
Approximating Geometric Crossover

by Semantic Backpropagation
KRZYSZTOF KRAWIEC, TOMASZ PAWLAK

INSTITUTE OF COMPUTING SCIENCE, POZNAN UNIVERSITY OF TECHNOLOGY, POLAND

9.07.2013

Motivations

 Crossover is supposed to produce offspring

that lays in-between parents

 Average in common sense

 Canonic tree-swapping crossover

 Is
𝑥

𝑥× 𝑥−2
+ 𝑥2 or 𝑥 − 𝑥2 in-between

x

x2 + 𝑥2 and 𝑥 − 𝑥 𝑥 − 2 ?

2

Motivations

 Canonic Genetic Programming

 Purely syntactic manipulations of program code

 Is offspring related to parents?

 How to measure similarity of programs?

 How to tell that an offspring lays between the parents?

3

What does `between` mean

for programs?

 Point may be between some other points only in a

metric space

 We need a metric 𝑑: 𝑃 × 𝑃 → [0, +∞) defined on

program space 𝑃:

 𝑑 𝑎, 𝑏 = 0 ⟺ 𝑎 = 𝑏,

 𝑑 𝑎, 𝑏 = 𝑑 𝑏, 𝑎 ,

 𝑑 𝑎, 𝑏 ≤ 𝑑 𝑎, 𝑐 + 𝑑(𝑏, 𝑐).

 But… how to define a metric on pair of programs?

4

Semantics

 We induce programs from samples

 The samples are sets of numbers (in symbolic regression)

 Set of function arguments

 The target output value

 Let us use similar representation as semantics

 Set of function arguments

 The calculated output value

 Call it sampled semantics

5

Semantics: example

 Consider functions 𝑓 𝑥 =
𝑥

𝑥2 + 𝑥2 and 𝑔 𝑥 =
𝑥

𝑥−
𝑥

4

+ 𝑥2

 Sample them equidistantly in range [−1,1] using 10 samples

 Again: How (dis)similar is 𝑓(𝑥) to 𝑔(𝑥)? Just chose a metric:

 Manhattan: 32,93

 Euclidean: 14,48

 Chebyshev: 10,33

6

x f(x) g(x)

-1,00 0,00 2,33

-0,78 -0,68 1,94

-0,56 -1,49 1,64

-0,33 -2,89 1,44

-0,11 -8,99 1,35

0,11 9,01 1,35

0,33 3,11 1,44

0,56 2,11 1,64

0,78 1,89 1,94

1,00 2,00 2,33

”

“ A recombination operator is

a geometric crossover under
the metric d if all offspring

are in the d-metric segment

between its parents.
ALBERTO MORAGLIO, ABSTRACT CONVEX EVOLUTIONARY SEARCH, FOGA’11

7

Why do we need the

geometric crossover?

8

 Consider:

 the Euclidean distance as a

fitness/error function

 fitness landscape spanned

over k-dimensional space

of program semantics

 It must be a cone

 The apex is the global

optimum

 Programs lie on the edges

of cone

Why do we need the

geometric crossover?

9

 It is guaranteed that:

 An intermediate semantics

between any pair of

semantics must be not worse

than the worst of the pair

Approximately Geometric

Semantic Crossover (AGX)

 Given two parents:

 Calculate their semantics

 Determine a midpoint between them

 For each parent separately:

 Randomly choose a crossover point

 Backpropagate midpoint to the crossover point → desired semantics

 Replace crossover point by a subprogram having semantics that

minimizes error to the desired semantics

10

Semantic backpropagation

 The objective

 Propagate the semantic target backwards through the program

tree, so that it defines a subgoal for a subproblem

 Input

 The program 𝑝

 The target semantics 𝑠𝐷

 The chosen node 𝑝′

 Output

 Desired semantics 𝑠𝐷(𝑝′) for 𝑝′

11

Semantic backpropagation

 Starting from the root node,

for each node 𝑝 on the path

to 𝑝′, do recursively:

 Obtain an inverse instruction

𝑝−1 to 𝑝 w.r.t. child node 𝑝𝑐,

which is next on the path

 Execute 𝑝−1 to compute

desired semantics 𝑠𝐷(𝑝𝑐)

 Stop if recursion reaches the

chosen node (𝑝𝑐 ≡ 𝑝′)

