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Motivations 

 Crossover is supposed to produce offspring 

that lays in-between parents 

 Average in common sense 

 

 Canonic tree-swapping crossover 

 Is 
𝑥

𝑥× 𝑥−2
+ 𝑥2 or 𝑥 − 𝑥2 in-between 

 
x

x2 + 𝑥2 and 𝑥 − 𝑥 𝑥 − 2 ? 
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Motivations 

 Canonic Genetic Programming 

 Purely syntactic manipulations of program code 

 Is offspring related to parents? 

 

 How to measure similarity of programs? 

 How to tell that an offspring lays between the parents? 
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What does `between` mean 

for programs? 

 Point may be between some other points only in a 

metric space 

 We need a metric 𝑑: 𝑃 × 𝑃 → [0, +∞) defined on 

program space 𝑃: 

 𝑑 𝑎, 𝑏 = 0 ⟺ 𝑎 = 𝑏, 

 𝑑 𝑎, 𝑏 = 𝑑 𝑏, 𝑎 , 

 𝑑 𝑎, 𝑏 ≤ 𝑑 𝑎, 𝑐 + 𝑑(𝑏, 𝑐). 

 But… how to define a metric on pair of programs? 
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Semantics 

 We induce programs from samples 

 The samples are sets of numbers (in symbolic regression)  

 Set of function arguments 

 The target output value 

 

 Let us use similar representation as semantics 

 Set of function arguments 

 The calculated output value 

 Call it sampled semantics 

 

5 



Semantics: example 

 Consider functions 𝑓 𝑥 =
𝑥

𝑥2 + 𝑥2 and 𝑔 𝑥 =
𝑥

𝑥−
𝑥
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+ 𝑥2 

 Sample them equidistantly in range [−1,1] using 10 samples 

 

 

 

 

 

 Again: How (dis)similar is 𝑓(𝑥) to 𝑔(𝑥)? Just chose a metric: 

 Manhattan: 32,93 

 Euclidean: 14,48 

 Chebyshev: 10,33 
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x f(x) g(x) 

-1,00 0,00 2,33 

-0,78 -0,68 1,94 

-0,56 -1,49 1,64 

-0,33 -2,89 1,44 

-0,11 -8,99 1,35 

0,11 9,01 1,35 

0,33 3,11 1,44 

0,56 2,11 1,64 

0,78 1,89 1,94 

1,00 2,00 2,33 



” 

“ A recombination operator is 

a geometric crossover under 
the metric d if all offspring 

are in the d-metric segment 

between its parents. 
ALBERTO MORAGLIO, ABSTRACT CONVEX EVOLUTIONARY SEARCH, FOGA’11 
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Why do we need the 

geometric crossover? 
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 Consider: 

 the Euclidean distance as a 

fitness/error function 

 fitness landscape spanned 

over k-dimensional space 

of program semantics 

 It must be a cone 

 The apex is the global 

optimum 

 Programs lie on the edges 

of cone 

 



Why do we need the 

geometric crossover? 
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 It is guaranteed that: 

 An intermediate semantics 

between any pair of 

semantics must be not worse 

than the worst of the pair 

 



Approximately Geometric 

Semantic Crossover (AGX) 

 Given two parents: 

 Calculate their semantics 

 Determine a midpoint between them 

 For each parent separately: 

 Randomly choose a crossover point 

 Backpropagate midpoint to the crossover point → desired semantics 

 Replace crossover point by a subprogram having semantics that 

minimizes error to the desired semantics 
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Semantic backpropagation 

 The objective 

 Propagate the semantic target backwards through the program 

tree, so that it defines a subgoal for a subproblem 

 Input 

 The program 𝑝 

 The target semantics 𝑠𝐷 

 The chosen node 𝑝′ 

 Output 

 Desired semantics 𝑠𝐷(𝑝′) for 𝑝′ 
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Semantic backpropagation 

 Starting from the root node, 

for each node 𝑝 on the path 

to 𝑝′, do recursively: 

 Obtain an inverse instruction 

𝑝−1 to 𝑝 w.r.t. child node 𝑝𝑐, 

which is next on the path 

 Execute 𝑝−1 to compute 

desired semantics 𝑠𝐷(𝑝𝑐) 

