
Automatic Derivation of Search Objectives
for Test-Based Genetic Programming

Krzysztof Krawiec(B) and Pawe�l Liskowski

Institute of Computing Science, Poznań University of Technology, Poznań, Poland
{krawiec,pliskowski}@cs.put.poznan.pl

Abstract. In genetic programming (GP), programs are usually evalu-
ated by applying them to tests, and fitness function indicates only how
many of them have been passed. We posit that scrutinizing the outcomes
of programs’ interactions with individual tests may help making program
synthesis more effective. To this aim, we propose DOC, a method that
autonomously derives new search objectives by clustering the outcomes
of interactions between programs in the population and the tests. The
derived objectives are subsequently used to drive the selection process
in a single- or multiobjective fashion. An extensive experimental assess-
ment on 15 discrete program synthesis tasks representing two domains
shows that DOC significantly outperforms conventional GP and implicit
fitness sharing.

Keywords: Genetic programming · Program synthesis · Test-based
problems · Multiobjective evolutionary computation

1 Introduction

In genetic programming (GP), the quality of a candidate program is usually
assessed by confronting it with a set of tests (fitness cases). The outcomes of
program’s interactions with individual tests are then aggregated by a fitness
function. In discrete domains, this usually boils down to counting the number
of passed tests.

Although employing a fitness function defined in this way may appear natural
at first sight, there are several drawbacks of driving the search purely by the
number of passed tests. Starting from not necessarily the most severe one, for
n tests, fitness will take on n + 1 possible values, and once a search process
identifies good and thus similarly fit solutions, ties become likely. Next, this
quality measure is oblivious to the fact that some tests can be inherently more
difficult to pass than others. But most importantly, aggregation of interaction
outcomes into a single scalar implies compensation: two programs that perform
very differently on particular tests may receive the same fitness and thus become
indiscernible in a subsequent selection phase.

Furthermore, conventional fitness in GP is known to exhibit low fitness-
distance correlation [22], i.e., it does not reflect well the number of search steps
c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 53–65, 2015.
DOI: 10.1007/978-3-319-16501-1 5

54 K. Krawiec and P. Liskowski

required to reach the optimal solution. As a result, guiding search by a fitness
function defined in this way may be not particularly efficient. In other words,
fitness function, despite embodying the objective quality of candidate solutions
(considered as prospective outcomes of program synthesis process), is not neces-
sarily the best driver to guide the search. Alternative search drivers, meant as
substitutes for objective function, should be sought that correlate better with
distance, possibly by reflecting other aspects of program behavior.

As we argued in [11], the habit of using scalar objective functions in domains
like GP, where more detailed information on solutions’ characteristic is easily
available, seems particularly wasteful. The information on the outcomes of indi-
vidual interactions can and should be exploited more efficiently wherever possi-
ble. In GP, search drivers could be evaluation measures that capture program’s
performance only on a subset of tests.

Various means, reviewed in Sect. 4 of this paper, have been proposed in
the past to address the weaknesses of conventional fitness measure in GP. The
method we propose here and describe in Sect. 3 is inspired by previous work in
coevolutionary algorithms, and builds upon the approach we designed for test-
based problems in [15]. In every generation, the algorithm identifies the groups
of tests on which the programs in the current population behave similarly. Each
such group gives rise to a separate derived objective. Typically, a few such objec-
tives emerge from this process, and we employ them to perform selection on the
current population. We propose two selection procedures that exploit the derived
objectives, one of them involving the NSGA-II method [4]. In an experimental
assessment reported in Sect. 5, the method performs significantly better than
conventional GP and implicit fitness sharing.

2 Background

The task of automated program synthesis by means of genetic programming can
be conveniently phrased as an optimization problem in which the search objec-
tive is to find a candidate solution p∗ = argmaxp∈Pf(p) that maximizes the
objective function f , where P is the space of all candidate programs. In non-
trivial problems, P is large or even infinite, and grows exponentially with the
length of considered programs. Searching the entire space is therefore compu-
tationally infeasible, and one needs resort to a heuristic algorithm that is not
guaranteed to find p∗. In GP, it is common to drive the search process using f
as fitness function. As motivated earlier, this is not always the best approach.

