Wprowadzenie do Scilab: podstawy języka Scilab

Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki

Politechnika Poznańska, Instytut Informatyki

Narzędzia Informatyki

Agenda

🚺 Pierwsze kroki

- Scilab
- Edytor
- Przeglądarka zmiennych oraz historia poleceń
- Skrypty
- 🕨 Podstawy języka Scilab
 - Zmienne
 - Polecenia wieloliniowe i komentarze
 - Zmienne predefiniowane
 - Zmienne logiczne i operatory porównania
 - Zmienna ans
 - Łańcuchy znaków
 - Zmienne liczbowe
 - Dynamiczne typowanie zmiennych
 - Instrukcje warunkowe
 - Pętle
 - Operacje wejścia-wyjścia

Scilab

Korzystanie ze Scilab

Istnieją 3 główne sposoby korzystania ze Scilab:

- za pomocą konsoli Scilab
- poprzez wykonywanie poleceń zapisanych w plikach za pomocą komendy exec
- poprzez uruchamianie z linii poleceń

Pierwsze kroki S

Scilab

Widok konsoli Scilab po uruchomieniu

Konsola Scilab umożliwia ciągłe wpisywanie i uruchamianie poleceń oraz analizowanie uzyskanych wyników.

Narzędzia Informatyki	Wprowadzenie do Scilab	4 / 47	
-----------------------	------------------------	--------	--

Scilab

Pierwsze polecenie

Przykład 1

```
-->s="Hello World!"
s = Hello World!
-->disp(s)
Hello World!
```

Znak --> jest znakiem zachęty wyświetlanym w konsoli Scilab. W pierwszym kroku tworzymy zmienną *s*, do której przypisujemy określony ciąg znaków. Po wykonaniu polecenia poprzez naciśnięcie *Enter* Scilab wyświetla wykonaną komendę. W następnym kroku za pomocą funkcji *disp*() wyświetlamy wartość zmiennej *s*.

Pierwsze polecenie

```
Wykonanie rozruchu:
       ładowanie środowiska początkowego
      -->s="Hello world!"
      Hello world!
      -->disp(s)
      Hello world!
      -->
Wpisane polecenia można modyfikować jak w zwykłym edytorze
przesuwając się po wpisanym poleceniu za pomocą strzałek \leftarrow lub \rightarrow,
a następnie kasując błędy. Za pomocą strzałek \uparrow lub \downarrow mamy dostęp do
```

poprzednio wykonanych poleceń.

CEN CEN

-	example.sce (D:\Dydaktyka\NarzedziaInformatyki\20122013\scilab\przykłady\example.sce) - SciNotes	
PI	ik Edycja Format Ustawienia Okno Wykonaj ?	
] 🔚 🔚 🔚 📇 🥱 🥐 🔏 🗊 🚺 🕸 🖢 Þ 🥆 😥 🛠 🔞	
ex		
e	xample.sce 📓	
1	s="Hello.World.!"	
2	disp(s)	
3		

Scilab udostępnia także edytor do tworzenia i modyfikacji skryptów. Jest on dostępny poprzez menu *Narzędzia -> SciNotes* lub z poziomu konsoli wykonując polecenie *editor*().

Edytor

Najczęściej wykorzystywanymi funkcjami edytora są:

- wykonaj plik bez echa wywołuje operację exec na danym skrypcie; na konsoli pojawiają się tylko wyniki powiązane z funkcjami wyświetlającymi
- wykonaj plik z echem kopiuje i wkleja polecenia z pliku do konsoli Scilab; na konsoli wyświetlane są wykonywane operacje (jeśli nie są zakończone znakiem ;) oraz wyniki powiązane z funkcjami wyświetlającymi
- wykonaj zaznaczenie z echem kopiuje i wkleja polecenia z pliku do konsoli Scilab tylko z zaznaczonego obszaru; na konsoli wyświetlane są wykonywane operacje (jeśli nie są zakończone znakiem ;) oraz wyniki powiązane z funkcjami wyświetlającymi

Edytor ułatwia analizowanie skryptów poprzez kolorowanie składni.