12

Semantic backpropagation:

possible cases

 Instruction is invertible

 𝑝: 𝑦 ← 𝑥 + 𝑐 ⟹ 𝑝−1: 𝑥 ← 𝑐 − 𝑦

 Instruction is ambiguously invertible

 𝑝: 𝑧 ← 𝑥2 ⟹ 𝑝−1: 𝑥 ∈ − 𝑧, 𝑧

 𝑝: sin 𝑥 ⟹ 𝑝−1: 𝑥 ← arcsin 𝑧 + 2𝑘𝜋, 𝑘 ∈ ℤ

 Instruction is non-invertible

 𝑝: 𝑧 ← 𝑒𝑥 ⟹ 𝑝−1: ∀𝑧∈ℝ− 𝑥 ← 𝑋 (NaN, inconsistent)

 Argument of instruction is ineffective

 𝑝: 𝑧 ← 0 × 𝑥 ⟹ 𝑝−1: 𝑥 ←? (don’t care)

13

Library of procedures

 A static library

 All possible programs built upon given set of instructions

 Filtered for semantic uniqueness

 In experiment:

 Instructions {+, −,×,/, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑥}

 Max tree height h ∈ {3,4}

 Total number of programs: 212, 108520

14

The experiment

 Competition:

 GPX: standard tree-swapping crossover

 LGX: locally geometric semantic crossover*

15

Problem Definition (formula) Training set Test set

Nonic 𝑥9 + 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 E[-1, 1, 20] U[-1, 1, 20]

R1 𝑥 + 1 3/(𝑥2 − 𝑥 + 1) E[-1, 1, 20] U[-1, 1, 20]

R2 (𝑥5 − 3𝑥3 + 1)/(𝑥2 + 1) E[-1, 1, 20] U[-1, 1, 20]

Nguyen-7 log 𝑥 + 1 + 𝑥2 + 1 E[0, 2, 20] U[0, 2, 20]

Keijzer-1 0.3𝑥sin 2𝜋𝑥 E[-1, 1, 20] U[-1, 1, 20]

Keijzer-4 𝑥3𝑒−𝑥 cos 𝑥 sin (𝑥)(sin2 𝑥 cos 𝑥 − 1) E[0, 10, 20] U[0, 10, 20]

* K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and
homology in recombination operators. Genetic Programming and Evolvable Machines, 14(1):31-63, 2013.

E[a,b,n] – n points chosen equidistantly from range [a,b]

U[a,b,n] – n points chosen randomly with uniform distribution from range [a,b]

16

Test-set performance

Problem AGX3 AGX4 GPX LGX3 LGX4

Nonic 0.359 𝟎. 𝟎𝟗𝟑 0.130 0.201 0.191

R1 0.224 𝟎. 𝟎𝟓𝟎 0.261 0.167 0.103

R2 107 𝟎. 𝟎𝟐𝟖 0.316 0.621 0.042

Nguyen-7 0.051 0.005 0.044 0.018 𝟎. 𝟎𝟎𝟒

Keijzer-1 0.190 𝟎. 𝟎𝟑𝟗 0.134 0.091 0.041

Kejzer-4 3.113 1013 𝟎. 𝟒𝟗𝟐 2.008 2.854

17

Average error committed by best-of-run individual on test set.

Geometry of operators

Depth of

crossover
Fraction of geometric offspring

AGX LGX GPX
1 .0155 .1676 .0035

2 .0151 .0100 .0031
3 .0136 .0031 .0018
4 .0105 .0016 .0020
5 .0055 .0014 .0011
6 .0028 .0009 .0007
7 .0017 .0006 .0005

8 .0012 .0004 .0003
9 .0010 .0007 .0003

10 .0006 .0005 .0003
11 .0005 .0002 .0003
12 .0004 .0001 .0003
13 .0003 .0002 .0002

14 .0002 .0000 .0005
15 .0000 .0000 .0002
16 .0000 .0000 .0005
17 .0000 .0000 .0000

Overall .0057 .0035 .0008

18

Future work

 Test other libraries

 Add support for constants

 Compare with Random Desired Operator*

19

* K. Krawiec, B. Wieloch. Running Programs Backwards, GECCO 2013.

Thank you

Questions?

20

