
Surrogate Fitness via Factorization
of Interaction Matrix

Pawe!l Liskowski(B) and Krzysztof Krawiec

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
{pliskowski,krawiec}@cs.put.poznan.pl

Abstract. We propose SFIMX, a method that reduces the number of
required interactions between programs and tests in genetic program-
ming. SFIMX performs factorization of the matrix of the outcomes of
interactions between the programs in a working population and the
tests. Crucially, that factorization is applied to matrix that is only par-
tially filled with interaction outcomes, i.e., sparse. The reconstructed
approximate interaction matrix is then used to calculate the fitness of
programs. In empirical comparison to several reference methods in cate-
gorical domains, SFIMX attains higher success rate of synthesizing cor-
rect programs within a given computational budget.

Keywords: Genetic programming · Test-based problem · Recom-
mender systems · Machine learning · Surrogate fitness

1 Introduction

Conventional fitness evaluation in genetic programming (GP) consists in apply-
ing a program to multiple tests (fitness cases) and aggregating the observed
differences between the actual and desired program output. Running a program
multiple times can be computationally costly, especially when it involves non-
trivial computation or requires processing large amount of data. Computational
expense becomes particularly high when programs grow large (a common ailment
of GP) or engage loops.

Lowering computational cost incurred by evaluation by simply reducing the
number of tests is often not a viable option. Few tests implies inaccurate fitness,
and consequently a poorly informed search process. Moreover, discarding tests
may cause a task to be formally underspecified (underconstrained). For instance,
a set of tests for a multiplexer problem that misses even a single test does not
technically specify that problem anymore. Also, if the differences between the
actual and desired program outputs are discrete, a low number of tests leads
to coarse-grained fitness that often fails to differentiate solutions. When, as it
is common, the actual and desired output can be compared only for equality,
the outcome of a program-test interaction is binary and fitness can assume only
n+ 1 values for n tests.

c⃝ Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 68–82, 2016.
DOI: 10.1007/978-3-319-30668-1 5

Surrogate Fitness via Factorization of Interaction Matrix 69

Various means for reducing the number of required program-test interactions
other than plain discarding of tests have been proposed in the past. Most of
them fall under the category of surrogate fitness and involve measurement of
similarity between the inputs of particular tests. In the simplest scenario, an
unknown output of a program for a test t is substituted with the known output
of that program for a similar test t′. However, designing an appropriate input
similarity measure for a given problem requires domain knowledge. And once
designed, such a measure may bias the selection of tests to be used as surrogates
and lower the likelihood of synthesizing the correct program.

In this paper, we propose a method that builds a Surrogate Function via Fac-
torization of Interaction Matrix (SFIMX) and reduces so the number of interac-
tions. SFIMX, detailed in Sect. 4, is applicable to any domain where interaction
outcomes can be encoded as numbers (e.g., symbolic regression, Boolean, inte-
ger, etc.) and, unlike the similarity measures mentioned above, does not require
additional knowledge. It engages the well-known algebraic concept of matrix
factorization, that recently grew in popularity in machine learning and recom-
mender systems. SFIMX is straightforward, performs well in practice (Sect. 6),
and has interesting conceptual implications, which we elaborate on in Conclu-
sions.

2 Background

The desired behavior of a program to be synthesized in GP is specified by a set of
tests (fitness cases), each being a pair (x, y) ∈ T of the input x fed into a program
and the desired output y expected to result from that program execution. T may
be sampled from a potentially infinite universe T ⊃ T .

A GP algorithm solving a program synthesis task maintains a population of
programs P ⊂ P. In every generation, each program p ∈ P is tested on every
test (x, y) ∈ T , in which p is applied to x and returns an output p(x). In other
words, p engages in an interaction with a test t. The outcome of that interaction
can be characterized by a scalar interaction function g(p, t). If p(x) = y, p is
said to pass the test and g(p(x), y) = 1. Otherwise, we set g(p(x), y) = 0 and
say that p fails (x, y). In this paper, we assume that interaction outcomes are
binary, i.e., g : P×T → {0, 1}, though in general various degrees of passing tests
could be considered (for instance by grading them according to the similarity of
the actual and desired output).

We gather the outcomes of interactions in an interaction matrix G. For a
population of m programs and n tests in T , G is an m × n matrix where gij
is the outcome of interaction between the ith program pi and jth test tj . The
conventional GP fitness that rewards a program for the number of passed tests
can be then written as

f(pi) =
n∑

j=1

gij , (1)

or alternatively as
f(p) = |{t ∈ T : g(p, t) = 1}|. (2)

70 P. Liskowski and K. Krawiec

As it follows from the above, all elements of G need to be calculated in order
to assess fitness values of all programs in P . Therefore, mn program executions
are required in every generation of a GP run.

3 Factorization of Interaction Matrix

The motivation behind all methods that aim at reducing the number of program-
test interactions is the potential redundancy of interaction matrix. The simplest
form of redundancy is test duplication: though we referred above to T as a set,
it is in practice usually implemented as a list, so duplicates are allowed.

Redundancy may also manifest when tests are different but all (or many)
programs behave identically on them (in terms of passing or failing). Consider
the task of synthesizing a sorting program, where tests are pairs (x, y) of lists
and y is the sorted version of x. If the programming language of consideration
does not allow any other operation on list elements than comparisons, then once
a program passed a specific test of sorting a list of length, say, four, it will pass
all other tests with the same permutation of four elements.

The SFIMX method proposed here aims at more subtle type of redundancy,
i.e., when the value of the interaction of a program p with a given test t can be
reconstructed from the responses of p and other programs in a population to t
and other tests. More precisely, reconstructed by means of linear combinations of
interaction outcomes. To this aim, we apply the well-known technique of matrix
factorization (MF).

