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Abstract. In test-based problems, commonly solved with competitive
coevolution algorithms, candidate solutions (e.g., game strategies) are
evaluated by interacting with tests (e.g., opponents). As the number of
tests is typically large, it is expensive to calculate the exact value of objec-
tive function, and one has to elicit a useful training signal (search gradi-
ent) from the outcomes of a limited number of interactions between these
coevolving entities. Averaging of interaction outcomes, typically used to
that aim, ignores the fact that solutions often have to master different
and unrelated skills, which form underlying objectives of the problem.
We propose a method for on-line discovery of such objectives via heuristic
compression of interaction outcomes. The compressed matrix implicitly
defines derived search objectives that can be used by traditional multiob-
jective search techniques (NSGA-II in this study). When applied to the
challenging variant of multi-choice Iterated Prisoner’s Dilemma problem,
the proposed approach outperforms conventional two-population coevo-
lution in a statistically significant way.

Keywords: Test-based problems, coevolution, iterated prisoner dilemma,
multiobjective evolutionary algorithms.

1 Introduction

Test-based problems are search and optimization tasks where candidate solutions
are being evaluated by confronting them with tests. A single interaction between
a candidate solution and a test produces a scalar outcome that reflects the
capability of the former to pass the latter (expressed in the simplest case as
a binary value). Canonical examples of test-based problems are games, where
candidate solutions and tests are game strategies, while interactions boil down
to playing games between them.

Solving a test-based problem consists in finding a candidate solution with cer-
tain properties. In the most common case, it should maximize the expected utility,
i.e., the average outcome against all tests. Finding such a solution is challenging
in many test-based problems, because the number of tests is usually large, and
for some problems even infinite. This problem can be mitigated by estimating a
solution’s utility by confronting it with a sample of tests of a computationally
manageable size. Some evolutionary algorithms (e.g., [3]) implement this idea by
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maintaining a population of candidate solutions and assessing their fitness on a
sample of tests generated at random. Competitive coevolution algorithms (e.g.,
[14]) rely on tests that dwell either in the same population (for one-population
coevolution), or in a separate, coevolving population of tests (for two-population
coevolution). Hybrid approaches of coevolution with random sampling have also
been studied [12].

At first sight, averaging interaction outcomes over the available tests seems
natural, as the fitness obtained in this way approximates the expected utility,
i.e., the ultimate objective of the search process. If the test sample is drawn
at random, that approximation is even unbiased. On the other hand, such ag-
gregation inevitably incurs information loss. The outcomes of interactions may
compensate each other, so that candidate solutions can receive the same fitness
(and thus be indiscernible for selection), even if they fare very differently with
particular tests. It becomes thus natural to ask: do we have to ‘compress’ all the
information about interactions outcomes into one scalar value? Why not exploit
it more carefully, for the sake of making search more efficient?

Several studies in the past have investigated the possibility of scrutinizing
individual interaction outcomes and leveraging them for better performance of
an evolutionary process. Bucci [2] and de Jong [6] introduced coordinate systems
that compress the interaction outcomes into a multidimensional structure. Tech-
nically, given the dominance relation as defined by interaction outcomes (where
every test is treated as a separate objective), a coordinate system can be con-
structed that preserves this relation while typically featuring a lower number of
derived objectives (dimensions). Interestingly, every such objective can be said
to express a certain skill exhibited by the candidate solutions.

Unfortunately, even with a moderately large number of tests, it is unlikely
for any candidate solution to dominate (in the above sense) any other candidate
solution in the population. From such a sparse dominance relation, it is hard
to elicit any information that would efficiently drive the search process. In this
paper we propose a heuristic method that compresses the original interaction
outcomes into a few derived objectives in a ‘lossy’ manner. The method does not
guarantee to preserve the original dominance structure, but always produces a
low number of derived objectives that approximately capture the skills exhibited
by the candidate solutions. The experiments with two-population coevolutionary
algorithm demonstrate that the objectives obtained in this way can be better
‘search drivers’ than the conventional, averaging fitness function.

2 Background

Consider a test-based problem (S,T, g), where S is the set of all candidate so-
lutions, T is the set of all tests, and g : S × T → [0, 1] is interaction function
that characterizes solution’s capability to pass t. In particular, g(s, t) = 1 means
that s passed test t and g(s, t) = 0 is interpreted as s failing t. Our goal is to
solve this problem by finding a candidate solution that maximizes the expected
utility, i.e., s∗ = argmaxs∈S

∑
t∈T

g(s, t).
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We approach the test-based problems using two-population coevolutionary
algorithms, with a population of candidate solutions S ⊂ S of size m and a
population of n tests T ⊂ T. Evolving candidate solutions and tests in two
separate populations has been shown superior to one-population configuration
[13], as it allows them to specialize in their roles, where candidate solutions focus
on maximizing the search objective, while tests are responsible for creating a
learning gradient for them.