A program to be evolved is typically specified by a set of tests (fitness cases).
Each test is a pair (x, y) ∈ T , where x is the input fed into a program, and y is
the desired outcome of applying it to x. From the machine learning perspective,
T forms the training set. While in general the elements of t ∈ T can be arbitrary
objects, for the purpose of this study, we limit our interest to Boolean and
integer-valued inputs and outputs.

In many problems, fitness cases do not enumerate all possible pairs of pro-
gram inputs and outputs. Ideally, the synthesized program is expected to gen-
eralize beyond the training set which bears resemblance to test-based problems

Automatic Derivation of Search Objectives 55

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G′ t1+3 t2+4+5

a 0.5 1
b 0 0.66
c 1 0.33
d 0 0.33

a) Interaction matrix G b) G after clustering c) Derived objectives G′

Fig. 1. Example of deriving search objectives from interaction matrix G (a) using
clustering (b), resulting in the derived objectives shown in (c).

originating from the field of coevolutionary algorithms [1,3]. In test-based prob-
lems, candidate solutions interact with multiple environments – tests. Typically,
the number of such environments is very large, making it infeasible to evaluate
candidate solutions on all of them. Depending on problem domain, tests may
take on the form of, e.g., opponent strategies (when evolving a game-playing
strategy) or simulation environments (when evolving a robot controller).

In this light, it does not take long to notice that also the program synthesis
task can be formulated as a test-based problem, in which passing a test requires
a program to produce the desired output for a given input. In general, we will
assume that an interaction between a program p and a test t produces a scalar
outcome g(p, t) that reflects the capability of the former to pass the latter. In this
paper, we assume that interaction outcome is binary, i.e., g : P × T → {0, 1}.

A GP algorithm solving a test-based problem (program synthesis task) main-
tains a population of programs P ⊂ P. In every generation, each program p ∈ P
interacts with every test (x, y) ∈ T , in which p is applied to x and returns an
output denoted as p(x). If p(x) = y, p is said to solve the test and g(p(x), y) = 1.
If, on the other hand, p(x) �= y, we set g(p(x), y) = 0 and say that p fails (x, y).

As it will become clear in the following, it is convenient to gather the out-
comes of these interactions in an interaction matrix G. For a population of m
programs and |T | = n, G is an m × n matrix where gij is the outcome of inter-
action between the ith program and jth test.

Given this test-based framework, the conventional GP fitness that rewards a
program for the number of passed tests can be written as

f(p) = |{t ∈ T : g(p, t) = 1}|. (1)

3 The DOC Algorithm

The proposed method of discovery of search objectives by clustering (doc)
addresses the shortcomings of conventional evaluation (cf. Sect. 1) by clustering
the interaction outcomes into several derived objectives. Each derived objective
is intended to capture a subset of ‘capabilities’ exhibited by the programs in the
context of other individuals in population. The derived objectives replace then
the conventional fitness function (Eq. 1).

Technically, doc replaces the conventional evaluation stage of GP algorithm
(cf. Sect. 2) in favor of the following steps:

56 K. Krawiec and P. Liskowski

1. Calculate the m × n interaction matrix G between the programs from the
current population P, |P | = m, and the tests from T, |T | = n.

2. Cluster the tests. We treat every column of G, i.e., the vector of interaction
outcomes of all programs from P with a test t, as a point in an m-dimensional
space. A clustering algorithm of choice is applied to the n points obtained in
this way. The outcome of this step is a partition {T1, . . . , Tk} of the original
n tests in T into k subsets/clusters, where 1 ≤ k ≤ n and Tj �= ∅.

3. Define the derived objectives. For each cluster Tj , we average row-wise the
corresponding columns in G. This results in an m × k derived interaction
matrix G′, with the elements defined as follows:

g′
i,j =

1
|Tj |

∑

t∈Tj

g(si, t) (2)

where si is the program corresponding to the ith row of G, and j = 1, . . . , k.

The columns of G′ implicitly define the k derived objectives that characterize
the programs in P .

The derived objectives form the basis for selecting the most promising pro-
grams from P , which subsequently give rise to the next generation of programs.
The natural avenue here is to apply a multiobjective evolutionary algorithm.
Following our previous work, we employ NSGA-II [4], one of the most popu-
lar method of that sort. This allows programs that feature different behaviors,
reflected in the derived objectives, to coexist in population even if some of them
are clearly better than others in terms of conventional fitness. However, we will
show in the experimental section that such multiobjective selection may involve
certain undesired side-effects, and that driving selection by certain scalar aggre-
gate of the derived objectives can be also an interesting option.

