Guarantees of Progress for Geometric Semantic Genetic Programming

Tomasz P. Pawlak tpawlak@cs.put.poznan.pl Krzysztof Krawiec krawiec@cs.put.poznan.pl

Institute of Computing Science Poznan University of Technology

Parallel Problem Solving from Nature XIII, 2014

Outline

Introduction

Properties of fitness landscape

Guarantees of progress for GSGP

Conclusions

Motivation

- What are the limitations of GSGP
 - What can we expect?
 - What will never happen?
- Which metrics are better for GSGP operators?

Definition

Semantics $s \in S$ is a tuple of *n* elements corresponding to inputs.

Hence:

- semantics is description of program behavior $\rightarrow s(p)$
- $S \equiv D^n$, where D is the codomain (type) of output values produced by the programs [in the considered programming language]

Assume:

- each program $p \in P$ has semantics s(p)
- there may exist semantics in S without counterpart in program set P

Definition

Semantics $s \in S$ is a tuple of *n* elements corresponding to inputs. Hence:

- semantics is description of program behavior ightarrow s(p)
- S ≡ Dⁿ, where D is the codomain (type) of output values produced by the programs [in the considered programming language]

Assume:

- each program $p \in P$ has semantics s(p)
- there may exist semantics in S without counterpart in program set P

Definition

Semantics $s \in S$ is a tuple of *n* elements corresponding to inputs.

Hence:

- semantics is description of program behavior ightarrow s(p)
- S ≡ Dⁿ, where D is the codomain (type) of output values produced by the programs [in the considered programming language]

Assume:

- each program $p \in P$ has semantics s(p)
- there may exist semantics in S without counterpart in program set P

Definition

Target semantics $t \in S$ is semantics representing the desirable behavior a program.

Definition

Programming task is a task with objective to create program $p^* : s(p^*) = t$.

Definition

Fitness function f(p) = d(t, s(p)), where $d(\cdot, \cdot)$ is a metric.

Hence:

• $f(\cdot)$ measures divergence from target t

 $\bullet f(p^*) = 0$

Definition

Target semantics $t \in S$ is semantics representing the desirable behavior a program.

Definition

Programming task is a task with objective to create program $p^*: s(p^*) = t$.

Definition

Fitness function
$$f(p) = d(t, s(p))$$
, where $d(\cdot, \cdot)$ is a metric.

Hence:

- $f(\cdot)$ measures divergence from target t
- $\bullet f(p^*) = 0$

Definition

Target semantics $t \in S$ is semantics representing the desirable behavior a program.

Definition

Programming task is a task with objective to create program $p^* : s(p^*) = t$.

Definition

Fitness function
$$f(p) = d(t, s(p))$$
, where $d(\cdot, \cdot)$ is a metric.

Hence:

•
$$f(\cdot)$$
 measures divergence from target t

 $\bullet f(p^*) = 0$

Definition

Target semantics $t \in S$ is semantics representing the desirable behavior a program.

Definition

Programming task is a task with objective to create program $p^*: s(p^*) = t$.

Definition

Fitness function f(p) = d(t, s(p)), where $d(\cdot, \cdot)$ is a metric.

Hence:

• $f(\cdot)$ measures divergence from target t

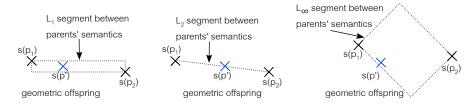
•
$$f(p^*) = 0$$

Geometric Semantic Genetic Programming

[A. Moraglio, K. Krawiec, C. Johnson, 2012]

Definition

Geometric crossover is binary operator that produces all offspring in the d-metric segment connecting semantics of its parents



Implications

- Fitness landscape is the graph of fitness function when plotted for the solutions arranged according to the neighborhood structure induced by a search operator.
- Key observation: In GSGP, that spatial arrangement is consistent with the adopted metric.

Consequences:

- Exactly one optimum at the target
- For any program p, elevation on the fitness landscape at s(p) is the same as its distance to the target semantics in S

Implications

- Fitness landscape is the graph of fitness function when plotted for the solutions arranged according to the neighborhood structure induced by a search operator.
- Key observation: In GSGP, that spatial arrangement is consistent with the adopted metric.

