
Behavioral Program Synthesis for the Automated
Design of Algorithms

6th Workshop on Evolutionary Computation
for the Automated Design of Algorithms

Krzysztof Krawiec

Computational Intelligence Group, Institute of Computing Science
Poznan University of Technology, Poland

July 21, 2016

Outline

1. What is the problem and how did we get here?

2. A few directions to solve the problem.

3. A broader perspective - search drivers and behavioral program
synthesis.

2 / 21

Program/algorithm synthesis

• The goal: Efficient synthesis of programs/algorithms
• expression trees,
• fully-fledged programs,
• hyperheuristics, etc.

• Program = an executable structure that can interact with data
• Problem specification = set of examples

• tests in GP
• problem instances in ADA

An iterative search problem:

• Needs ways of prioritizing search
• The common means: (scalar) objective function

• E.g., the number of passed tests/solved instances

3 / 21

Downsides of conventional objective functions

• The right way to assess the objective quality of solutions,

• ... but not designed to drive the search.

• Predicated on the ”big valley” assumption: search moves tend to lead to
similarly-valued solutions

• Very minimalist.

Example: 6-bit multiplexer, 26 = 64 tests:

• Number of possible fitness values: 26 + 1 = 65 (≈ 6 bits)

• Number of possible ‘output behaviors’: 264 = 1.84× 1019 (64 bits)

• Number of possible programs: far greater.

Evaluation bottleneck

4 / 21

Downsides of conventional objective functions

• The right way to assess the objective quality of solutions,

• ... but not designed to drive the search.

• Predicated on the ”big valley” assumption: search moves tend to lead to
similarly-valued solutions

• Very minimalist.

Example: 6-bit multiplexer, 26 = 64 tests:

• Number of possible fitness values: 26 + 1 = 65 (≈ 6 bits)

• Number of possible ‘output behaviors’: 264 = 1.84× 1019 (64 bits)

• Number of possible programs: far greater.

Evaluation bottleneck

4 / 21

Downsides of conventional objective functions

• The right way to assess the objective quality of solutions,

• ... but not designed to drive the search.

• Predicated on the ”big valley” assumption: search moves tend to lead to
similarly-valued solutions

• Very minimalist.

Example: 6-bit multiplexer, 26 = 64 tests:

• Number of possible fitness values: 26 + 1 = 65 (≈ 6 bits)

• Number of possible ‘output behaviors’: 264 = 1.84× 1019 (64 bits)

• Number of possible programs: far greater.

Evaluation bottleneck

4 / 21

Consequences

Consequences:

• Compensation: programs that pass different tests obtain same fitness.

• Passing all tests rewarded equally.

5 / 21

Consequences

Consequences:

• Compensation: programs that pass different tests obtain same fitness.

• Passing all tests rewarded equally.

5 / 21

Why stick to objective functions?

Objective reasons:

• Elegant and convenient

• Universal, ’plug&play’ interface to many search/optimization methods
• Sometimes the only source of information on the problem available

• Black-box optimization, IP restrictions, ...
• However, not in GP and ADA.

Subjective reasons:

• Routine and legacy

• Human urge to linearly order/rank solutions

6 / 21

Why stick to objective functions?

Objective reasons:

• Elegant and convenient

• Universal, ’plug&play’ interface to many search/optimization methods
• Sometimes the only source of information on the problem available

• Black-box optimization, IP restrictions, ...
• However, not in GP and ADA.

Subjective reasons:

• Routine and legacy

• Human urge to linearly order/rank solutions

6 / 21

Why stick to objective functions?

Objective reasons:

• Elegant and convenient

• Universal, ’plug&play’ interface to many search/optimization methods
• Sometimes the only source of information on the problem available

• Black-box optimization, IP restrictions, ...
• However, not in GP and ADA.

Subjective reasons:

• Routine and legacy

• Human urge to linearly order/rank solutions

6 / 21

Doing away with the bottleneck

Behavioral Program Synthesis:

1. Obtain more information on solution’s characteristics.

2. Elicit alternative information on solution’s characteristics.

3. Design search operators capable of exploiting that information

Some ’avenues’:

1. Semantic GP

2. Exploitation of interaction matrices

3. Behavior-based characterization

7 / 21

Avenue 1: Semantic GP

Program p:
xi p(xi)

-0.5 0.5
1.0 2.0
1.5 4.5
2.0 8.0

t
p1

p2

o

(McPhee et al. 2007; Krawiec & Lichocki 2009; Moraglio, Krawiec, Johnson 2012)
8 / 21

Avenue 2: GP as a test-based problem

• P: set of m programs,

• T : set of n tests (fitness cases)

• g(p, t): interaction function between p ∈ P and t ∈ T

• G : m × n matrix of interaction outcomes between P and T

• Test-based problems (Pollack, Bucci, de Jong, Popovici)

The idea: extract some alternative/additional information from G

9 / 21

2.1: DOC: Discovery of Search Objectives by Clustering1

1Paweł Liskowski and Krzysztof Krawiec. “Discovery of Implicit Objectives by
Compression of Interaction Matrix in Test-Based Problems”. In: Parallel Problem Solving
from Nature – PPSN XIII. ed. by Thomas Bartz-Beielstein et al. Vol. 8672. Lecture Notes
in Computer Science. Heidelberg: Springer, 2014, pp. 611–620. isbn: 9783319107615.
doi: 10.1007/978-3-319-10762-2_60.