A E A E A E OQO

Pierwszy skrypt

Przykład 2

Utwórz skrypt w edytorze zawierający następujące polecenia.

```
s="Hello World!"
disp(s)
```

Uruchom go na 3 znane sposoby i przyjrzyj się różnicom w wyświetlanych wynikach.

Pierwszy skrypt - wygląd konsoli

Przeglądarka zmiennych oraz historia poleceń

- Dostęp do przeglądarki zmiennych możliwy jest poprzez menu Narzędzia -> Przeglądarka zmiennych lub z poziomu konsoli wykonując polecenie browsevar(). Klikając dwukrotnie na wybranej zmiennej mamy możliwość zmiany jej wartości w edytorze zmiennych. Jeśli w międzyczasie zmienimy wartość zmiennej z poziomu konsoli, to należy pamiętać o odświeżeniu widoku w otwartym edytorze zmiennych.
- Historia poleceń umożlwiia przeglądanie wszystkich wykonanych wcześniej komend. Dostęp do historii możliwy jest poprzez menu Narzędzia -> Historia poleceń. Umożliwia ona wybranie dowolnego polecenia oraz wykonanie go w konsoli poprzez dwukrotne kliknięcie.

Przeglądarka zmiennych oraz historia poleceń - przykład

Przykład 3

- Zmodyfikuj wartość zmiennej s z "Hello World!" na "Hello Kitty" za pomocą edytora zmiennej.
- Nie zamykając edytora zmiennej, przejdź do konsoli Scilab i zmień wartość zmiennej s za pomocą polecenia s="Hello everyone!"
- Przejdź do otwartego wcześniej okna edytora zmiennej. Czy wartość zmiennej *s* uległa zmianie?
- Odśwież widok w edytorze zmiennej. Czy teraz wartość zmiennej *s* zmieniła się?
- Odszukaj w historii poleceń komendę s="Hello world!" i wykonaj ją.
- Sprawdź, czy wartość zmiennej s wróciła do początkowej wartości.

Modyfikacja wartości zmiennej w edytorze zmiennych

Edytor zm	niennych - s (S	tring)				×	
Plik Edycja							
🔁 🖹 🔊	👗 🗊 🚺	-	→ 0,00 0,0e 0,.	. 0,e 🔶			
						?	
Var-s 🐹							
	1	2	3	4	5		
	Hello Kitty !					-	
2							
3							
4							N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
5							
6							
7						=	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
10	•			1	1		
						-	

Narzędzia Informatyki

· · · · · · · ·

Widok edytora zmiennej przed odświeżeniem

->s = "Hello everyone !"	Edy	ytor zmi	ennych - s (S	tring)				x	J
-	Plik E	dycja							
ello everyone !		x) x	X 🛛 🗖	👆 🏓 🛏	0,00 0,0e 0,	. 0,e 🔶			
	E	frech the	variable ^{ng)}					?	
->	Var - s		variable						
			1	2	2	4	c		
		1	Hello Kitty !						
		2							
		3							6 20
		4							1.49
		5							
		6						- 1	
		7						E	
		8							
		9							
		10							
		12							
		13						+	9
		14						+	
		15							
		16						+	
		17						Τ.	
			4				1		

< 🗇 🕨

Skrvptv

Polecenie exec

- Wielokrotnie uruchamiane polecenia warto zapisać do pliku skryptowego.
- Pliki skryptowe mogą mieć dwa rozszerzenia: .sci lub .sce.
- Pliki .sci zawierają tylko definicje funkcji, które są następnie wczytywane do środowiaska Scilab, ale nie wykonywane.
- Pliki .sce zawierają zarówno funkcje jak i inne polecenia. Wykonanie takiego pliku .sce powoduje wczytanie funkcji oraz wykonanie wszystkich zamieszczonych poleceń.
- Pliki skryptowe wykonywane są z poziomu konsoli poprzez wywołanie polecenia -->exec ("nazwaPliku.(sce|sci)").

