
Example: three intermediate execution states, five examples

 A program examined
 at three locations:

H(Y|Sk) 0 0 0.95
H(Sk|Y) 0.95 0.55 0.55
H(Y|Sk)+H(Sk|Y) 0.95 0.55 1.50

Behavioral evaluation
Semantic GP taken to the next level: evaluate the
internal behavior of programs, not only the outputs.

(PANGEA, Krawiec, Swan, O'Reilly, GECCO'13, GECCO'14, EuroGP'14)

Program
error

Program traces
(intermediate

execution states)

Improving Genetic Programming with Behavioral
Consistency Measure

Krzysztof Krawiec1 and Armando Solar-Lezama2
 1Institute of Computing Science, Poznan University of Technology, Poznań, Poland

 2Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA

Key insights
• Program error (fitness) is the objective quality

measure of a program, but not necessarily the
best search driver (meant as a means to guide
the search)

• Better search drivers can be constructed by
analyzing the internal behavior of programs

Main result
• A search driver based on information content of

program behavior that improves performance of
genetic programming

Idea: Use information-based measures to examine program behavior

Given:
• Y - random variable associated with the desired program output
• Sk - random variable associated with the kth intermediate execution state

Define:
• H(Y|Sk) - amount of information that Y adds to Sk

• H(Sk|Y) - amount of information that Sk adds to Y

Note:
• H(Y|Sk) > 0 => Sk alone cannot predict Y
• H(Sk|Y) > 0 => Sk partitions the examples within Y's equivalence classes

We want to penalise both, hence the proposed measure:

Hypotheses
• Even a poorly performing program may feature

hidden relationships between its internal
behavior and desired output

• Such relationships can be captured using
measures based on information theory

• Such measures can be better search drivers
than conventional fitness

Acknowledgments
K. Krawiec acknowledges support from the Polish-U.S. Fulbright Commission and
NCN grant no. DEC- 2011/01/B/ST6/07318, and A. Solar-Lezama from
grant no. NSF-CCF-1161775.

Training set

f

e

...

...

...

...

...

-

-

-

-

-

Program
input

Desired
output

Program error

x3

x1

x2

x4

x5

y1

y2

y3

y4

y5

Actual
program
output

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

s1(x1) s2(x1)

s1(x2)

s1(x3)

s1(x4)

s1(x5)

s2(x2)

s2(x3)

s2(x4)

s2(x5)

ML classifier

c

Classifier error

Classifier complexity
(size)

Conventional GP}
PANGEA}

a

Desired output

Related
K. Krawiec, J. Swan. Pattern-guided genetic programming, GECCO’13.
K. Krawiec, U.-M. O'Reilly, Behavioral Programming: A Broader and More Detailed Take
 on Semantic GP, GECCO'14.
K. Krawiec, U.-M. O'Reilly, Behavioral Search Drivers for Genetic Programing, EuroGP'14.

Experiment
Configurations:
• FxI - scalar aggregation of fitness F and I
• FI - multiobjective approach (NSGA-II)
• F - standard GP, F only (baseline)

Three domains and 35 benchmarks:

Conclusions
• Behavioral evaluation:

• leads to significant performance improvements
• promotes some behaviors without explicitly

specifying them
• has a moderate computational overhead

• A step towards more information-rich evaluation
and 'better-informed' program synthesis

Reasons (?) for moderate performance on Boolean problems:
• no negation in instruction set (leads to hard-to-escape-from

local optima),
• relatively large number of inputs,
• low discriminative power of entropy on binary variables.

b

c

d

e

f

g

g

h

i

j

k

k

j

j

1

2

2

2

3

S1 S2 S3 Y Merging
consistent with Y

Intermediate execution states

Merging inconsistent with Y

Equivalence
classes

imposed by Y

Results

Budget = number of evaluations:

FI FxI F Friedman p
All problems 1.60 2.21 2.19 < 0.01
Categorical 1.20 2.05 2.75 < 0.01
Regression 1.82 2.00 2.18 < 0.10
Boolean 1.62 2.50 1.88 < 0.01

Budget = time:
FI FxI F Friedman p

All problems 1.77 2.17 2.06 0.08

S3

S2S1

...

The execution state most consistent with the desired output

This study: replace ML with information theory

Execution on five
examples

produces five
execution traces