10 / 21

http://dx.doi.org/10.1007/978-3-319-10762-2_60

2.2: Non-negative matrix factorization (NMF)

Given G , find W and H such that

G ≈WH s.t. W ,H ≥ 0,

or more precisely:

min
W ,H

f (W ,H) ≡ 1
2
||G −WH||2F s.t. W ,H ≥ 0,

• Effective, gradient-based algorithms exist

• Widely used in machine learning (recommender systems)

11 / 21

NMF: Example 1

G =

t1 t2 t3 t4

p1 2 2 2 2
p2 1 1 2 2
p3 1 1 1 1

W × H =

f1 f2

p1 0.70 2.05
p2 0.73 0.66
p3 0.35 1.02

× (t1 t2 t3 t4
f1 0.70 0.70 2.70 2.70
f2 0.74 0.74 0.06 0.06

)

12 / 21

NMF: Example 2

G ′ =

t1 t2 t3 t4

p1 2 2 2 2
p2 1 1 2 2
p3 2 1 1 1

W ′ =

f1 f2

p1 0.96 1.51
p2 0.39 1.84
p3 0.86 0.38

, H ′ =

(t1 t2 t3 t4
f1 2.16 1.20 0.72 0.72
f2 0.05 0.35 0.90 0.90

)

W ′ × H ′ =

t1 t2 t3 t4

p1 2.17 1.70 2.07 2.07
p2 0.95 1.13 1.96 1.96
p3 1.88 1.17 0.97 0.97

13 / 21

DOF: Discovery of Search Objectives by Factorization

The algorithm:

1. Calculate the interaction matrix G between S and T .

2. Factorize G into W and H

3. Define the derived objectives g ′
j based on W and H, e.g.,

fj(p) = wpj

4. Use g ′
j s for multiobjective evaluation/selection.

14 / 21

SFIMX: Surrogate Fitness via Factorization of Interaction Matrix2

2Pawel Liskowski and Krzysztof Krawiec. “Surrogate Fitness via Factorization of
Interaction Matrix”. In: EuroGP 2016: Proceedings of the 19th European Conference on
Genetic Programming. Ed. by Malcolm I. Heywood et al. Vol. 9594. LNCS. Porto,
Portugal: Springer Verlag, 30 03–1 04 2016, pp. 65–79.

15 / 21

Avenue 3: Behavioral Evaluation3

Training set

f

e

...

-

Program
input

Desired
output

Program error

x y

Actual
program
output

p(x)

s1(x) s2(x)

ML classifier
c

Classifier error

Classifier complexity
(size)

Program execution

Program
trace

Black: Conventional GP Green: Pattern-guided EA (PANGEA)

3Krzysztof Krawiec, Jerry Swan, and Una-May O’Reilly. “Behavioral Program Synthesis:
Insights and Prospects”. In: Genetic Programming Theory and Practice XIII. ed. by
Rick Riolo, Jason H. Moore, and Mark Kotanchek. Genetic and Evolutionary Computation.
Ann Arbor, USA: Springer, 14-16 05 2016. doi: 10.1007/978-3-319-34223-8_10.

16 / 21

http://dx.doi.org/10.1007/978-3-319-34223-8_10

Programs are behaviorally rich

and so do search and optimization algorithms.

• Interaction outcome = algorithm’s performance on a problem instance

• Execution trace = search trajectory

• ...

See: The Metaheuristics in the Large (MitL) initiative (Swan et al. 2014)

17 / 21

Unified conceptual framework?4

Search driver = a measure designed to guide the search process.

Objective Search
function driver
global local

complete partial
absolute relative

context-free contextual
stationaly non-stationary

Multiple ’weak’ search drivers rather than one ’strong’ objective

4Krzysztof Krawiec. Behavioral Program Synthesis with Genetic Programming.
Vol. 618. Studies in Computational Intelligence. Springer, 2016.

18 / 21

Open questions

• Are my search drivers consistent with the objective function?

• How much structure is in there?
• Is discovering that structure worth the effort?

• Claim: There is a lot of structure to be discovered.
• Real-world problems are structured by the math and physics of our

Universe.

• Real-world problems are more structured than we think.
• Maths is structuring evaluation, dependencies between variables, etc.

19 / 21

Conclusions

Take-home messages:

• Objective functions = not necessarily designed to drive search process.

• Open the bottlenecks and blackboxes!

• Consider abandoning objective functions in favor search drivers.

Potential gains:

• Better performance

• Additional insight into problems

• Still quite universal

• Richer design space for other components of metaheuristics

20 / 21

Thank You

21 / 21