Properties of DOC. An important property of doc is its contextual charac-
ter manifested by the fact that the outcome of evaluation of any program in
P depends not only on the tests in T , but also on the other programs in P .
This is the case because all programs in P together determine the result of clus-
tering and therefore influence the derived objectives. This quite direct interaction
between the programs is not a common feature of GP.

An implication of contextual evaluation is that derived objectives are adap-
tive and driven by the current state of evolving programs. The process of their
discovery repeats in every generation so that they reflect the changes in behav-
iors of the programs in population. The derived objectives are thus subjective in
this sense, which makes them analogue to search drivers used in two-population
coevolution [15], even though the tests does not change with time here.

As clustering partitions the set of tests T (rather than, e.g., selecting some of
them), none of the original tests is discarded in the transformation process. The
more two tests are similar in terms of programs’ performance on them, the more
likely they will end up in the same cluster and contribute to the same derived
objective. In the extreme case, tests that are mutually redundant (i.e., identical
columns in G) are guaranteed to be included in the same derived objective.

Automatic Derivation of Search Objectives 57

For k = 1, doc degenerates to a single-objective approach: all tests form one
cluster, and G′ has a single column that contains solutions’ fitness as defined by
Eq. 1 (albeit normalized). On the other hand, setting k = n implies G′ = G, and
every derived objective being associated with a single test.

4 Related Work

There are two groups of past studies related to this work, those originating in
GP and those originating in research on coevolutionary algorithms. We review
these groups in the following.

In the group of methods that originate in GP, a prominent example of
addressing the issues outlined in Sect. 1 is implicit fitness sharing (IFS) intro-
duced by Smith et al. [20] and further explored for genetic programming by
McKay [16,17]. IFS lets the evolution assess the difficulty of particular tests and
weighs the rewards granted for solving them. Given a set of tests T, the IFS
fitness of a program p in the context of a population P is defined as:

fIFS(p) =
∑

t∈T : g(p,t)=1

1
|P (t)| (3)

where P (t) is the subset of programs in P that solve test t, i.e., P (t) = {p ∈ P :
g(p, t) = 1}. IFS treats tests as limited resources: programs share the rewards for
solving particular tests, each of which can vary from 1

|P | to 1 inclusive. Higher
rewards are provided for solving tests that are rarely solved by population mem-
bers (small P (t)), while importance of tests that are easy (large P (t)) is dimin-
ished. The assessed difficulties of tests change as P evolves, which can help
escaping local minima.

Other methods that reward solutions for having rare characteristics have been
proposed as well. An example is co-solvability [10] that focuses on individual’s
ability to properly handle pairs of fitness cases, and as such can be considered
a ‘second-order’ IFS. Such pairs are treated as elementary competences (skills)
for which solutions can be awarded. Lasarczyk et al. [14] proposed a method for
selection of fitness cases based on a concept similar to co-solvability. The method
maintains a weighted graph that spans fitness cases, where the weight of an edge
reflects the historical frequency of a pair of tests being solved simultaneously.
Fitness cases are then selected based on a sophisticated analysis of that graph.

Last but not least, the relatively recent research on semantic GP [12] can be
also seen as an attempt to provide search process with richer information of pro-
grams’ behavioral characteristics. Similarly, pattern-guided GP and behavioral
evaluation [13] clearly set similar goals.

In the group of studies that originate in coevolutionary algorithms,
Pareto coevolution [6,18] was initially proposed to overcome the drawbacks of
an aggregating fitness function. In Pareto coevolution, aggregation of interaction
outcomes has been abandoned in favor of using each test as a separate objective.
As a result, a test-based problem can be transformed into a multi-objective

58 K. Krawiec and P. Liskowski

optimization problem. This, in turn, allows adoption of dominance relation — a
candidate solution s1 dominates a candidate solution s2 if and only if s1 performs
at least as good as s2 on all tests. Nevertheless, the number of such elementary
objectives is often prohibitively large due to a huge number of tests present in
typical test-based problems.

