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Outline

1. What is the problem and how did we get here?

2. A few directions to solve the problem.

3. A broader perspective - search drivers and behavioral program
synthesis.
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Program/algorithm synthesis

• The goal: Efficient synthesis of programs/algorithms
• expression trees,
• fully-fledged programs,
• hyperheuristics, etc.

• Program = an executable structure that can interact with data
• Problem specification = set of examples

• tests in GP
• problem instances in ADA

An iterative search problem:

• Needs ways of prioritizing search
• The common means: (scalar) objective function

• E.g., the number of passed tests/solved instances
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Downsides of conventional objective functions

• The right way to assess the objective quality of solutions,

• ... but not designed to drive the search.

• Predicated on the ”big valley” assumption: search moves tend to lead to
similarly-valued solutions

• Very minimalist.

Example: 6-bit multiplexer, 26 = 64 tests:

• Number of possible fitness values: 26 + 1 = 65 (≈ 6 bits)

• Number of possible ‘output behaviors’: 264 = 1.84× 1019 (64 bits)

• Number of possible programs: far greater.

Evaluation bottleneck
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Consequences

Consequences:

• Compensation: programs that pass different tests obtain same fitness.

• Passing all tests rewarded equally.
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Why stick to objective functions?

Objective reasons:

• Elegant and convenient

• Universal, ’plug&play’ interface to many search/optimization methods
• Sometimes the only source of information on the problem available

• Black-box optimization, IP restrictions, ...
• However, not in GP and ADA.

Subjective reasons:

• Routine and legacy

• Human urge to linearly order/rank solutions
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Doing away with the bottleneck

Behavioral Program Synthesis:

1. Obtain more information on solution’s characteristics.

2. Elicit alternative information on solution’s characteristics.

3. Design search operators capable of exploiting that information

Some ’avenues’:

1. Semantic GP

2. Exploitation of interaction matrices

3. Behavior-based characterization

7 / 21



Avenue 1: Semantic GP

Program p:
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(McPhee et al. 2007; Krawiec & Lichocki 2009; Moraglio, Krawiec, Johnson 2012)
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Avenue 2: GP as a test-based problem

• P: set of m programs,

• T : set of n tests (fitness cases)

• g(p, t): interaction function between p ∈ P and t ∈ T

• G : m × n matrix of interaction outcomes between P and T

• Test-based problems (Pollack, Bucci, de Jong, Popovici)

The idea: extract some alternative/additional information from G
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2.1: DOC: Discovery of Search Objectives by Clustering1

1Paweł Liskowski and Krzysztof Krawiec. “Discovery of Implicit Objectives by
Compression of Interaction Matrix in Test-Based Problems”. In: Parallel Problem Solving
from Nature – PPSN XIII. ed. by Thomas Bartz-Beielstein et al. Vol. 8672. Lecture Notes
in Computer Science. Heidelberg: Springer, 2014, pp. 611–620. isbn: 9783319107615.
doi: 10.1007/978-3-319-10762-2_60.
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2.2: Non-negative matrix factorization (NMF)

Given G , find W and H such that

G ≈WH s.t. W ,H ≥ 0,

or more precisely:

min
W ,H

f (W ,H) ≡ 1
2
||G −WH||2F s.t. W ,H ≥ 0,

• Effective, gradient-based algorithms exist

• Widely used in machine learning (recommender systems)
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NMF: Example 1

G =


t1 t2 t3 t4

p1 2 2 2 2
p2 1 1 2 2
p3 1 1 1 1



W × H =


f1 f2

p1 0.70 2.05
p2 0.73 0.66
p3 0.35 1.02

× ( t1 t2 t3 t4
f1 0.70 0.70 2.70 2.70
f2 0.74 0.74 0.06 0.06

)
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NMF: Example 2

G ′ =


t1 t2 t3 t4

p1 2 2 2 2
p2 1 1 2 2
p3 2 1 1 1



W ′ =


f1 f2

p1 0.96 1.51
p2 0.39 1.84
p3 0.86 0.38

, H ′ =

( t1 t2 t3 t4
f1 2.16 1.20 0.72 0.72
f2 0.05 0.35 0.90 0.90

)

W ′ × H ′ =


t1 t2 t3 t4

p1 2.17 1.70 2.07 2.07
p2 0.95 1.13 1.96 1.96
p3 1.88 1.17 0.97 0.97
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DOF: Discovery of Search Objectives by Factorization

The algorithm:

1. Calculate the interaction matrix G between S and T .

2. Factorize G into W and H

3. Define the derived objectives g ′
j based on W and H, e.g.,

fj(p) = wpj

4. Use g ′
j s for multiobjective evaluation/selection.
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SFIMX: Surrogate Fitness via Factorization of Interaction Matrix2

2Pawel Liskowski and Krzysztof Krawiec. “Surrogate Fitness via Factorization of
Interaction Matrix”. In: EuroGP 2016: Proceedings of the 19th European Conference on
Genetic Programming. Ed. by Malcolm I. Heywood et al. Vol. 9594. LNCS. Porto,
Portugal: Springer Verlag, 30 03–1 04 2016, pp. 65–79.
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Avenue 3: Behavioral Evaluation3
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3Krzysztof Krawiec, Jerry Swan, and Una-May O’Reilly. “Behavioral Program Synthesis:
Insights and Prospects”. In: Genetic Programming Theory and Practice XIII. ed. by
Rick Riolo, Jason H. Moore, and Mark Kotanchek. Genetic and Evolutionary Computation.
Ann Arbor, USA: Springer, 14-16 05 2016. doi: 10.1007/978-3-319-34223-8_10.
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Programs are behaviorally rich

and so do search and optimization algorithms.

• Interaction outcome = algorithm’s performance on a problem instance

• Execution trace = search trajectory

• ...

See: The Metaheuristics in the Large (MitL) initiative (Swan et al. 2014)
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Unified conceptual framework?4

Search driver = a measure designed to guide the search process.

Objective Search
function driver
global local

complete partial
absolute relative

context-free contextual
stationaly non-stationary

Multiple ’weak’ search drivers rather than one ’strong’ objective

4Krzysztof Krawiec. Behavioral Program Synthesis with Genetic Programming.
Vol. 618. Studies in Computational Intelligence. Springer, 2016.
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Open questions

• Are my search drivers consistent with the objective function?

• How much structure is in there?
• Is discovering that structure worth the effort?

• Claim: There is a lot of structure to be discovered.
• Real-world problems are structured by the math and physics of our

Universe.

• Real-world problems are more structured than we think.
• Maths is structuring evaluation, dependencies between variables, etc.
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Conclusions

Take-home messages:

• Objective functions = not necessarily designed to drive search process.

• Open the bottlenecks and blackboxes!

• Consider abandoning objective functions in favor search drivers.

Potential gains:

• Better performance

• Additional insight into problems

• Still quite universal

• Richer design space for other components of metaheuristics
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Thank You
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