Formally, given an non-negative matrix G (interaction matrix in our case)
and a desired rank k ≪ min(m,n), non-negative matrix factorization (NMF)
[1] searches for non-negative matrices (factors) W and H that give a lower rank
approximation of G as:

G ≈ WH s.t. W,H ≥ 0, (3)

where W ∈ Rm×k is traditionally called weights matrix (or basis matrix) and
H ∈ Rk×n is feature matrix. Note that each test t ∈ T is associated with a
column in H (a vector ht ∈ Rk) and each program p ∈ P is associated with a
row in W (a vector wp ∈ Rk). For clarity, we abuse the notation and index the
elements, rows, and columns of matrices with programs p and tests t.

The problem given by Eq. 3 is commonly reformulated as the following opti-
mization problem:

min
W,H

f(W,H) ≡ 1
2
||G − WH||2F s.t. W,H ≥ 0, (4)

where || · ||F is the Frobenius norm.
In the simplest scenario, MF model is trained by fitting to the observed

interaction outcomes in G. Notice that if G’s rank is ≤ k, there exists an exact
solution to (3). However, as it will become clear in a moment, our goal is to
generalize in a way that allows predicting unknown interaction outcomes. Thus,

Surrogate Fitness via Factorization of Interaction Matrix 71

caution should be exercised to avoid overfitting the observed data in G. A com-
mon extension of the basic MF formula that addresses this issue is regularization,
which can be implemented by adding a parameter λ and modifying the squared
error objective function:

min
W,H

f(W,H) ≡ 1
2
||G − WH||2F + λ(||W ||2F + ||H||2F) s.t. W,H ≥ 0. (5)

The minimization problem given by (5) is not convex in both W and H
simultaneously, however it is convex in either W or H. Thus, by keeping one
matrix constant, the other can be found with a simple least squares computa-
tion. This strategy is widely known as alternating least squares [25]. Expression
(5) can also be minimized using stochastic gradient descent, however the most
popular approach to solve this optimization problem is the multiplicative update
algorithm [18], which alternates the following two steps:

wpk ← wpk
(GHT)pk

(WHHT)pk
(6)

hkt ← hkt
(WTG)kt

(WTWH)kt
(7)

In each iteration, the new values of W and H are found by multiplying the
current one by a factor that depends on the quality of approximation in (3). The
quality of approximation improves monotonically with the application of the
above rules [18]. The update rules are applied for a fixed number of iterations
or until the error given by the left-hand side of (5) is sufficiently small.

As it follows from (3), to predict an interaction outcome of a program p with
a test t from the matrices W and H found by solving (5), we calculate the dot
product of two vectors corresponding to p and t:

ĝpt = wT
p ht =

k∑

k=1

wpkhkt (8)

Crucially for SFIMX, G can be factorized in the above way even if some of its
elements are unknown, i.e., when G is sparse. This makes matrix factorization
a powerful tool in machine learning, where it can be used to fill in the gaps in
a large matrix (of, e.g., users’ recommendations [12]) even if only small part of
that matrix is known for certain. However, the update rules given by (6) and
(7) implicitly assume that the input matrix is complete. In order to make them
work for sparse matrices, a small modification must be introduced so that the
unobserved outcomes in G are masked by zeros and ignored during training of
the NMF model. Let M be a binary mask where mpt = 1 if gpt is known and
mpt = 0 otherwise. Then the update rules for so-called weighted non-negative
matrix factorization (WNMF) [20] become:

wpk ← wpk
((M ⊙ G)HT)pk

((M ⊙ (WH))HT)pk
, (9)

72 P. Liskowski and K. Krawiec

hkt ← hkt
(WT (M ⊙ G))kt

(WT (M ⊙ (WH)))kt
, (10)

where ⊙ is the Hadamard (element-wise) product.

4 The SFIMX Algorithm

Based in observations made in the previous section, we propose a method dubbed
Surrogate Fitness via Factorization of Interaction Matrix (SFIMX). The method
expects two parameters: the factorization rank k and desired density α ∈ (0, 1]
of partial interaction matrix. SFIMX employs the NMF formalisms described in
Sect. 3 to replace the conventional fitness evaluation stage of GP algorithm with
the following steps:

1. Calculate in part the sparse interaction matrix G between the programs from
the current population P and the tests from T in the following way:
(a) For each program p, draw a nonempty random subset of tests T ′ ⊂ T of

size α|T| to interact with, where α ∈ (0, 1] is the parameter that controls
the fraction of interactions to be calculated.

(b) Apply p to tests in T ′, placing the interaction results in the appropriate
cells of the corresponding row of G.

(c) Fill in the remaining (missing) entries in G with zeros.
2. Factorize G in non-negative components W and H using the multiplicative

update algorithm ((9) and (10)).
3. Use the obtained matrices to reconstruct the interaction outcomes by calcu-

lating Ĝ = WH.
4. Compute from Ĝ the fitness of each program p ∈ P using the conventional

formula (1), by substituting gijs with the values taken from Ĝ, i.e., ĝijs.

For the purpose of the above algorithm it is mandatory to redefine the original
interaction function g(p, t) defined in Sect. 2, because zero is reserved for missing
interaction outcomes. We assume that g returns 1 if p fails (x, y) and 2 if p solves
(x, y). Note also that α ≥ 1

|T | must hold for T ′ to be nonempty.

