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Motivation

� What are the limitations of GSGP
� What can we expect?
� What will never happen?

� Which metrics are better for GSGP operators?
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Preliminary definitions

Definition
Semantics s ∈ S is a tuple of n elements corresponding to inputs.
Hence:
� semantics is description of program behavior → s(p)
� S ≡ Dn, where D is the codomain (type) of output values produced by
the programs [in the considered programming language]

Assume:
� each program p ∈ P has semantics s(p)
� there may exist semantics in S without counterpart in program set P
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Preliminary definitions

Definition
Target semantics t ∈ S is semantics representing the desirable behavior a
program.

Definition
Programming task is a task with objective to create program p∗ : s(p∗) = t.

Definition
Fitness function f (p) = d(t,s(p)), where d(·, ·) is a metric.
Hence:
� f (·) measures divergence from target t
� f (p∗) = 0

5 / 19



Preliminary definitions

Definition
Target semantics t ∈ S is semantics representing the desirable behavior a
program.

Definition
Programming task is a task with objective to create program p∗ : s(p∗) = t.

Definition
Fitness function f (p) = d(t,s(p)), where d(·, ·) is a metric.
Hence:
� f (·) measures divergence from target t
� f (p∗) = 0

5 / 19



Preliminary definitions

Definition
Target semantics t ∈ S is semantics representing the desirable behavior a
program.

Definition
Programming task is a task with objective to create program p∗ : s(p∗) = t.

Definition
Fitness function f (p) = d(t,s(p)), where d(·, ·) is a metric.
Hence:
� f (·) measures divergence from target t
� f (p∗) = 0

5 / 19



Preliminary definitions

Definition
Target semantics t ∈ S is semantics representing the desirable behavior a
program.

Definition
Programming task is a task with objective to create program p∗ : s(p∗) = t.

Definition
Fitness function f (p) = d(t,s(p)), where d(·, ·) is a metric.
Hence:
� f (·) measures divergence from target t
� f (p∗) = 0

5 / 19



Geometric Semantic Genetic Programming

[A.Moraglio, K. Krawiec, C. Johnson, 2012]

Definition
Geometric crossover is binary operator that produces all offspring in the
d-metric segment connecting semantics of its parents

s(p1)

s(p2)
s(p')

geometric offspring

L2 segment between
parents' semantics

s(p1)

s(p2)
s(p')

geometric offspring

L1 segment between
parents' semantics

s(p1)
s(p2)     s(p')

geometric offspring

L∞ segment between
parents' semantics
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Implications

� Fitness landscape is the graph of fitness function when plotted for the
solutions arranged according to the neighborhood structure induced by a
search operator.

� Key observation: In GSGP, that spatial arrangement is consistent with
the adopted metric.

Consequences:
� Exactly one optimum – at the target
� For any program p, elevation on the fitness landscape at s(p) is the same
as its distance to the target semantics in S

� f (p) = f (t,s(p))
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Shape of fitness landscape

Fitness landscape is d-metric cone with the target in apex
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Weak guarantee of progress

Definition
An operator has weak guarantee of progress (WGP) if all the produced
offspring is not worse than the worst of its parents
Hence:
�

�

� There is no guarantee that the operator having WGP produce a strictly
better solution
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Incomplete guarantee of progress

Definition
An operator has incomplete guarantee of progress (IGP) if for every pair of
parents, there exists a produced offspring that is not worse than the best of
its parents

10 / 19



Strong guarantee of progress

Definition
An operator has strong guarantee of progress (SGP) if all the produced
offspring is not worse than the best of its parents
Hence:
� The worst fitness in the next population must be not worse than the best
fitness of individuals chosen for recombination in current population

� Operator having SGP has also IGP and WGP
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Properties of GSGP crossover

Metric WGP IGP SGP
L11 × X ×
L2 X X ×
L∞ × X ×

1Also applies to Hamming metric
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‘Visual’ proofs for WGP

Consider two parents p1,p2 : s(p1) 6= s(p2) and the segment connecting their
semantics. There are two edge cases:
Metric Case 1: f (p1) = f (p2) Case 2: ∇f ‖ s(p1)s(p2) Conclusion

L1 Part of segment has fitness > f (p1) Entire segment has fitness < f (p2) No WGP
L2 Entire segment has fitness ≤ f (p1) Entire segment has fitness ≤ f (p2) WGP
L∞ Part of segment has fitness >f (p1) Entire segment has fitness ≤ f (p2) No WGP

t
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‘Visual’ proofs for IGP

Consider two parents p1,p2 : s(p1) 6= s(p2) and the segment connecting their
semantics. There are two edge cases:
Metric Case 1: f (p1) = f (p2) Case 2: ∇f ‖ s(p1)s(p2) Concl.

L1 Part of segment has fitness ≤ f (p1) Exactly one point has fitness = f (p1) IGP
L2 Entire segment has fitness ≤ f (p1) Exactly one point has fitness = f (p1) IGP
L∞ Part of segment has fitness ≤ f (p1) Exactly one point has fitness = f (p1) IGP
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‘Visual’ proofs for SGP

Consider two parents p1,p2 : s(p1) 6= s(p2) and the segment connecting their
semantics. There are two edge cases:
Metric Case 1: f (p1) = f (p2) Case 2: ∇f ‖ s(p1)s(p2) Conclusion

L1 Part of segment has fitness > f (p1) Entire segment has fitness ≥ f (p1) No SGP
L2 Entire segment has fitness ≤ f (p1) Entire segment has fitness ≥ f (p1) No SGP
L∞ Part of segment has fitness > f (p1) Entire segment has fitness ≥ f (p1) No SGP
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How to design a crossover with SGP?