Polecenie exec - przykład

Przykład 4

- Otwórz notatnik i stwórz nowy dokument o nazwie moj_skrypt.sce.
 Plik należy umieścić w katalogu bieżącym lub należy zmodyfikować ścieżkę do katalogu domyślnego.
- Zawartość skryptu ma być następująca:

```
t="test"
disp(t)
```

- Zapisz wszelkie zmiany w skrypcie.
- Przejdź do konsoli Scilab.
- Uruchom polecenie -->exec("moj_skrypt.sce").
- Sprawdź w przeglądarce zmiennych, czy została stworzona nowa zmienna t. Sprawdź także w edytorze zmiennej jaka jest wartość nowej zmiennej.

16 / 47

= nan

Polecenie exec - wynik przykładu

>t="test"		
t =	Edytor zmiennych - t (String)	
	Plik Edycja	
test	😂 🛐 🔀 🕌 🗊 🎒 🦛 萨 🏎 0.00 0.0e 0 0e 🔶	
>disp(t)	Edytor zmiennych - t (String) ?	
	Var-t 🐹	
test		5
	1 test	5200
>	2	V D Log
	3	
	4 5	
	6	N (2)
	7	1. M. Co
	8	
	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10	
	17	
	13	
	14	
	15	
	16	
	17	
	< •	

Narzędzia Informatyki

Zmienne

- W języku Scilab nie ma konieczności deklarowania zmiennych. Są one tworzone w momencie pierwszego przypisania wartości.
- W Scilabie wartość do zmiennej przypisuje się za pomocą operatora =.
- Wartość zmiennej jest wyświetlana po każdym przypisaniu wartości. Jeśli chcemy wyłączyć tę opcję, to należy na końcu polecenia dodać znak ;.
- Nazwy zmiennych mogą być dowolnej długości, ale tylko początkowe 24 znaki są brane pod uwagę. Nazwy mogą się składać z małych liter, dużych liter, cyft oraz znaków specjalnych takich jak:
 %, _, #, !, \$ oraz ?.

UWAGA: Zmienne, których nazwa rozpoczyna się od % mają specjalne znaczenie! Są to tak zwane zmienne predefiniowane, np. liczba pi to %pi.

イモン・イヨン

Podstawowe operatory matematyczne

+	dodawanie
-	odejmowanie
*	mnożenie
/	prawe dzielenie $x/y = xy^{-1}$
\	lewe dzielenie $x \setminus y = x^{-1}y$
^	potęgowanie
**	potęgowanie
,	transpozycja macierzy i sprzężenie liczby zespolonej

Tablica 1 : Podstawowe operatory matematyczne

Zmienne - przykład

Przykład 5

- Przejdź do konsoli Scilab.
- Wykonaj następujące polecenia:
 - -->x=1
 - -->x=x*2
 - -->y=2;
 - -->y=y^2;
- Sprawdź w przeglądarce zmiennych, czy zostały stworzone nowe zmienne *x* i *y*. Sprawdź ich wartości w edytorze zmiennej.

Zmienne

Zmienne - wynik przykładu

/x-1		
x =	Edytor zmiennych - y (Double)	
1.	Plik Edycja	
	🔁 🛐 🔀 🔏 🗊 🚺 🦘 萨 🛏 0.00 0.0e 0 0e 💠	
>x=x*2	Edytor zmiennych - y (Double) ?	
х =	Var-x 🐹 Var-y 🐹	
2.		
	1 4	
>y=2;		Cost
	4	2.49
>y=y^2;	5	
>	6	
	7	8
	8	
	9	
	11	
	12	i far
	13	- 792
	14	
	15	
	16	
	1/	

Polecenia wieloliniowe i komentarze

- W przypadku długich poleceń, które nie mieszczą się w jednej linii istnieje możliwość podzielenia ich na wiele linii. Taka linia, która będzie miała swój ciąg dalszy w kolejnej linii musi kończyć się znakiem dwóch kropek ...
- Każda linia, która zaczyna się // traktowana jest jako komentarz.