Example. Consider population of programs P = {p1, p2, p3, p4} and the popu-
lation of tests T = {t1, t2, t3, t4, t5}. Assume that SFIMX is run with α = 3

5 and
yields the following sparse matrix of interactions G between P and T :

G =

⎛

⎜⎜⎝

t1 t2 t3 t4 t5
p1 2 1 2
p2 2 1 1
p3 1 2 2
p4 2 1 1

⎞

⎟⎟⎠

Surrogate Fitness via Factorization of Interaction Matrix 73

Let k = 3. In step 2 of SFIMX, application of 50 iterations of the multiplicative
update algorithm to G results in the following factorization:

W =

⎛

⎜⎜⎝

f1 f2 f3
p1 0.46 1.96 0.6
p2 1.27 0.1 0.95
p3 1.37 0.02 2.83
p4 0.4 1.86 1.60

⎞

⎟⎟⎠, H =

⎛

⎝

t1 t2 t3 t4 t5
f1 0.48 1.50 0.01 0.41 0.41
f2 0.87 0.14 0.19 0.77 0.01
f3 0.11 0.09 1.02 0.50 0.51

⎞

⎠.

When multiplied (step 3 of SFIMX), W and H lead to the following recon-
structed interaction matrix:

Ĝ = WH =

⎛

⎜⎜⎝

t1 t2 t3 t4 t5
p1 2 1.02 1 2 0.52
p2 0.8 2 1 1.07 1
p3 1 2.31 2.1 2 2
p4 2 1 2.01 2.4 1

⎞

⎟⎟⎠

Finally, in step 4, we calculate the fitness of particular programs by summing
the corresponding rows of the reconstructed interaction matrix, which results in
f(p1) = 6.54, f(p2) = 5.87, f(p3) = 9.41, and f(p4) = 8.41. Overall, SFIMX
enabled calculating these values using α|T ||P | = 12 known interaction outcomes,
compared to |T ||P | = 20 interactions required by the conventional method. !

In the above example, the reconstructed matrix Ĝ perfectly reproduces the
known interaction outcomes, so the square approximation error (5) attains zero.
This is guaranteed to happen when k ≥ rank(G). In general the approximation
error will have the tendency to be greater for smaller values of k and greater
values of α.

Properties of SFIMX. Predictions made by the method are based on how
similar programs interact with the tests in T . The similarity in behavior of two
programs is calculated based on the similarity in the outcomes of interactions
with certain tests. Missing interaction outcomes are predicted based on the feed-
back from other programs and tests in the population.

As a result, evaluation in SFIMX is contextual : prediction ĝpt made for a miss-
ing outcome depends not only on corresponding p and t but also on other pro-
grams in P and other tests in T . All available outcomes of interactions between
programs in P and tests in T together determine the MF model and therefore
influence how the predictions for missing outcomes are made. As the programs
evolve with time, so does the model. Therefore, SFIMX performs NMF anew
with each generation to model the missing interaction outcomes.

By factorizing interaction matrix G, the programs and the tests are projected
into a reduced latent spaces that capture their most salient abstract features.
The weight matrix H has one column for every abstract feature and one row for
every program, and maps the features to the programs. The values in W state

74 P. Liskowski and K. Krawiec

how much each feature applies to each program. Feature matrix H, on the other
hand, has a row for each abstract feature and a column for each test. Every value
in H indicates the extent to which a test possesses an abstract feature.

Interestingly, NMF with the least squares objective (Eq. 4) is characterized by
an inherent clustering property, i.e., it clusters the columns of interaction matrix
G. If additional orthogonality constraint on H is added, i.e., HHT = I, then the
minimized objective is equivalent to the one of K-means clustering (except for
the non-negativity constraint), i.e., the sum of square of distances from clusters’
centroids. In such a case, NMF can be viewed as a relaxed form of K-means
where the matrix W contains non-negative cluster centroids and the elements
of H are cluster membership indicators. This convergence helps understand how
the problem of finding similar programs is internally tackled by NMF. It also
reveals certain similarities to the recently proposed DOC algorithm, which we
touch upon in the following review of related work.

5 Related Work

The values calculated by SFIMX can be treated as a surrogate fitness. Also
known as approximate fitness function or response surface [10], a surrogate fit-
ness function provides a computationally cheaper approximation of the original
objective function. Surrogates are particularly helpful in domains where evalu-
ation is computationally expensive, e.g., when it involves simulation. They usu-
ally rely on simplified models of the process being simulated, hence yet another
alternative name: surrogate models. In continuous optimization, such models are
typically implemented using low-order polynomials, Gaussian processes, or arti-
ficial neural networks. Occasionally, surrogate models have been also used in GP.
For instance, in [8], Hildebrandt and Branke proposed a surrogate fitness for GP
applied to job-shop scheduling problems. A metric was defined that reflected
the behavioral similarity between programs, more specifically how the programs
rank the jobs. Whenever an individual needed to be evaluated, that metric was
used to locate its closest neighbor in a database of historical candidate solutions
and neighbor’s fitness was used as a surrogate.

Several other studies in GP attempted to reduce the number of programs’
evaluations. An arguably simplest approach is to draw a subset of tests T ′ ⊂ T
and allow the programs interact only with them. This approach was also inves-
tigated in the context of evolutionary algorithms, where it is known as Random
Subset Selection (RSS) [3]. Apart from speeding up the evolution, the motiva-
tion is that programs that perform well on various different subsets might have
captured essential knowledge to generalize to all tests in T . Random selection of
tests has been shown to improve the success rate and reduce overfitting [6].