It was later observed that certain test-based problems feature an internal
structure comprising groups of tests that examine the same skill of solutions.
Based on this observation, Bucci [1] and de Jong [2] introduced coordinate sys-
tems that compress the elementary objectives into a multidimensional structure,
while preserving the dominance relation between candidate solutions. Because of
the inherent redundancy of tests, the number of so-called underlying objectives
(dimensions) in such a coordinate system is typically lower than the number of
tests. However, even with a moderately large number of tests, it is unlikely for a
candidate solution to dominate any other candidate solution in the population.
From such a sparse dominance relation, it is hard to elicit any information that
would efficiently drive the search process. The coordinate systems introduced in
the cited work do not help in this respect, as they perfectly preserve the domi-
nance relation, and if the dominance in the original space is sparse, they need to
feature very high number of dimensions. Also, the problem of their derivation is
NP-hard [8].

The derived objectives constructed by doc bear certain similarity to the
underlying objectives studied in the above works. However, as shown by the
example in Fig. 1, the derived objectives are not guaranteed to preserve dom-
inance: given a pair of candidate solutions (p1, p2) that do not dominate each
other in the original space of interaction outcomes, one of them may turn out to
dominate the other in the space of resulting derived objectives. For instance,
given the interaction matrix as in Fig. 1a, program c does not dominate d,
however it does so in the space of derived objectives (Fig. 1c). As a result
of clustering, some information about the dominance structure has been lost.
This inconsistency buys us however a critical advantage: the number of resulting
derived objectives is low, so that together they are able to impose an effective
search gradient on the evolving population.

5 Experimental Verification

We examine the capabilities of doc within the domain of tree-based GP. The
compared algorithms implement generational evolutionary algorithm and vary
only in the selection procedure. Otherwise, they share the same parameter set-
tings, with initial population filled with the ramped half-and-half operator,
subtree-replacing mutation engaged with probability 0.1 and subtree-swapping
crossover engaged with probability 0.9. We run two series of experiments: one
with runs lasting up to 200 generations and population size |P | = 500, and with
runs up to 100 generations and population size |P | = 1000. The search process
stops when the assumed number of generation elapses or an ideal program is
found; the latter case is considered a success.

Automatic Derivation of Search Objectives 59

Table 1. Success rate (percent of successful runs) of best-of-run individuals, averaged
over 30 evolutionary runs. Bold marks the best result for each benchmark

Compared algorithms. The particular implementation of doc used in this
work employs x-means [19], an extension of the popular k-means algorithm that
autonomously adjusts k. Given an admissible range of k, x-means picks the k
that leads to clustering that maximizes the Bayesian Information Criterion. In
this experiment, we allow x-means consider k ∈ [1, 4] and employ the Euclidean
metric to measure the distances between the observations (the columns of G).

We confront doc with several control setups. The first baseline is the con-
ventional Koza-style GP (GP in the following), which employs tournament of
size 7 in the selection phase. The second control is implicit fitness sharing (IFS
[17]) presented in Sect. 4, with fitness defined as in Formula 3 and also with
tournament of size 7. The last control configuration, RAND, is a crippled vari-
ant of doc. In that configuration, the tests, rather than being clustered based
on interaction outcomes as described in Sect. 3, are partitioned into k subsets
at random with k randomly drawn from the interval [2, 4]. rand is intended to
control for the effect of multiobjective selection performed by NSGA-II (which
is known to behave very differently from the tournament selection).

Benchmark problems. In its current form presented in Sect. 3, doc can handle
only binary interaction outcomes, where a program either passes a test or not.
Because of that, we compare the methods on problems with discrete interaction
outcomes. The first group of them are Boolean benchmarks, which employ
instruction set {and, nand, or, nor} and are defined as follows. For an v-bit
comparator Cmp v, a program is required to return true if the v

2 least significant
input bits encode a number that is smaller than the number represented by the
v
2 most significant bits. In case of the majority Maj v problems, true should be
returned if more that half of the input variables are true. For the multiplexer

60 K. Krawiec and P. Liskowski

Mul v, the state of the addressed input should be returned (6-bit multiplexer uses
two inputs to address the remaining four inputs). In the parity Par v problems,
true should be returned only for an odd number of true inputs.