Przykład 6

- Przejdź do konsoli Scilab.
- Wykonaj następujące polecenia:
 - --> // To jest komentarz
 - --> x=1..
 - --> +2..
 - --> +3..
 - --> +4

Konsola Scilab	
>//To jest komentarz	
>x=1	
>+3 >+4	
x =	
10.	
>	
	.U. . ₹ 990

Zmienne predefiniowane

Zmienne, których nazwy rozpoczynają się od symbolu % to *zmienne predefiniowane*. Oto przykładowe zmienne predefiniowane.

%i	jednostka urojona liczby zespolonej
%e	stała Eulera
%pi	stała pi
%t	prawda
%Т	prawda
%f	fałsz
%F	fałsz 🔹

Tablica 2 : Zmienne predefiniowane

Zmienne logiczne i operatory porównania

Zmienne, które przyjmują wartość prawda lub fałsz to zmienne logiczne.

a&b	logiczne oraz
alb	logiczne lub
~a	logiczne nie
a==b	prawda jeśli a jest równe b
a~=b lub a<>b	prawda jeśli a nie jest równe b
a <b< td=""><td>prawda jeśli a jest mniejsze od b</td></b<>	prawda jeśli a jest mniejsze od b
a>b	prawda jeśli a jest większę niż b
a<=b	prawda jeśli a jest mniejsze lub równe b
a>=b	prawda jeśli a jest większę lub równe b

Tablica 3 : Operatory porównania

Zmienne logiczne i operatory porównania - przykład

Zmienna ans

- Za każdym razem gdy wynik obliczenia nie jest jawnie przypisywany do zmiennej, to jest on przechowywany w zmiennej domyślnej *ans*.
- Gdy wynik został przypisany do zmiennej *ans*, to można korzystać z niej jak z każdej zmiennej.

Przykład 8

- Przejdź do konsoli Scilab.
- Wykonaj następujące polecenia:
 - -->exp(4)
 - -->log(ans)

Łańcuchy znaków

Łańcuchy znaków są przechowywane w zmiennych, których wartość ograniczona jest znakami cudzysłowu ".

Liczby całkowite

W Scilab dostępne są następujące typy liczb całkowitych.

int8	int16	int32
uint8	uint16	uint32

Tablica 4 : Typy liczb całkowitych

Zakres liczby całkowitej zależy od użytej liczby bitów.

- Dla liczby całkowitej ze znakiem (signed) zakres wartości jest następujący: [-2ⁿ⁻¹, 2ⁿ⁻¹ - 1].
- Dla liczby całkowitej bez znaku (*unsigned*) zakres wartości jest następujący: [0, 2ⁿ - 1].

Liczby całkowite

Do stworzenia liczby całkowitej określonego typu wykorzystuje się następujące funkcje:

$$y = int8(x) \quad y = int16(x) \quad y = int32(x) \\ y = uint8(x) \quad y = uint16(x) \quad y = uint32(x)$$

Tablica 5 : Funkcje Scilab do tworzenia liczb całkowitych

Aby sprawdzić typ liczby całkowitej wykorzystuje się funkcję inttype(x).

Zwracana wartość	Typ liczby całkowitej
1	8-bitowa ze znakiem
2	16-bitowa ze znakiem
4	32-bitowa ze znakiem
11	8-bitowa bez znaku
12	16-bitowa bez znaku
14	32-bitowa bez znaku

Tablica 6 : Wartości zwracane przez funkcję inttype(x)

Liczby całkowite - przykład

Uzyskana wartość y jest niepoprawna z uwagi na to, że przekroczyliśmy zakres zmienej typu uint32.