SFIMX redefines fitness function. Several other methods proposed in the past
in GP do that too, albeit usually not in terms of linear algebra. The arguably
oldest approach of this type is implicit fitness sharing introduced by Smith et al.
[26] and further explored for genetic programming by McKay [21,22]. IFS lets the
evolution assess the difficulty of particular tests and weighs the rewards granted

Surrogate Fitness via Factorization of Interaction Matrix 75

for solving them. In this sense, IFS treats tests as limited resources: programs
share the rewards for solving particular tests, each of which can vary from 1

|P | to
1 inclusive. Higher rewards are provided for solving tests that are rarely solved by
population members, while importance of tests that are easy is diminished. The
assessed difficulties of tests change with evolution, which can help escaping local
minima and diversifies population. Diversification maintenance was also the main
motivation for the recent lexicase selection algorithm [7], that avoids aggregating
interaction outcomes altogether and differentiates programs by comparing them
on randomly selected tests.

Another method that aims at scrutinizing the individual outcomes of pro-
grams’ interactions and leveraging them for better performance is DOC [15].
In every generation, the algorithm identifies the groups of tests on which the
programs in the current population behave similarly and clusters them together
to give rise to new search objectives. Typically, a few such objectives emerge
from this process, each of which is intended to capture a subset of ‘capabilities’
exhibited by the programs in the context of other individuals in population. The
newly derived objectives replace then the conventional fitness function are used
to drive the selection process. DOC is inspired by previous work in coevolution-
ary algorithms and test-based problems in [19].

Relying on binary interaction outcomes that only state whether a given test
has been passed by a program or not stays in close resemblance to test-based
problems originating in coevolutionary algorithms [2,5]. In test-based problems,
candidate solutions interact with multiple environments – tests. Typically, the
number of such environments is very large, making it infeasible to evaluate can-
didate solutions on all of them. Depending on problem domain, tests may take
on the form of, e.g., opponent strategies (when evolving a game-playing strat-
egy) or simulation environments (when evolving a robot controller). Solving a
test-based problem requires a learning algorithm to generalize from a sample of
tests. Similarly in GP, a synthesized program is expected to generalize beyond
the training set and tests often do not enumerate all possible program inputs.

Last but not least, there are certain connections between SFIMX and seman-
tic GP [24] and behavioral [14,16,17] GP methods that define program semantics
as the vector of outputs produced by a program for particular tests. From the
viewpoint of SFIMX, a single row in an interaction matrix is the outcome of con-
fronting program’s semantics with the vector of desired outputs. Recent years
have seen a large number of contributions that employ this characterization
of program behavior to design new initialization, search, and selection opera-
tors [23]. However, those methods are in general not designed to redefine search
objectives, which is the primary goal of SFIMX.

6 Experimental Verification

We examine the performance of SFIMX in the domain of tree-based GP. All
compared methods implement generational evolutionary algorithm and share the
same parameter settings, with initial population of size |P | = 1000 filled with the

76 P. Liskowski and K. Krawiec

ramped half-and-half operator, subtree-replacing mutation engaged with prob-
ability 0.1, subtree-swapping crossover engaged with probability 0.9, and tour-
nament of size 7 in the selection phase. The fitness of each program p ∈ P
is computed using (1). Search lasts up to 200 generations and stops when the
assumed number of generation elapses or an ideal program is found; the latter
case is considered a success.

Compared Algorithms. We are interested in verifying whether SFIMX is
a viable method for reducing the computational cost incurred by evaluation.
For that aim, we control the fraction of interactions to be calculated by the
parameter α ∈ {0.1, 0.2, . . . , 1.0} in SFIMX algorithm in Sect. 4. By reducing
in each generation the number of interactions by a factor of (1 − α), we spare
(1−α)|P ||T | interactions per run. We investigate what can be gained by investing
these savings in increased population size: we increase the population size by
the factor of (1 − α), so that it holds |P |+ (1 − α)|P | = (2 − α)|P | individuals.
Therefore, population size does not change at all when α = 1.0, while for α close
to 0 it is almost doubled. Nevertheless, the overall computational budget is the
same for all configurations and amounts to 1, 000|T | interactions per generation
and thus 200, 000|T | interactions per run. This holds for all of the compared
algorithms, including the control setups.

We consider three settings of factorization rank k that controls the degree
to which the interaction outcomes are being compressed by factorization. The
configuration dubbed SFIMX-full uses k = min(|P |, |T |), which is equivalent
here to k = |T |, because for the considered benchmarks |P | > |T |. This value
should be considered large, as NMF can then perfectly reproduce the known
interaction outcomes, because the rank of G can be at most min(|P |, |T |).

The SFIMX-half configuration uses k = |T |/2, which forces the interaction
outcomes to be compressed in half the number of weights in matrix W and
features in matrix H. However, this number can be still considered quite high,
given that we expect the interaction outcomes to be mutually correlated between
program and tests.

Finally, the configuration SFIMX-log uses the smallest rank k = ⌈log2 |T |⌉.
In this case, k is in the order of the number of input variables; for instance, for
the Mux6 problem k = log2 26 = 6.

The factorization is realized by the WNMF algorithm ((9) and (10)). The
regularization factor λ is set to 0.01, as suggested by the common practice. When
invoked for a given sparse interaction matrix G, we let WNMF perform up to 50
iterations, each involving both steps, i.e., (9) and (10). If the approximation error
(the left-hand size of (5)) drops below 10−5, we stop the optimization earlier.
The computational overhead of running WNMF is on average 19 percent of the
time spent evaluating programs in the population.