The second group of benchmarks are the algebra problems from Spector
et al.’s work on evolving algebraic terms [21]. These problems dwell in a ternary
domain: the admissible values of program inputs and outputs are {0, 1, 2}. The
peculiarity of these problems consists of using only one binary instruction in
the programming language, which defines the underlying algebra. For instance,
for the a1 algebra, the semantics of that instruction is defined as in (a) below
(see [21] for the definitions of the remaining four algebras). For each of the five
algebras considered here, we consider two tasks (of four discussed in [21]). In the
discriminator term tasks (Disc in the following), the goal is to synthesize an
expression that accepts three inputs x, y, z and is semantically equivalent to the
one shown in (b) below. There are thus 33 = 27 fitness cases in these benchmarks.
The second tasks (Malcev), consists in evolving a so-called Mal’cev term, i.e., a
ternary term that satisfies the equation (c) below. This condition specifies the
desired program output only for some combinations of inputs: the desired value
for m(x, y, z), where x, y, and z are all distinct, is not determined. As a result,
there are only 15 fitness cases in our Malcev tasks, the lowest of all considered
benchmarks.

Performance. Table 1 reports the success rates of particular algorithms, result-
ing from 30 runs of each configuration on every benchmark. The methods clearly
fair differently on particular benchmarks. To provide an aggregated perspective
on performance, we employ the Friedman’s test for multiple achievements of mul-
tiple subjects [9]. Compared to ANOVA, it does not require the distributions of
variables in question to be normal.

Friedman’s test operates on average ranks, which for the considered methods
are as follows, for |P | = 500 (left) and |P | = 1000 (right):

doc ifs rand gp
1.93 2.20 2.50 3.36

doc ifs rand gp
1.76 2.33 2.60 3.30

The p-value for Friedman test is � 0.001, which strongly indicates that at least
one method performs significantly different from the remaining ones. We con-
ducted post-hoc analysis using symmetry test [7]: bold font marks the methods
that are outranked at 0.05 significance level by the first method in the ranking.
Analysis. Although doc ranks first for both population sizes, it does not seem
to be much better than IFS, a substantially simpler method. We hypothesize that
this may be an effect of overspecialization, which may be likened to focusing, one
of so-called coevolutionary pathologies [5,23]. Even though evolving a program

Automatic Derivation of Search Objectives 61

0 50 100 150 200
Generation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

H
yp
er
vo
lu
m
e

MUX6

CMP6

MAJ6

Fig. 2. Average hypervolume of programs in population across generations for the
Mux6, Cmp6 and Maj6 benchmarks.

that passes all tests is hard, it may be relatively easy to find programs that
perform well on a certain subset of tests while failing the other tests. For instance,
in the Boolean benchmark Cmp6, the task is to determine whether the number
encoded by the three least significant input bits b0, b1, b2 is smaller than the
number encoded by the three most significant bits b3, b4, b5. A program that
checks if b2 is off and simultaneously b5 is on solves the quarter of 26 = 64 tests
in this task. This can be expressed with a mere few instructions from the assumed
instruction set, e.g., as (b2 nor b2) and b5. It is possible that evolution exploits
this opportunity by synthesizing programs that focus on such easy subproblems.

To verify this hypothesis, we define the hypervolume of program’s perfor-
mance as characterized by the k derived objectives o1, . . . , ok, i.e.,

h(p) =
k∏

i=1

oi(p). (4)

The key property of hypervolume is that it increases as the scores on ois become
more balanced. Consider two programs p1, p2 with the same overall fitness, i.e.,∑

i oi(p1) =
∑

i oi(p2). Assume the scores of p1 on ois vary, while those of p2
are all the same, i.e., oi(p2) =

∑
i oi(p1)/k. In such a case, h(p2) > h(p1). h(p2)

is the maximum hypervolume for all possible distributions of the same scalar
fitness across the derived objectives.

Figure 2 plots the hypervolume of programs in population across generations
for the Mux6, Cmp6 and Maj6 benchmarks, averaged over population and over
90 evolutionary runs. We observe dramatic decline of this measure with evolu-
tion time. With the other benchmarks exhibiting similar characteristics, we can
conclude that indeed the programs evolved by doc tend to overspecialize.

62 K. Krawiec and P. Liskowski

Promoting uniform progress. The NSGA-II selection procedure operates
on Pareto ranks and as such is agnostic to a more detailed location of a given
point in the multiobjective space that spans ois. As long as two programs have
the same Pareto rank, they will be equally valuable (unless differentiated by
sparsity). This holds even if one of them is on the very extreme of Pareto front,
i.e., attains zero value of one or more objectives. In other words, NSGA-II lacks
mechanisms that would promote achieving balanced performance on all derived
objectives simultaneously.