Liczby zmiennoprzecinkowe

Domyślnym typem liczbowym w Scilab jest *double*, czyli 64-bitowy typ liczby zmiennoprzecinkowej.

Przykład 11

- Przejdź do konsoli Scilab.
- Wykonaj następujące polecenia:
 - -->2^52
 - -->uint16(2^52)
- Pierwsza liczba jest obliczona poprawnie.
- Druga liczba jest błędna, ponieważ wynik nie mieści się w typie uint16.

Dynamiczne typowanie zmiennych

Scilab dynamicznie zmienia typ zmiennej w zależności od przypisanej wartości.

Przykład 12

- Przejdź do konsoli Scilab.
- Wykonaj następujące polecenia:

$$-->x = 1$$

 $-->x + 6$

Instrukcje warunkowe - klauzula if

- Klauzula *if* wykonuje określony blok operacji, gdy podany warunek logiczny jest spełniony. W przypadku, gdy testowany warunek logiczny nie jest spełniony, to wykonywany jest blok operacji występujący po słowie kluczowym *else*. Jeśli chcemy sprawdzać kolejno kilka warunków logicznych, to pomocny może się okazać blok elseif, których można użyć wiele.
- Składnia klauzuli if jest następująca:
 - if warunek_logiczny then
 blok operacji 1
 - [elseif warunek_logiczny_2 then

```
blok operacji 2
```

else

```
blok operacji 3]
end
```

Klauzula if

Przykład 13

• Stwórz skrypt zawierający następujące komendy:

```
i=2
if (i == 1) then
disp("Pierwszy warunek if jest prawdziwy.")
elseif (i==2) then
disp("Drugi warunek if jest prawdziwy.")
else
disp("Żaden z powyższych warunków nie jest prawdziwy.")
end
```

• Przejdź do konsoli Scilab i wykonaj powyższy skrypt.

Instrukcje warunkowe - klauzula select

- Klauzula select sprawdza wartość określonej zmiennej i w zależności od jej wartości wykonuje określony blok operacji case. W przypadku, gdy wartość zmiennej nie wystąpiła na liście case, to wykonywany jest blok operacji po słowie kluczowym else. Jest on opcjonalny, aczkolwiek umieszczanie go jest dobrą praktyką.
- Składnia klauzuli *select* jest następująca:

```
select zmienna
case wartość_1
    blok operacji 1
case wartość_2
    blok operacji 2
[ else
    blok operacji 3]
end
```

Klauzula select

Przykład 14

• Stwórz skrypt zawierający następujące komendy:

```
i=2
select i
case 1
disp("Wartość zmiennej jest równa 1.")
case 2
disp("Wartość zmiennej jest równa 2.")
else
disp("Wartość zmiennej nie jest równa 1 ani 2.")
end
```

• Przejdź do konsoli Scilab i wykonaj powyższy skrypt.

(日) (ヨ) (ヨ)

Instrukcje warunkowe - wyniki przykładów

• klauzula *if*

Konsola Scilab			X 5 5
	20122012)1		
>exec(.D:\Dydaxtyka\Narzedziainiormatyki\	20122013/801180	przywiady(11.8ce	·, -1)
Drugi warunek if jest prawdziwy.			
>			
-			

klauzula select

Konsola Scilab			? ₹ X
>exec('D:\Dydaktyka\NarzedziaInforma	atyki\20122013\sci	lab\przykłady\select.sce'	, -1)
Wartość zmiennej jest równa 2.			
>			
I			

Pętla for

- Pętla *for* wykonuje określony zbiór operacji wielokrotnie. Liczba wykonań zależy od wartości zmiennej sterującej. W większości przypadków iteracja wykonywana jest na wartościach całkowitych zaczynając od początkowej wartości aż do osiągnięcia końcowej wartości z określonym krokiem. Jeśli krok nie jest zdefiniowany inaczej, to wartość zmiennej sterującej jest zwiększana o 1.
- Składnia pętli for jest następująca:

```
for start : [krok :] koniec
    blok operacji
end
```

Pętla for

Przykład 15

- Stwórz skrypt zawierający następujące komendy: for i = 1 : 5disp(i) end for i = 1 : 2 : 5disp(i) end for i = 5 : -1 : 1disp(i) end
- Przejdź do konsoli Scilab i wykonaj powyższy skrypt.