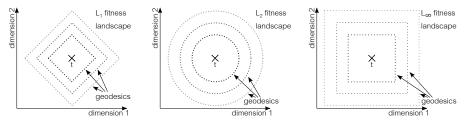
Consequences:

- Exactly one optimum at the target
- For any program *p*, elevation on the fitness landscape at *s*(*p*) is the same as its distance to the target semantics in *S*

f(p) = f(t, s(p))

Shape of fitness landscape

Fitness landscape is d-metric cone with the target in apex



Weak guarantee of progress

Definition

An operator has weak guarantee of progress (WGP) if all the produced offspring is not worse than the worst of its parents

Hence:

There is no guarantee that the operator having WGP produce a *strictly better* solution

Weak guarantee of progress

Definition

An operator has weak guarantee of progress (WGP) if all the produced offspring is not worse than the worst of its parents

Hence:

• There is no guarantee that the operator having WGP produce a *strictly better* solution

Incomplete guarantee of progress

Definition

An operator has *incomplete guarantee of progress* (IGP) if for every pair of parents, there exists a produced offspring that is not worse than the best of its parents

Strong guarantee of progress

Definition

An operator has strong guarantee of progress (SGP) if all the produced offspring is not worse than the best of its parents

Hence:

- The worst fitness in the next population must be not worse than the best fitness of individuals chosen for recombination in current population
- Operator having SGP has also IGP and WGP

Strong guarantee of progress

Definition

An operator has *strong guarantee of progress (SGP)* if all the produced offspring is not worse than the best of its parents

Hence:

- The worst fitness in the next population must be not worse than the best fitness of individuals chosen for recombination in current population
- Operator having SGP has also IGP and WGP

Properties of GSGP crossover

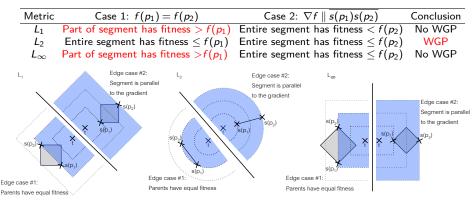
Metric	WGP	IGP	SGP
L_{1}^{1}	×	\checkmark	×
L_2	\checkmark	\checkmark	×
L_{∞}	×	\checkmark	×

¹Also applies to Hamming metric

12 / 19

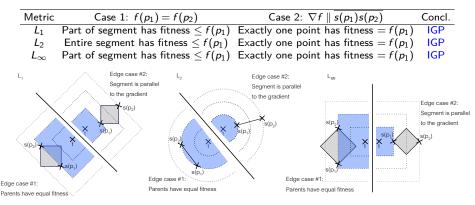
'Visual' proofs for WGP

Consider two parents $p_1, p_2 : s(p_1) \neq s(p_2)$ and the segment connecting their semantics. There are two edge cases:



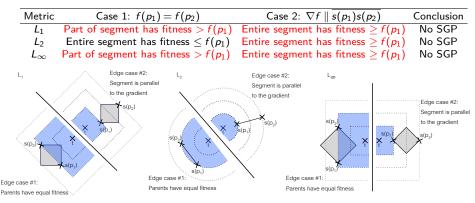
'Visual' proofs for IGP

Consider two parents $p_1, p_2 : s(p_1) \neq s(p_2)$ and the segment connecting their semantics. There are two edge cases:



'Visual' proofs for SGP

Consider two parents $p_1, p_2 : s(p_1) \neq s(p_2)$ and the segment connecting their semantics. There are two edge cases:



How to design a crossover with SGP?

- Always choose the best offspring candidate in the segment between parents
- Or...

How to design a crossover with SGP?

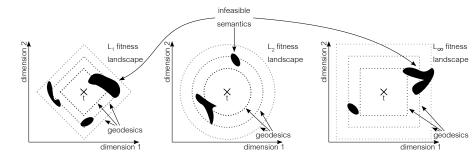
- Always choose the best offspring candidate in the segment between parents
- Go outside the segment!
- Extrapolate
- See [?] for example

One more thing: The true shape of fitness landscape

- The presented landscapes stretch across semantic space S
- However the space being searched is program space!
- By excluding from S infeasible semantics in the given programming language the fitness landscape may feature holes

One more thing: The true shape of fitness landscape

- The presented landscapes stretch across semantic space S
- However the space being searched is program space!
- By excluding from S infeasible semantics in the given programming language the fitness landscape may feature holes



Conclusions

- Defined types of guarantees of progress for GSGP
- Guarantees verified for GSGP crossover
- Constructive observations for designing new search operators

Bibliography

Analytical proof for L_2 , WGP and crossover Let p_1, p_2 be parents, p' be their offspring, / be dimensionality of search space, $t = (t_i)_{i=1...i}$, $s(p_1) = (s_{1i})_{i=1...i}$