We confront SFIMX with several control setups. The first baseline is the
conventional Koza-styleGP [13]. The second control configuration, dubbed RSS,
calculates fitness using α|T | randomly selected tests. The subset of tests is drawn
anew in every generation of evolutionary run. We refer to this method as Random

Surrogate Fitness via Factorization of Interaction Matrix 77

Subset Selection (RSS), based on its similarity to an evaluation scheme known
in coevolutionary algorithms [3].

Benchmark Problems. SFIMX and the multiplicative update algorithm it
involves can in principle factor an arbitrary non-negative interaction matrix
G and then reconstruct its approximation Ĝ. However, obtaining good recon-
structions for arbitrarily large interaction outcomes might be difficult, and such
unconstrained outcomes can be expected for symbolic regression, where they
are based on arbitrarily large errors committed by programs on test (not men-
tioning the possibility of programs returning infinity). Also, the raw interaction
outcomes for symbolic regression problems are signed (the difference between
the real-valued actual and desired output) and as such would require a well-
justified mapping to positive numbers. For these reasons, in this study we limit
our interest to problems with discrete interaction outcomes.

The first group are Boolean benchmarks, which employ instruction set {and,
nand, or, nor} and are defined as follows. For an v-bit comparator Cmp v, a
program is required to return true if the v

2 least significant input bits encode a
number that is smaller than the number represented by the v

2 most significant
bits. In case of the majority Maj v problems, true should be returned if more
that half of the input variables are true. For the multiplexer Mul v, the state
of the addressed input should be returned (6-bit multiplexer uses two inputs to
address the remaining four inputs). In the parity Par v problems, true should
be returned only for an odd number of true inputs.

The second group of benchmarks are the algebra problems originating from
Spector et al.’s work on evolving algebraic terms [27]. These problems dwell
in a ternary domain: the admissible values of program inputs and outputs are
{0, 1, 2}. The peculiarity of these problems consists of using only one binary
instruction in the programming language, which defines the underlying algebra.
For instance, for the a1 algebra, the semantics of that instruction is defined as
follows:

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

In the following, the employed algebra is indicated by the suffix the name of term
to be evolved. See [27] for the definitions of the remaining four algebras. For each
of the five algebras considered here, we consider two tasks (of four discussed in
[27]). In the discriminator term tasks (Dsc in the following), the goal is to
synthesize an expression that accepts three inputs x, y, z and is semantically
equivalent to the one shown below:

tA(x, y, z) =

{
x if x ̸= y

z if x = y
(11)

There are thus 33 = 27 fitness cases in these benchmarks. The second tasks
(Mal), consists in evolving a so-called Mal’cev term, i.e., a ternary term that

78 P. Liskowski and K. Krawiec

satisfies the equation:
m(x, x, y) = m(y, x, x) = y (12)

This condition specifies the desired program output only for some combinations
of inputs: the desired value for m(x, y, z), where x, y, and z are all distinct, is
not determined. As a result, there are only 15 fitness cases in our Mal tasks, the
lowest of all considered benchmarks. The motivation for the discriminator and
Mal’cev term problems is originally that they’re of interest to mathematicians [4].
In this paper, however, we chose them as benchmarks because of their difficulty
and formal elegance.

Table 1. Success rate (×100) of best-of-run individuals, averaged over 30 evolutionary
runs. Bold marks the best result for each benchmark.

Surrogate Fitness via Factorization of Interaction Matrix 79

Performance. Table 1 reports the success rates of particular algorithms, result-
ing from 30 runs of each configuration on every benchmark. To provide an aggre-
gated perspective on performance, we employ the Friedman’s test for multiple
achievements of multiple subjects [11]. We first determine the best perform-
ing configuration within each method. For SFIMX-full and SFIMX-half, the
configurations with α = 0.4 fare the best, while for SFIMX-log and for RSS
α = 0.3 is most advantageous. The Friedman test applied to those configura-
tions leads to the following ranking:

SFIMX-half-04 SFIMX-full-04 SFIMX-log-03 GP RSS-03
2.07 2.13 2.67 3.90 4.23

The p-value for Friedman test is ≪ 0.001, which strongly indicates that at least
one method performs significantly different from the remaining ones. We con-
ducted post-hoc analysis using symmetry test [9]: bold font marks the methods
that are outranked at 0.05 significance level by SFIMX-half-04.

For additional insight, we also ranked all considered configurations for all
individual values of α. The best overall average rank of 7.57 was achieved by
SFIMX-half-04. Eight out of ten SFIMX-half configurations ranked before any
of the control configurations; only SFIMX-half with α = 0.1 and α = 1.0 ranked
behind GP and some RSS setups (average ranks 32.47 and 24.53, respectively).
GP attained average rank 21.43.

SFIMX clearly outperforms the other methods. Its average ranks are bet-
ter than the ranks of control configurations, albeit not so for the logarithmic
variant SFIMX-log. That last fact is not surprising, given that SFIMX-log uses
roughly an order of magnitude fewer weights and features than SFIMX-full and
SFIMX-half. Nevertheless, SFIMX-log still delivers decent performance and for
its preferred setting α = 0.3 surpasses GP and RSS on most benchmarks. This
corroborates our hypothesis that the interaction outcomes are significantly cor-
related and lend themselves to high compression without affecting the overall
performance of the method. This result is particularly appealing, as low k implies
low computational overhead of factorization: for SFIMX-log, it amounts only to
approximately 6 percent of the total cost of calculating the 1, 000|T | program-
test interactions.

On the other hand, there are no significant differences in performance
between SFIMX-full and SFIMX-half. Apparently the relatively high rank of
the resulting matrices makes it possible to model the interaction outcomes suf-
ficiently well in both these cases.

