
Example: three intermediate execution states, five examples

    A program examined 
       at three locations:

H(Y|Sk) 0 0 0.95
H(Sk|Y) 0.95 0.55 0.55
H(Y|Sk)+H(Sk|Y) 0.95 0.55 1.50

Behavioral evaluation 
Semantic GP taken to the next level: evaluate the 
internal behavior of programs, not only the outputs.

(PANGEA, Krawiec, Swan, O'Reilly, GECCO'13, GECCO'14, EuroGP'14)
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Key insights
• Program error (fitness) is the objective quality 

measure of a program, but not necessarily the 
best search driver (meant as a means to guide 
the search)

• Better search drivers can be constructed by 
analyzing the internal behavior of programs  

Main result
• A search driver based on information content of 

program behavior that improves performance of 
genetic programming  

Idea: Use information-based measures to examine program behavior

Given: 
• Y - random variable associated with the desired program output
• Sk - random variable associated with the kth intermediate execution state

Define: 
• H(Y|Sk) - amount of information that Y  adds to Sk

• H(Sk|Y) - amount of information that  Sk adds to Y

Note: 
• H(Y|Sk) > 0  =>  Sk alone cannot predict Y
• H(Sk|Y) > 0  =>  Sk partitions the examples within Y's equivalence classes 

We want to penalise both, hence the proposed measure: 

Hypotheses
• Even a poorly performing program may feature  

hidden relationships between its internal 
behavior and desired output

• Such relationships can be captured using 
measures based on information theory

• Such measures can be better search drivers 
than conventional fitness 
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Experiment 
Configurations:
• FxI - scalar aggregation of fitness F and I
• FI - multiobjective approach (NSGA-II) 
• F - standard GP, F only (baseline)

Three domains and 35 benchmarks:

Conclusions
• Behavioral evaluation:

• leads to significant performance improvements
• promotes some behaviors without explicitly 

specifying them
• has a moderate computational overhead

• A step towards more information-rich evaluation 
and 'better-informed' program synthesis

Reasons (?) for moderate performance on Boolean problems: 
• no negation in instruction set (leads to hard-to-escape-from 

local optima), 
• relatively large number of inputs, 
• low discriminative power of entropy on binary variables. 
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Results 

Budget = number of evaluations:

FI FxI F Friedman p
All problems 1.60 2.21 2.19 < 0.01
Categorical 1.20 2.05 2.75 < 0.01
Regression 1.82 2.00 2.18 < 0.10
Boolean 1.62 2.50 1.88 < 0.01

Budget = time:
FI FxI F Friedman p

All problems 1.77 2.17 2.06 0.08
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The execution state most consistent with the desired output

This study: replace ML with information theory

Execution on five 
examples 

produces five 
execution traces