Let p_1, p_2 be parents, p' be their offspring, i be dimensionality of search space, $t=(t_i)_{i=1...i}$, $s(p_1)=(s_1)_{i=1...i}$, $s(p_2)=(s_2)_{i=1...i}$, $s(p')=\alpha s(p_1)+(1-\alpha)s(p_2)=(\alpha s_{1i}+(1-\alpha)s_{2i})_{i=1...i}$, i.e., the semantics of the offspring is linear combination of semantics of its parents. Hence the fitness of offspring is

$$f(p')=d(t,s(p'))=\sqrt{\sum_{i=1..l}(\alpha s_{1l}+(1-\alpha)s_{2l}-t_i)^2}$$

Then

$$\frac{\partial f(p')}{\partial \alpha} = \frac{\sum_{i=1}^{l} (\alpha \mathbf{s}_{1i} + (1-\alpha)\mathbf{s}_{2i} - t_{i})(\mathbf{s}_{1i} - \mathbf{s}_{2i})}{\sqrt{\sum_{i=1}^{l} (\alpha \mathbf{s}_{1i} + (1-\alpha)\mathbf{s}_{2i} - t_{i})^{2}}}$$
$$\frac{\partial^{2} f(p')}{\partial \alpha^{2}} = \frac{\sum_{i=1}^{l} (\mathbf{s}_{1i} - \mathbf{s}_{2i})^{2}}{\sqrt{\sum_{i=1}^{l} (\alpha \mathbf{s}_{1i} + (1-\alpha)\mathbf{s}_{2i} - t_{i})^{2}}} - \frac{(\sum_{i=1}^{l} (\alpha \mathbf{s}_{1i} + (1-\alpha)\mathbf{s}_{2i} - t_{i})(\mathbf{s}_{1i} - \mathbf{s}_{2i}))^{2}}{(\sum_{i=1}^{l} (\alpha \mathbf{s}_{1i} + (1-\alpha)\mathbf{s}_{2i} - t_{i})^{2})^{3/2}}$$

Let

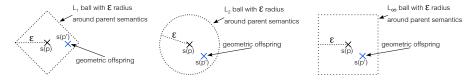
$$MAX \equiv \begin{cases} \frac{\partial f(p')}{\partial \alpha} = 0 \\ \frac{\partial^2 f(p')}{\partial \alpha^2} < 0 \end{cases} \qquad MIN \equiv \begin{cases} \frac{\partial f(p')}{\partial \alpha} = 0 \\ \frac{\partial^2 f(p')}{\partial \alpha^2} > 0 \end{cases}$$

Since MAX has no solution, f(p') has no maximum and since MIN has exactly one solution $\alpha^* = -(\sum_{i=1}^{J} s_{1i}s_{2i} - s_{2i}^2 - (s_{1i} - s_{2i})t_i) / \sum_{i=1}^{J} (s_{1i} - s_{2i})^2$, there is one minimum of f(p') at α^* . Thus the line through points of parents' semantics is split by point $s^* = \alpha^* s(p_1) + (1 - \alpha^*)s(p_2)$ into two monotonously increasing parts w.r.t. f(p'). By definition of geometric crossover $\alpha \in [0,1]$, since it guarantees that s(p) is in L_2 segment $\overline{s(p_1)s(p_2)}$. Two cases occur: (i) $0 \le \{\alpha, \alpha^*\} \le 1$ or (ii) $\alpha^* < 0 \le \alpha \lor \alpha \le 1 < \alpha^*$. In the former one s^* lies in the segment $\overline{s(p_1)s(p_2)}$, thus due to monotonicity there is an induced order between parents' and offspring's fitness: $f(s^*) \le f(p) \le f(p_1)$ or $f(s^*) \le f(p') \le f(p_2)$ depending on which ray s(p') belongs to, i.e., $s(p') \le s^* s(p_1)$ or $s(p') \le s^* s(p_2)$, respectively. For (ii) the order is $f(s^*) \le f(p_1) \le f(p') \le f(p_2)$ or $f(p_1) \ge f(p') > f(p_2) > f(s^*)$ depending on the relation between parents.

Geometric Semantic Mutation

Definition

Geometric ϵ -mutation is unary operator that produces all offspring in the *d*-metric ball of ϵ radius centered in the parent semantics.



'Visual' proofs for $\ensuremath{\mathsf{WGP}}$ and $\ensuremath{\mathsf{SGP}}$ and mutation

Consider a parent p and a ball centered in its semantics.

Metric		Conclusion	_
L_1	Part of ball has fitness $> t$	(p) No WGP, no SGP	_
L_2	Part of ball has fitness $> t$	(p) No WGP, no SGP	
L_∞	Part of ball has fitness $> t$	(p) No WGP, no SGP	
L,	X		L _∞

'Visual' proofs for IGP and mutation

Consider a parent p and a ball centered in its semantics.

Metric		Conclusion	
L_1	Part of ball has fitness $\leq f(p)$	IGP	
L_2	Part of ball has fitness $\leq f(p)$	IGP	
L_{∞}	Part of ball has fitness $\leq f(p)$	IGP	
L,	X s(p)	X	L _{co}

How to create mutation having SGP?

- Always choose the best offspring candidate in the ball centered in parent
- Or...

How to create mutation having SGP?

- Always choose the best offspring candidate in the ball centered in parent
- Create offspring in the ball centered in target with radius equal to parent fitness f(p)