The success rates of SFIMX for individual benchmarks are always the best
among the considered methods – see the values marked in bold in Table 1. For
SFIMX-half, the SFIMX variant that overall fares the best, for three problems
(Mux6, Mal1, and Mal5) there is at least one setting of α that makes SFIMX
succeed systematically, i.e., in every run (success rate 100). In that respect, it is
equaled only by GP and only on the Mal5 problem.

SFIMX performs also well in qualitative terms. It manages to produce solu-
tions for all problems, while GP never solves Cmp8, Dsc1, Dsc2, Dsc4 and Dsc5,

80 P. Liskowski and K. Krawiec

and RSS never solves Dsc1 and Dsc4, and hardly ever solves Cmp8, Dsc2 and
Dsc5. On those hard problems, SFIMX is in most cases remarkably resistant to
the setting of α: for Cmp8 and Dsc1, it succeeds for most values of α in the
range [0.2, 0.9], and for Dsc5 for α ∈ [0.2, 1.0]. The only exception is Dsc4 where
it managed to solve the problem only for α = 0.4, and only once in 30 runs.

As a rule of thumb, we may say that setting α in [0.3, 0.7] is favorable. How-
ever, using other values is not very detrimental. For many problems SFIMX
maintains decent success rates even for very low setting of this parameter; for
instance SFIMX-half is better than or comparable to GP for α = 0.2 on Cmp8,
Mux6, Dsc1, Dsc2, Dsc3, Dsc5, Mal2, Mal3, Mal4, and Mal5. For some bench-
mark, it still works quite well even for α = 0.1. This is impressive, given that the
interaction matrix is reconstructed there from only 10 percent of actual outcomes
of program-test interactions.

7 Conclusions and Future Work

In conclusion, we find the idea of reconstructing interaction outcomes via fac-
torization of sparse interaction matrix both conceptually appealing and useful
in practice. SFIMX is straightforward, founded on solid mathematical under-
pinnings, and performs well for a broad range of values of parameters α and
k. We assumed here that the algorithm spends the spared evaluation cycles on
additional programs in extended population. Obviously, nothing precludes other
designs, i.e., extending evolution with additional generations or simply complet-
ing a run in a shorter time.

Applicability of SFIMX reaches beyond GP. In general, interaction matrices
produced in any test-based problems can be subject to the proposed processing.
This applies in particular to interactive domains typically solved with compet-
itive coevolution algorithms. Examples include two-player games, evolution of
robot controllers, and abstract problems like density classification task, a classi-
cal problem in cellular automata.

In the form presented in this paper, SFIMX deliberately discards certain
interactions. However, it might be used in scenarios where G is sparse due to
other, more objective and external reasons. The most obvious example are the
problems with an infinite or very large number of tests. Many control problems
belong to this category. Even in the discrete domains like artificial ant or density
classification task, the numbers of possible environments (or initial conditions)
are often astronomical, not mentioning the continuous domain with problems
like inverted pendulum. In such problems, tests (environments) can be gener-
ated on demand, and the interaction function performs agent’s simulation in an
environment and is thus computationally costly. SFIMX’s capability of filling in
the missing interaction outcomes can be in such cases invaluable. This prelimi-
nary study can be extended in multiple directions. For instance, here we applied
SFIMX to discrete domains only; its usefulness in continuous domains typical for
symbolic regression is an open question. The required adaptation concerns map-
ping the – in general arbitrary large – continuous error to interaction outcomes.

Surrogate Fitness via Factorization of Interaction Matrix 81

We hypothesize that simple transformation with some squeezing function (e.g.,
sigmoidal function or hyperbolic tangent) may be appropriate for that purpose.

Acknowledgements. P. Liskowski acknowledges support from grant 2014/15/N/
ST6/04572 funded by the National Science Centre, Poland.

K. Krawiec acknowledges support from grant 2014/15/B/ST6/05205 funded by the
National Science Centre, Poland.

References

1. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algo-
rithms and applications for approximate nonnegative matrix factorization. Com-
put. Stat. Data Anal. 52(1), 155–173 (2007)

2. Bucci, A., Pollack, J.B., de Jong, E.: Automated extraction of problem structure.
In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 501–512. Springer,
Heidelberg (2004)

3. Chong, S.Y., Tino, P., Ku, D.C., Xin, Y.: Improving generalization performance
in co-evolutionary learning. IEEE Trans. Evol. Comput. 16(1), 70–85 (2012)

4. Clark, D.M.: Evolution of algebraic terms 1: term to term operation continuity.
Int. J. Algebra Comput. 23(05), 1175–1205 (2013)

5. de Jong, E.D., Pollack, J.B.: Ideal evaluation from coevolution. Evol. Comput.
12(2), 159–192 (2004)

6. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique
for overfitting control in genetic programming. In: Moraglio, A., Silva, S., Krawiec,
K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 218–229.
Springer, Heidelberg (2012)

7. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)

8. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

9. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, vol.
751. Wiley, New York (2013)

10. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Trans. Evol. Comput. 6, 481–494 (2002)

11. Kanji, G.K.: 100 Statistical Tests. Sage, London (2006)
12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender

systems. Computer 8, 30–37 (2009)
13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)
14. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming. Springer,

Switzerland (2015)
15. Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based

genetic programming. In: Machado, P., Heywood, M.I., McDermott, J., Castelli,
M., Garćıa-Sánchez, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 53–65.
Springer International Publishing, Switzerland (2015)

16. Krawiec, K., O’Reilly, U.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, pp. 935–942. ACM (2014)

82 P. Liskowski and K. Krawiec

17. Krawiec, K., Solar-Lezama, A.: Improving genetic programming with behavioral
consistency measure. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J.
(eds.) PPSN 2014. LNCS, vol. 8672, pp. 434–443. Springer, Heidelberg (2014)

18. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 556–562 (2001)

19. Liskowski, P., Krawiec, K.: Discovery of implicit objectives by compression of inter-
action matrix in test-based problems. In: Bartz-Beielstein, T., Branke, J., Filipič,
B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 611–620. Springer, Heidelberg
(2014)

20. Mao, Y., Saul, L.K.: Modeling distances in large-scale networks by matrix fac-
torization. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, pp. 278–287. ACM (2004)

21. McKay, R.I.B.: Committee learning of partial functions in fitness-shared genetic
programming. In: 26th Annual Conference of the IEEE Third Asia-Pacific Con-
ference on Simulated Evolution and Learning 2000, Industrial Electronics Society,
IECON, 22–28 October 2000, vol. 4, pp. 2861–2866. IEEE Press, Nagoya, Japan
(2000)

22. McKay, R.I.B.: Fitness sharing in genetic programming. In: Whitley, D., Goldberg,
D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000), 10–12 July
2000, pp. 435–442. Morgan Kaufmann, Las Vegas (2000)

23. Moraglio, A., Krawiec, K.: Semantic genetic programming. In: Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary Computation
Conference, pp. 603–627. ACM (2015)

24. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

25. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5(2),
111–126 (1994)

26. Smith, R.E., Forrest, S., Perelson, A.S.: Searching for diverse, cooperative popula-
tions with genetic algorithms. Evol. Comput. 1(2), 127–149 (1993)

27. Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic programming for
finite algebras. In: Keijzer, M. (ed.) Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2008, 12–16 July 2008, pp.
1291–1298. ACM, Atlanta (2008)

	Preface
	Organization
	Contents
	Full Presentations
	One-Class Classification for Anomaly Detection with Kernel Density Estimation and Genetic Programming
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Genetic Programming
	3.2 Kernel Density Estimation

	4 Proposed Approach
	4.1 Description of Method
	4.2 Generating Artificial Data

	5 Experiments
	5.1 Datasets
	5.2 Experimental Settings

	6 Results and Discussion
	7 Conclusion and Further Work
	References

	Evolutionary Approximation of Edge Detection Circuits
	1 Introduction
	2 Relevant Work
	2.1 Edge Detectors
	2.2 Evolutionary Computing in Edge Detector Design
	2.3 Approximate Computing in Image Processing
	2.4 Evolutionary Circuit Design

	3 Adopting CGP for Circuit Approximation
	3.1 Cartesian Genetic Programming
	3.2 Resources-Oriented Approximation

	4 Experimental Results
	4.1 Evolutionary Approximation of Adders
	4.2 Approximation of Sobel Edge Detector
	4.3 Approximation of Evolved Edge Operator

	5 Conclusions
	References

	On the Impact of Class Imbalance in GP Streaming Classification with Label Budgets
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Anytime Operation
	3.2 Archiving Policy
	3.3 Sampling Policy

	4 Experimental Methodology
	4.1 Datasets
	4.2 Class-Wise Detection Rate
	4.3 Parameters

	5 Results
	5.1 Single Generation Performance
	5.2 Multi-generation Performance
	5.3 Overall Detection Rates

	6 Conclusion
	References

	Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data
	1 Introduction
	2 Background
	2.1 Related Work

	3 The Proposed Method
	3.1 GP Program Representation
	3.2 Outline of the HoG Function
	3.3 The Fitness Function

	4 Experiment Design
	4.1 Datasets
	4.2 Training and Test Sets
	4.3 Baseline Methods
	4.4 Generating SURF Keypoints
	4.5 Evolutionary Parameters

	5 Results and Discussion
	5.1 Compared to the 2TGP Approach
	5.2 Compared to the Baselines

	6 Further Analysis
	6.1 Example Program 1
	6.2 Example Program 2
	6.3 Example Program 3

	7 Conclusions
	References

	Surrogate Fitness via Factorization of Interaction Matrix
	1 Introduction
	2 Background
	3 Factorization of Interaction Matrix
	4 The SFIMX Algorithm
	5 Related Work
	6 Experimental Verification
	7 Conclusions and Future Work
	References

	Scheduling in Heterogeneous Networks Using Grammar-Based Genetic Programming
	1 Introduction
	2 Problem Definition
	3 Previous Work
	4 Simulation Environment
	4.1 Generating Inputs
	4.2 Calculating Fitness

	5 Experiments
	6 Results and Discussion
	6.1 Terminal Utilisation
	6.2 Subframe Utilisation
	6.3 Benchmarking

	7 Future Work and Conclusions
	References

	On the Analysis of Simple Genetic Programming for Evolving Boolean Functions
	1 Introduction
	2 Preliminaries
	3 Analysis for Complete Training Sets
	3.1 Analysis for ANDn with Complete Training Sets
	3.2 Analysis for XORn with Complete Training Sets

	4 Analysis for Incomplete Training Sets
	4.1 Analysis for ANDn with Incomplete Training Set
	4.2 Analysis for XORn with Incomplete Training Set

	5 Conclusions
	References

	Genetic Programming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches
	1 Introduction
	2 Background
	2.1 Dynamic Job Shop Scheduling
	2.2 Genetic Programming Based Hyper-heuristics for Dynamic JSS
	2.3 Cooperative Coevolution in Genetic Programming

	3 Coevolutionary GP Approaches to JSS: MLGP-JSS and EGP-JSS
	3.1 MLGP-JSS Process Overview
	3.2 Selection
	3.3 Evaluation Procedure
	3.4 EGP-JSS Process Overview
	3.5 GP Representation, Terminals and Function Sets