� Always choose the best offspring candidate in the segment between
parents

� Or...
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How to design a crossover with SGP?

� Always choose the best offspring candidate in the segment between
parents

� Go outside the segment!
� Extrapolate
� See [?] for example
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One more thing: The true shape of fitness landscape

� The presented landscapes stretch across semantic space S
� However the space being searched is program space!
� By excluding from S infeasible semantics in the given programming
language the fitness landscape may feature holes
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Conclusions

� Defined types of guarantees of progress for GSGP
� Guarantees verified for GSGP crossover
� Constructive observations for designing new search operators
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Analytical proof for L2, WGP and crossover
Let p1,p2 be parents, p′ be their offspring, l be dimensionality of search space, t=(ti )i=1..l , s(p1)=(s1i )i=1..l ,
s(p2)=(s2i )i=1..l , s(p′)=αs(p1)+(1−α)s(p2)=(αs1i +(1−α)s2i )i=1..l , i.e., the semantics of the offspring is linear
combination of semantics of its parents. Hence the fitness of offspring is

f (p′)=d(t,s(p′))=

√∑
i=1..l

(αs1i +(1−α)s2i−ti )2

Then

∂f (p′)
∂α

=

∑l

i=1
(αs1i +(1−α)s2i−ti )(s1i−s2i )√∑l

i=1
(αs1i +(1−α)s2i−ti )2

∂2f (p′)
∂α2

=

∑l

i=1
(s1i−s2i )2√∑l

i=1
(αs1i +(1−α)s2i−ti )2

−
(
∑l

i=1
(αs1i +(1−α)s2i−ti )(s1i−s2i ))2

(
∑l

i=1
(αs1i +(1−α)s2i−ti )2)3/2

Let

MAX≡
{
∂f (p′)
∂α

=0
∂2 f (p′)
∂α2 <0

MIN≡
{
∂f (p′)
∂α

=0
∂2 f (p′)
∂α2 >0

Since MAX has no solution, f (p′) has no maximum and since MIN has exactly one solution
α∗=−(

∑l

i=1
s1i s2i−s22i−(s1i−s2i )ti )/

∑l

i=1
(s1i−s2i )2, there is one minimum of f (p′) at α∗. Thus the line through

points of parents’ semantics is split by point s∗=α∗s(p1)+(1−α∗)s(p2) into two monotonously increasing parts w.r.t.
f (p′). By definition of geometric crossover α∈[0,1], since it guarantees that s(p) is in L2 segment s(p1)s(p2). Two cases
occur: (i) 0≤{α,α∗}≤1 or (ii) α∗<0≤α∨α≤1<α∗. In the former one s∗ lies in the segment s(p1)s(p2), thus due to
monotonicity there is an induced order between parents’ and offspring’s fitness: f (s∗)≤f (p)≤f (p1) or
f (s∗)≤f (p′)≤f (p2) depending on which ray s(p′) belongs to, i.e., s(p′)∈

−−−−→
s∗s(p1) or s(p′)∈

−−−−→
s∗s(p2), respectively. For (ii)

the order is f (s∗)≤f (p1)≤f (p′)≤f (p2) or f (p1)≥f (p′)≥f (p2)≥f (s∗) depending on the relation between parents.



Geometric Semantic Mutation

Definition
Geometric ε-mutation is unary operator that produces all offspring in the
d-metric ball of ε radius centered in the parent semantics.

s(p)
s(p')

ε
geometric offspring

L2 ball with ε radius
around parent semantics

s(p)
s(p')ε

geometric offspring

L1 ball with ε radius
around parent semantics

s(p)
s(p')

ε geometric offspring

L∞ ball with ε radius
around parent semantics
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‘Visual’ proofs for WGP and SGP and mutation
Consider a parent p and a ball centered in its semantics.
Metric Conclusion

L1 Part of ball has fitness > f (p) No WGP, no SGP
L2 Part of ball has fitness > f (p) No WGP, no SGP
L∞ Part of ball has fitness > f (p) No WGP, no SGP

t

s(p)

L2

t

s(p)

L1

ts(p)

L∞
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‘Visual’ proofs for IGP and mutation
Consider a parent p and a ball centered in its semantics.
Metric Conclusion

L1 Part of ball has fitness ≤ f (p) IGP
L2 Part of ball has fitness ≤ f (p) IGP
L∞ Part of ball has fitness ≤ f (p) IGP

t

s(p)

L2

t

s(p)

L1

ts(p)

L∞

19 / 19



How to create mutation having SGP?

� Always choose the best offspring candidate in the ball centered in parent

� Or...
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How to create mutation having SGP?

� Always choose the best offspring candidate in the ball centered in parent

� Create offspring in the ball centered in target with radius equal to parent
fitness f (p)
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