
 - Funkcja xtitle wstawia podany tytuł wykresu wraz z podpisami osi.
 - Funkcja *legend* wstawia legendę wraz z podanymi nazwami serii danych.
 - Za pomocą trzeciego parametru funkcji *plot* możliwa jest modyfikacja typu linii związanego z daną funkcją.

Formatowanie pierwszego wykresu 2D

Przykład 7

- Sprawdź, czy funkcja kwadrat jest nadal zdefiniowana w środowisku Scilab. Jeśli nie, to załaduj ją ponownie.
- Wygeneruj ponownie serię danych xdata:
 --> xdata = linspace (1, 10, 50);
- Stwórz wartości zmiennej y:
 - --> ydata = kwadrat (xdata);.
- Wykreśl funkcję *kwadrat* za pomocą polecenia:
 - --> plot (xdata, ydata, "o-").
- Dodaj tytuł wykresu oraz podpisy osi:
 --> xtitle ("Funkcja kwadratowa", "oś X", "oś Y").
- Dodaj legendę do wykresu:
 - --> legend("x^2").

25 / 39

・ロト (個) (三) (三) (三) つくで

Wykresy

Formatowanie pierwszego wykresu 2D - wynik

Narzędzia Informatyki

Eksport wykresów

Eksport wykresów

- Eksportowanie wykresów w środowisku Scilab możliwe jest na dwa sposoby:
 - wybierając opcję z menu
 - z poziomu konsoli za pomocą określonych poleceń
- Pierwszy ze sposobów polega na wybraniu opcji menu *Plik -> Eksportuj do...* W tym momencie pozostaje tylko podanie nazwy pliku i wybór typu pliku.
- Alternatywny sposób polega na uruchomieniu odpowiedniego polecenia Scilab, które stworzy nam dany plik graficzny z wybranego wykresu. Ogólne wywołanie funkcji eksportujących wygląda następująco: xs2* (numer_okna, nazwa_pliku), gdzie w miejsce * należy wpisać pożądany typ pliku graficznego.
- Scilab eksportuje wykresy do różnych typów plików grafiki wektorowej lub bitmapowej.

Polecenia Scilab do exportu wykresów

Funkcja	Działanie	
xs2png	eksport do pliku PNG	
xs2pdf	eksport do pliku PDF	
xs2svg	eksport do pliku SVG	
xs2eps	eksport do pliku Encapsuated PostScript	
xs2ps	eksport do pliku PostScript	
xs2emf	eksport do pliku EMF	
xs2fig	eksport do pliku FIG	
xs2gif	eksport do pliku GIF	
xs2jpg	eksport do pliku JPG	
xs2bmp	eksport do pliku BMP	
xs2ppm	eksport do pliku PPM	

Tablica 3 : Polecenia Scilab do exportu wykresów

Eksport wykresów

Eksport wykresu 2D

Przykład 8

• Wyeksportuj wykres z przykładu 7 do formatu PDF.

>xdata = linspace (1, 10, 50);		
>ydata = kwadrat (xdata);		
>plot (xdata, ydata, "o-")	School graficzne numer 0	
>xtitle("Europeia Evadratova", "ož X", "ož X")	Plik Narzędzia Edycja ?	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Nowe okno graficzne	
>legend(#v^2#)	En Wendai	
ana =	20 T ·	
	Lapse	
Mandle of type "Legend" with properties:	Eksportuj do	
	Vectorial export to PDF	
parent: Axes	🕒 Kopiuj do schowka 🛛 PS	
children: []	Ustawienia strony	
visible = "on"	23 Destail Date	
text = "x^2"	ENP ENP	
font style = 6	Zamknij EPS	
font_size = 1	85 -	
font_color = -1	82-	
fractional_font = "off"		
links = "Polyline"	76-	
legend_location = "in_upper_right"	70 -	
position = [0.7280738,0.1325]		
line_mode = "on"		
thickness = 1	60 -	
foreground = -1	55-	
fill_mode = "on"	> m	
background = -2	-8 00-	
clip_state = "off"	- 41	
clip_box = []	40-	
user_data = []		
tag =		
	30-	
>		

≥ > 29 / 39

Eksport wykresów

Eksport wykresu 2D - wynik

< 円

Tworzenie wykresu 2D z kilkoma seriami

Przykład 9

- Wyczyść aktualne okno z grafiką za pomocą polecenia: --> clf().
- Wygeneruj serię danych x: --> x=[0:0.1:2*%pi]';.
- Wykreśl kilka funkcji na jednym wykresie za pomocą polecenia:
 --> plot (x, [sin(x) sin(2*x) sin(3*x)]).
- Taki sam efekt uzyskalibyśmy wywołując kolejno funkcje plot:

--> plot (x, sin(x), "b")

- --> plot (x, sin(2*x), "g")
- --> plot (x, sin(3*x), "r")

UWAGA: Okna z wykresem nie należy zamykać.

ABA ABA

Tworzenie wykresu 2D z kilkoma seriami - wynik

Narzędzia Informatyki

Wprowadzenie do Scilab

Tworzenie wykresu 2D z kilkoma seriami - wynik

Tworzenie wykresu 2D z kilkoma podwykresami

Przykład 10

- Wyczyść aktualne okno z grafiką za pomocą polecenia: --> clf().
- Wygeneruj serię danych x: --> x=[0:5:360]';.
- Stwórz wykres z 4 podwykresami za pomocą polecenia:
 - --> subplot(221)
 - --> plot (x, [sind(x) sind(2*x) sind(3*x)])
 - --> subplot (222)
 - --> plot (x, sind(x), "b")
 - --> subplot (223)
 - --> plot (x, sind(2*x), "g")
 - --> subplot(224)
 - --> plot (x, sind(3*x), "r")

UWAGA: Okna z wykresem nie należy zamykać.

Tworzenie wykresu z kilkoma podwykresami - wynik

Narzędzia Informatyki

Pierwszy wykres 3D

Przykład 11

- Wyczyść aktualne okno z grafiką za pomocą polecenia: --> clf().
- Wygeneruj serię danych *x*: --> x=[-360:10:360];.
- Wygeneruj serię danych y: --> y=[-360:10:360];.

- Stwórz wykres powierzchniowy za pomocą polecenia:
 - --> surf(x,y,z).

Pierwszy wykres 3D - wynik

Dac

Polecenia Scilab do tworzenia wykresów

Funkcja	Działanie
plot	wykres 2D
surf	wykres 3D
contour	wykres konturowy
pie	wykres kołowy
histplot	histogram
bar	wykres kolumnowy
barh	wykres słupkowy
hist3d	histogram 3D
polarplot	wykres ze współrzędnymi biegunowymi
Matplot	kolorowy wykres 2D macierzy
Sgrayplot	wygładzony kolorowy wykres powierzchniowy 2D
grayplot	kolorowy wykres powierzchniowy 2D

Tablica 4 : Polecenia Scilab do tworzenia wykresów

≣ ► 38 / 39

1 3 1 4

Literaura

Literatura

Materiały przygotowane na podstawie "Introduction to Scilab". http://www.scilab.org/support/documentation/tutorials