In the evaluation phase of evolutionary workflow, we apply g to S × T and
obtain an m × n interaction matrix G, where rows correspond to candidate
solutions and columns correspond to tests. G implicitly defines a dominance
relation � between the elements of S: si � sk ⇐⇒ ∀j gi,j ≥ gk,j ∧ ∃j : gi,j >
gk,j , where gi,j denotes the outcome of interaction between the ith candidate
solution and jth test, i = 1, . . . , n, j = 1, . . . ,m . This dominance relation, built
on a limited number of individuals in S and T , is transient and never reveals
their full characteristics. We assume that G is the only information available at
the given generation (S and T do not feature archives).

To perform selection of candidate solutions in S, i.e., to determine a sub-
set S′ ⊂ S of ‘promising’ candidate solutions, a coevolutionary algorithm has
to elicit information from G. Though there is a gamut of possible elicitation
methods, we first consider the following two extremes.

1. The direct approach could consist in employing the original dominance
relation � defined by G to carry out the selection process. Technically, one would
assume that, for every test t ∈ T , the outcomes of interactions with t determines
performance on the associated objective. In theory, this should enable applying
conventional multiobjective evolutionary methods, like NSGA-II [7].

The advantage of the direct approach is that it relies on all available and undis-
torted information on interaction outcomes. The downside is that the likelihood
of any solution in S dominating any other is low even for a moderate number
of tests in T , and becomes even lower when the tests become diversified (which
we want them to be). When the dominance relation becomes sparse, solutions
are often incomparable, and there is no information to base the selection process
on. Also, the conventional multiobjective evolutionary computation algorithms
are known to perform well only if the number of objectives is moderate; while
the population of tests in a typical coevolutionary setup hosts usually not a few,
but at least a few dozens of tests.

2. Scalarization. As the other extreme, the information contained in G can
be scalarized by aggregating the interaction outcomes over all tests available in
T and adopting the resulting quantity as solutions’ fitness:

f(s) =
∑

t∈T

g(s, t) (1)

The fitness defined in this way can be subsequently used to run an ordinary
selection stage (e.g., tournament selection). The advantage of this approach is
that f (when normalized) is an estimator of expected utility, which is our external
objective of the search process, so an algorithm’s ‘search driver’ is consistent
with the ultimate search goal. On the downside, aggregation incurs information
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loss, and many pairs of solutions that were originally incomparable can receive
similar, if not identical, fitness (the latter case being particularly likely if the
underlying interaction function assumes only a few values, which is common in
test-based problems).

In this study, we are interested in combining the advantages of these ap-
proaches, i.e., to preserve some information on dominance while avoiding ag-
gregating interaction outcomes into a single scalar value. To this aim, we will
‘compress’ the original information in G into a few derived objectives. In a similar
spirit, several past studies on competitive coevolution [2,6,11] proposed formal
methods for deriving coordinate systems (CS) from interaction matrices. How-
ever, they all implement an exact approach, i.e., the spatial arrangement of
solutions in the CS exactly reproduces the original dominance structure. If that
structure was sparse, such was also the structure of the derived CS (which typ-
ically manifested in the CS having many dimensions). As a result, CSs defined
in this way are interesting tools for studying interaction outcomes, but not nec-
essarily useful ‘search drivers’. The approach we propose in the next section, by
compressing the interaction outcomes in a lossy manner, guarantees to result in
a few, albeit inexact, derived objectives.

3 Objective Compression Algorithm

Given an m× n interaction matrix G, the algorithm proceeds in two stages:
1. Clustering of tests. We treat every column of G, i.e., a vector of interaction

outcomes of all solutions from S with the specific test t, as a point in an m-
dimensional space. A clustering algorithm of choice is applied to the n points
obtained in this way. We employ k-means, as it is conceptually straightforward
and typically converges in a few iterations. With k being the number of clusters,
the outcome of this step is the clustering/partitioning {T1, . . . , Tk} of the original
n tests (columns in G) into k subsets.

2. Defining derived objectives. For each cluster Tc, we derive from it a new
search objective by averaging the corresponding columns in G row-wise. The
resulting vector is the centroid of the cluster Tc. The overall outcome is an m×k
derived interaction matrix G′, where the columns correspond to the new derived
objectives, while the rows correspond to candidate solutions in S.

The resulting derived objectives can be subsequently used to guide the selec-
tion process, e.g., employed as objectives in the NSGA-II algorithm, as in the
experimental part of this paper.