This observation, combined with the above demonstration of overspecial-
ization, immediately points to a remedy. If hypervolume is a natural measure
of balanced performance on all objectives, why not use it as a search driver?
To verify this idea, we come up with a straightforward variant of doc, called
DOC-P in the following. doc-p aggregates the scores on derived objectives using
Formula 4, and uses the resulting hypervolume as fitness in combination with
tournament selection of size 7, as in the other control configurations.

We also propose a second variant of this idea, DOC-P, which additionally
weights the objectives by the number of tests (columns in G) included in each
objective, i.e.,

hD(p) =
k∏

i=1

|Ti|oi(p). (5)

In effect, hD(p) is based on the number of tests passed by p on each derived
objectives, while h relied on the raw values of oj , i.e., mean test outcomes in
clusters.

The columns in Table 1 marked doc-p and doc-d report the results of these
methods. Below, we present the average ranks of all methods, including these
extensions:

doc-d doc-p ifs doc rand gp
1.70 2.43 3.56 3.63 4.33 5.33

doc-p doc-d doc ifs rand gp
2.20 2.43 3.10 3.66 4.50 5.10

We observe both setups dramatically improving the performance compared to
the original doc. For |P | = 500 (left), the doc-d ranks the best, outperforming
GP, rand and the multiobjective variant of doc in a statistically significant
way. The difference is statistically insignificant for ifs, but both doc-d and
doc-p score higher success rates more often and manage to solve two problems
that remained unsolved by other algorithms, i.e., Disc4 and Disc5.

The result are quite similar when |P | = 1000 (right), however this time doc-
p stands out as the best, albeit its rank is only slightly higher than that of
doc-d. Larger population is also beneficial for multiobjective doc allowing it
to achieve lower rank than ifs and beat GP in a statistically significant way.
We speculate that this effect is directly related to the Pareto-fronts becoming
densely populated, and thus decreasing the risk of over-specialization.

The experimental results clearly indicate that both doc-p and doc-d are
more likely to find an ideal solution than the traditional GP and prove capa-
ble of solving problems that GP struggles with. If a larger population size is

Automatic Derivation of Search Objectives 63

admissible, multiobjective doc also emerges as a viable alternative to ifs and
conventional GP.

6 Conclusions

In this paper we proposed a method that heuristically derives new search objec-
tives by clustering the outcomes of interactions between the programs in pop-
ulation and the tests. The derived search objectives, either combined with the
NSGA-II or combined into a hypervolume of program’s performance, effectively
enhance conventional GP. doc manages to produce a low number of objectives
that approximately capture the capabilities of evolving programs. Once iden-
tified, doc maintains the presence of such skills in the population, even if the
programs featuring them are inferior according to the conventional fitness. In this
study, the capabilities in question concerned program output; in general, they
may correspond to program behaviors in a broader sense, or reflect whether
they satisfy certain conditions. Such generalizations deserve investigation in the
future work.

When seen from the perspective of the overall evolutionary workflow, doc
broadens the ‘bottleneck of evaluation’ described in Introduction in character-
izing the candidate solutions with multiple objectives rather than with a sin-
gle one. Objectives derived by doc constitute alternative search drivers that
replace the conventional fitness function and guide the search in a single- or
multiobjective fashion. Ultimately, capabilities elaborated by particular individ-
uals have the chance of being fused in their offspring and so ease reaching the
search goal. In this context, there is an interesting relationship between the
derived objectives and the intermediate results produced by programs studied
in behavioral evaluation [12] and pattern-guided genetic programming [13].

Acknowledgments. P. Liskowski acknowledges support from grant no. 09/91/DSPB/
0572.