	4 Experimental Design
	4.1 Dataset
	4.2 GP-HH Benchmark Methods for Comparison
	4.3 Parameter Settings

	5 Results
	5.1 MLGP-JSS vs GP-JSS
	5.2 MLGP-JSS vs EGP-JSS

	6 Conclusions
	References

	A Genetic Programming Approach for the Traffic Signal Control Problem with Epigenetic Modifications
	1 Introduction
	2 Epigenetics
	3 Traffic Signal Control
	4 The Traffic Simulator
	4.1 Traffic Network
	4.2 Vehicle Insertion

	5 Representation
	6 The Epigenetic Mechanism
	7 Experiments
	8 Results and Discussion
	9 Conclusions and Future Work
	A Traffic Parameteres
	References

	A Genetic Programming-Based Imputation Method for Classification with Missing Data
	1 Introduction
	1.1 Research Goals
	1.2 Organisation

	2 Related Work
	2.1 Classification with Missing Data
	2.2 Imputation Methods
	2.3 Genetic Programming-Based Symbolic Regression

	3 Genetic Programming-Based Imputation for Classification with Missing Data
	4 Experiment Design
	4.1 Method
	4.2 Datasets
	4.3 Benchmark Imputation Methods for Comparison
	4.4 Classification Algorithms
	4.5 GP Settings

	5 Results and Analysis
	5.1 Classification Accuracy
	5.2 Computation Time

	6 Conclusion and Future Work
	References

	Plastic Fitness Predictors Coevolved with Cartesian Programs
	1 Introduction
	2 Fitness Prediction in CGP
	2.1 Fitness Predictor
	2.2 Coevolution of Cartesian Programs and Fitness Predictors

	3 Proposed Method
	3.1 Plastic Directly Encoded Predictor
	3.2 Predictor Size Adaptation

	4 Results
	4.1 Benchmark Problems
	4.2 Experimental Setup
	4.3 Ability to Adapt the Number of Fitness Cases
	4.4 Predictor Behaviour
	4.5 Comparison of the Predictor Size
	4.6 Comparisons of Various Approaches to Fitness Prediction in CGP

	5 Conclusions
	References

	Short Presentations
	Search-Based SQL Injection Attacks Testing Using Genetic Programming
	1 Introduction
	2 Related Work
	3 SQL Injection Attacks (SQLIAs)
	3.1 Tautologies
	3.2 Union Query
	3.3 Piggyback Queries
	3.4 Malformed Queries
	3.5 Inference Queries

	4 Design of the GP Grammar
	4.1 Terminal Sets
	4.2 Functions Sets
	4.3 Fitness Function
	4.4 Parameters
	4.5 Termination and Solution Designation

	5 System Design and Implementation
	5.1 Representation of Individuals
	5.2 Evaluation and Fitness

	6 Results and Analysis
	7 Conclusion and Future Work
	References

	Grammar Design for Derivation Tree Based Genetic Programming Systems
	1 Introduction
	2 Grammars in Evolutionary Systems
	2.1 Grammar Guided Genetic Programming
	2.2 Grammar Design
	2.3 Structure in Grammars

	3 Experimental Setup
	3.1 Sorting Network
	3.2 Experimental Grammar Design
	3.3 Experiments

	4 Results
	4.1 Experiment 1
	4.2 Experiment 2

	5 Conclusion and Future Work
	References

	Modelling Evolvability in Genetic Programming
	1 Introduction
	2 Related Work
	3 Approach
	4 Experimental Design and Results
	4.1 Sampling Accuracy
	4.2 Selection of Evolvability
	4.3 Modelling of Evolvability

	References

	Towards Automated Strategies in Satisfiability Modulo Theory
	1 Introduction
	2 Strategies and SMT Logics
	2.1 Strategies
	2.2 SMT Logics

	3 Evolutionary Algorithm
	4 Experimental Setup
	5 Results
	5.1 LIA Benchmarks Set
	5.2 LRA Benchmarks Set
	5.3 QF_LIA Benchmarks Set
	5.4 QF_LRA Benchmarks Set

	6 Related Work
	7 Conclusion and Future Work
	References

	Geometric Semantic Genetic Programming Is Overkill
	1 Introduction
	2 Problem Statement and Solution in Geometric Semantic Genetic Programming
	3 Function Learning Using Linear Combination
	3.1 Symbolic Regression
	3.2 Boolean Function Synthesis
	3.3 Classifier Induction

	4 Experiment
	4.1 Setup
	4.2 Results

	5 Discussion
	6 Conclusions
	References

	Semantic Geometric Initialization
	1 Introduction
	2 Background
	3 The Problem
	4 Semantic Geometric Initialization
	5 Related Work
	6 Experimental Verification
	7 Discussion
	8 Conclusions
	References

	Patterns for Constructing Mutation Operators: Limiting the Search Space in a Software Engineering Application
	1 Introduction
	2 Model Transformations by Example and Related Work
	3 GP Approach to Evolve Model-to-Model Transformations
	4 Implementation and Example
	5 Results
	6 Conclusion
	References

	Iterative Cartesian Genetic Programming: Creating General Algorithms for Solving Travelling Salesman Problems
	1 Introduction
	2 Optimisation of Algorithms
	3 Iterative Cartesian Genetic Programming
	4 Discovery of Iterative TSP Solvers
	4.1 The Travelling Salesman Problem
	4.2 Automatic Design of Hybrid Metaheuristics

	5 Experimental Results
	6 Conclusion
	References

	Author Index