Petla while

- Pętla while wykonuje określony zbiór operacji dopóki warunek testowy jest spełniony. Jeśli warunek testowy przyjmuje wartość false, to wykonywanie pętli zostaje zakończone.
- Składnia pętli while jest następująca:

```
while warunek_logiczny
  blok operacji
end
```

Pętle

Pętla while

Przykład 16

• Stwórz skrypt zawierający następujące komendy:

```
s = 0
i = 0
while ( i < 10)
i = i + 1
s = s + i
end
disp(s)</pre>
```

• Przejdź do konsoli Scilab i wykonaj powyższy skrypt.

Polecenia break i continue

Z wykonywaniem operacji w pętlach ściśle powiązane są następujące dwa polecenia:

- *break* służy do przerywania wykonywania całej pętli. Po wywołaniu tego polecenia wykonywanie aktualnej pętli nie jest wznawiane.
- continue służy do przerywania wykonywania aktualnej iteracji pętli.
 Operacje występujące w ciele pętli po poleceniu continue nie są wykonywane w danej iteracji. Sterowanie wraca bezpośrednio do klauzuli while lub for w zależoności od rodzaju wykonywanej pętli.

Polecenie break

Przykład 17

• Stwórz skrypt zawierający następujące komendy:

```
s = 0
i = 0
while (%t)
i = i + 1
if (i > 10) then
break
end
s = s + i
end
disp(s)
```

• Przejdź do konsoli Scilab i wykonaj powyższy skrypt.

= Dar

Pętle

Polecenie continue

Przykład 18

• Stwórz skrypt zawierający następujące komendy:

```
s = 0
i = 0
while (i < 10)
i = i + 1
if (modulo (i,2) == 0) then
continue
end
s = s + i
end
disp(s)
```

Przejdź do konsoli Scilab i wykonaj powyższy skrypt.

ロト・ロート・ヨト・ヨト

= Dar

Pętla while, instrukcje break i continue - wyniki przykładów

• pętla *while*

Konsola Scilab	? (
>exec('D:\Dydaktyka\NarzedziaInformatyki\20122013\scilab\przykłady\while.sce', -1)	
55.	
>	

• instrukcja break

Konenia Soliak	2.8
Konsola Scilab	2.0
>exec('D:\Dydaktyka\NarzedziaInformatyki\20122013\scilab\przykłady\bre	ak.sce', -1)
55.	

• instrukcja continue

Konsola Scilab	× 5 S			
>exec('D:\Dydaktyka\NarzedziaInformatyki\20122013\scilab\przykłady\continue.sce', -1)				
25.				
>				

Operacje wejścia-wyjścia

 Aby wczytać wartości wprowadzoną z klawiatury należy wykorzystać funkcję *input*.

--> n = input("Wprowadź wartość zmiennej n: ")

 Aby wyświetlić wartość zmiennej wraz z tekstem należy skorzystać z funkcji *mprintf*. Podstawowe typy wyświetlanych zmiennych to: %i - liczba całkowita, %f - liczba zmiennoprzecinkowa, %s - łańcuch znaków.

--> mprintf("Wartość wprowadzonej zmiennej n wynosi: %i",n)

```
konsols Soleb
-->n = input("Wprowadź wartość zmiennej n:")
Wprowadź wartość zmiennej n:7
n =
7.
-->mprintf("Wartość wprowadzonej zmiennej n wynosi: %i", n)
Wartość wprowadzonej zmiennej n wynosi: 7
-->
```

Literaura

Literatura

Materiały przygotowane na podstawie "Introduction to Scilab". http://www.scilab.org/support/documentation/tutorials