References

1. Bucci, A., Pollack, J.B., de Jong, E.: Automated extraction of problem structure.
In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 501–512. Springer,
Heidelberg (2004)

2. de Jong, E.D., Bucci, A.: DECA: dimension extracting coevolutionary algorithm.
In: Cattolico, M., et al., (eds.) GECCO 2006: Proceedings of the 8th Annual Confer-
ence on Genetic and Evolutionary Computation, pp. 313–320. ACM Press, Seattle,
Washington, USA (2006)

3. de Jong, E.D., Pollack, J.B.: Ideal evaluation from coevolution. Evol. Comput.
12(2), 159–192 (2004)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

64 K. Krawiec and P. Liskowski

5. Ficici, S.G., Pollack, J.B.: Challenges in coevolutionary learning: arms-race dynam-
ics, open-endedness, and mediocre stable states. In: Proceedings of the Sixth Inter-
national Conference on Artificial Life, pp. 238–247. MIT Press (1998)

6. Ficici, S.G., Pollack, J.B.: Pareto optimality in coevolutionary learning. In:
Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, p. 316. Springer,
Heidelberg (2001)

7. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, vol.
751. John Wiley & Sons, Weinheim (2013)

8. Jaśkowski, W., Krawiec, K.: Formal analysis, hardness and algorithms for extract-
ing internal structure of test-based problems. Evol. Comput. 19(4), 639–671 (2011)

9. Kanji, G.K.: 100 Statistical Tests. Sage, London (2006)
10. Krawiec, K., Lichocki, P.: Using co-solvability to model and exploit synergetic

effects in evolution. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN XI. LNCS, vol. 6239, pp. 492–501. Springer, Heidelberg (2010)

11. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Igel, C. (ed.) GECCO 2014: Proceedings of the 2014 Con-
ference on Genetic and Evolutionary Computation, pp. 935–942. ACM, Vancouver,
BC, Canada, 12–16 July 2014

12. Krawiec, K., O’Reilly, U.-M.: Behavioral search drivers for genetic programing.
In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P.,
Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599,
pp. 210–221. Springer, Heidelberg (2014)

13. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Blum, C.
(ed.) GECCO 2013: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, pp. 949–956. ACM, Amsterdam,
The Netherlands, 6–10 July 2013

14. Lasarczyk, C.W.G., Dittrich, P., Banzhaf, W.: Dynamic subset selection based on
a fitness case topology. Evol. Comput. 12(2), 223–242 (2004)

15. Liskowski, P., Krawiec, K.: Discovery of implicit objectives by compression of inter-
action matrix in test-based problems. In: Bartz-Beielstein, T., Branke, J., Filipič,
B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 611–620. Springer, Heidelberg
(2014)

16. McKay, R.I.B.: Committee learning of partial functions in fitness-shared genetic
programming. In: Industrial Electronics Society, 2000. IECON 2000. 26th Annual
Conference of the IEEE Third Asia-Pacific Conference on Simulated Evolution and
Learning 2000. vol. 4, pp. 2861–2866. IEEE Press, Nagoya, Japan, 22–28 October
2000

17. McKay, R.I.B.: Fitness sharing in genetic programming. In: Whitley, D., Goldberg,
D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000), pp. 435–442.
Morgan Kaufmann, Las Vegas, Nevada, USA, 10–12 July 2000

18. Noble, J., Watson, R.A.: Pareto coevolution: using performance against coevolved
opponents in a game as dimensions for pareto selection. In: Spector, L., et al., (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pp. 493–500. Morgan Kaufmann, San Francisco, California, USA, 7–11 July
2001

19. Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estima-
tion of the number of clusters. In: ICML, pp. 727–734 (2000)

20. Smith, R.E., Forrest, S., Perelson, A.S.: Searching for diverse, cooperative popula-
tions with genetic algorithms. Evol. Comput. 1(2), 127–149 (1993)

Automatic Derivation of Search Objectives 65

21. Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic programming
for finite algebras. In: Keijzer, M. (ed.) GECCO 2008: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation, pp. 1291–1298.
ACM, Atlanta, GA, USA, 12–16 July 2008

22. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance
correlation as a difficulty measure in genetic programming. Evol. Comput. 13(2),
213–239 (2005)

23. Watson, R.A., Pollack, J.B.: Coevolutionary dynamics in a minimal substrate. In:
Spector, L., et al., (eds.) Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2001), pp. 702–709. Morgan Kaufmann, San Francisco,
California, USA, 7–11 July 2001

	Automatic Derivation of Search Objectives for Test-Based Genetic Programming
	1 Introduction
	2 Background
	3 The DOC Algorithm
	4 Related Work
	5 Experimental Verification
	6 Conclusions
	References