 Stop if recursion reaches the 

chosen node (𝑝𝑐 ≡ 𝑝′) 
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Semantic backpropagation: 

possible cases 

 Instruction is invertible 

 𝑝: 𝑦 ← 𝑥 + 𝑐  ⟹ 𝑝−1: 𝑥 ← 𝑐 − 𝑦 

 Instruction is ambiguously invertible 

 𝑝: 𝑧 ← 𝑥2         ⟹ 𝑝−1: 𝑥 ∈ − 𝑧, 𝑧  

 𝑝: sin 𝑥          ⟹ 𝑝−1: 𝑥 ← arcsin 𝑧 + 2𝑘𝜋, 𝑘 ∈ ℤ 

 Instruction is non-invertible 

 𝑝: 𝑧 ← 𝑒𝑥         ⟹ 𝑝−1: ∀𝑧∈ℝ−  𝑥 ← 𝑋 (NaN, inconsistent) 

 Argument of instruction is ineffective 

 𝑝: 𝑧 ← 0 × 𝑥   ⟹ 𝑝−1: 𝑥 ←? (don’t care) 
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Library of procedures 

 A static library 

 All possible programs built upon given set of instructions 

 Filtered for semantic uniqueness 

 

 In experiment: 

 Instructions {+, −,×,/, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑥} 

 Max tree height h ∈ {3,4} 

 Total number of programs: 212, 108520 
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The experiment 

 Competition: 

 GPX: standard tree-swapping crossover 

 LGX: locally geometric semantic crossover* 
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Problem Definition (formula) Training set Test set 

Nonic 𝑥9 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 E[-1, 1, 20] U[-1, 1, 20] 

R1 𝑥 + 1 3/(𝑥2 − 𝑥 + 1) E[-1, 1, 20] U[-1, 1, 20] 

R2 (𝑥5 − 3𝑥3 + 1)/(𝑥2 + 1) E[-1, 1, 20] U[-1, 1, 20] 

Nguyen-7 log 𝑥 + 1 + 𝑥2 + 1  E[0, 2, 20] U[0, 2, 20] 

Keijzer-1 0.3𝑥sin 2𝜋𝑥  E[-1, 1, 20] U[-1, 1, 20] 

Keijzer-4 𝑥3𝑒−𝑥 cos 𝑥 sin (𝑥)(sin2 𝑥 cos 𝑥 − 1) E[0, 10, 20] U[0, 10, 20] 

* K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and 
homology in recombination operators. Genetic Programming and Evolvable Machines, 14(1):31-63, 2013. 

E[a,b,n] – n points chosen equidistantly from range [a,b] 

U[a,b,n] – n points chosen randomly with uniform distribution from range [a,b] 
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Test-set performance 

Problem AGX3 AGX4 GPX LGX3 LGX4 

Nonic 0.359 𝟎. 𝟎𝟗𝟑 0.130 0.201 0.191 

R1 0.224 𝟎. 𝟎𝟓𝟎 0.261 0.167 0.103 

R2 107 𝟎. 𝟎𝟐𝟖 0.316 0.621 0.042 

Nguyen-7 0.051 0.005 0.044 0.018 𝟎. 𝟎𝟎𝟒 

Keijzer-1 0.190 𝟎. 𝟎𝟑𝟗 0.134 0.091 0.041 

Kejzer-4 3.113 1013 𝟎. 𝟒𝟗𝟐 2.008 2.854 
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Average error committed by best-of-run individual on test set. 



Geometry of operators 

Depth of 

crossover 
Fraction of geometric offspring 

AGX LGX GPX 
1 .0155 .1676 .0035 

2 .0151 .0100 .0031 
3 .0136 .0031 .0018 
4 .0105 .0016 .0020 
5 .0055 .0014 .0011 
6 .0028 .0009 .0007 
7 .0017 .0006 .0005 

8 .0012 .0004 .0003 
9 .0010 .0007 .0003 

10 .0006 .0005 .0003 
11 .0005 .0002 .0003 
12 .0004 .0001 .0003 
13 .0003 .0002 .0002 

14 .0002 .0000 .0005 
15 .0000 .0000 .0002 
16 .0000 .0000 .0005 
17 .0000 .0000 .0000 

Overall .0057 .0035 .0008 
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Future work 

 Test other libraries 

 Add support for constants 

 Compare with Random Desired Operator* 
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* K. Krawiec, B. Wieloch. Running Programs Backwards, GECCO 2013. 



Thank you 

Questions? 
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