Example. Consider the matrix of interactions between the population of can-
didate solutions S = {a, b, c, d} and the population of tests T = {t1, t2, t3, t4},
shown in Fig. 2a. Clearly, the only dominance holding in this space is b � a. The
four-dimensional space of interaction outcomes is shown in two two-dimensional
plots (Figs. 2b and 2c) that span t1 × t2 and t3 × t4, respectively. This helps
to reveal that the performances of candidate solutions on the tests t1 and t3
are quite correlated. An analogous observation holds for t2 and t4. Assume the
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Fig. 1. Example of compression of interaction matrix (a) featuring a four-dimensional
dominance structure (b, c), into a derived interaction matrix (d), resulting with the
dominance structure shown in (e)

clustering algorithm decided to cluster t1 with t3 and t2 with t4. The centroids
of the clusters (Fig. 2d) form the derived objectives for this problem.

In the space of derived objectives (Fig. 2e) b still dominates a. However, now
also c dominates d, thought originally these two solutions were incomparable. As
a result of compressing the original interaction matrix and merging dimensions,
some information about the dominance structure has been lost.

In the particular case of c and d, introducing dominance in favor of c seems
reasonable, as c outperforms d on two original objectives (t3, t4), while only one
objective (t1) supports the opposite relation (t2 being neutral in this respect).
However, the clustering of interaction matrix columns in general does not pro-
vide this kind of guarantees. In this sense, the above transformation trades the
lower number of resulting objectives for certain inconsistency with the original
interaction outcomes. Nevertheless, we posit that this imprecision may be a price
worth paying for reducing the number of objectives and eliciting a potentially
useful learning gradient from them.

Properties of the Method. The objective compression algorithm is allowed to
distort the original dominance represented in the interaction matrix G. Though
this can be considered a downside, note that the information in G does not fully
characterize the candidate solutions in the first place, because of the limited
number of tests available in T . In other words, it may not make sense to perfectly
preserve the information in G if it is partial anyway (and not necessarily useful to
drive the search process, as we discussed in Section 2). For the same reasons, we
do not find it critical that the k-means algorithm employed here is a heuristic,
and may produce different derived objecives depending on the initial random
partitioning of original objectives.

The method features a few other properties. Trivially, clustering guarantees
including any pair of original objectives that are mutually redundant (i.e., identi-
cal columns in G) into the same derived objective. Moreover, the more two tests
are similar in terms of solutions’ performance on them, the more likely they will
end up in the same cluster and contribute to the same derived objective. The
clustering discovers thus certain skills of candidate solutions, as revealed in G.

For k = 1, the method degenerates to a single-objective approach (case #2 in
Section 2): all tests form one cluster, and G′ has a single column that contains
solutions’ (normalized) estimate of expected utility defined in (1).
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Setting k = n implies G′ = G, and the method implements the direct approach
(case #1 in Section 2).

Finally, the derived objectives are additive components of scalar fitness (Eq.
1), i.e.,

∑k
j=1 g

′
i,j = f(sj), where the jth row in G′ corresponds to sj .

4 Experimental Verification

In the following we apply the proposed approach to the Iterated Prisoner’s
Dilemma (IPD), an abstract game that elegantly embodies the problem of achiev-
ing mutual cooperation in social, economic and biological interactions. The com-
putational experiment is aimed at verification whether the objective compression
algorithm influences the efficiency of coevolutionary learning.

Problem Definition. IPD is a two-player game involving a series of interac-
tions, each of which is a Prisoner’s Dilemma (PD) game. In a PD, a player can
make one of two choices: cooperate or defect. If both players cooperate, they
receive a payoff R, whereas if they both defect they get a smaller payoff P . De-
fecting against a cooperator gives a payoff T which is higher than R, and the
cooperator in such a case receives the lowest possible payoff S. The PD payoff
matrix must satisfy two conditions: T > R > P > S and 2R > S + T [15].

In this study, we consider IPD extended to multiple choices (or levels of co-
operation) [9,10,5,4] with payoff function that meets the above constraints:

p(cA, cB) =

{
2.5− 0.5cA + 2cB for player A

2.5− 0.5cB + 2cA for player B
.

An example of a payoff matrix for the 3-choice Prisoner’s Dilemma generated
using the above function is shown in Table 1, the possible choices being {−1, 0, 1}.
Strategy Representation. We adopt the direct look-up table [1] to represent
the strategies (candidate solutions and tests) and consider the memory-one form
of IPD in which the players remember their moves from the previous iteration
only. In such a case, the n-choice IPD strategy is an n×n matrix M , where mij

for i, j = 1, 2, . . . , n specifies the choice to be made given the player’s previous
move i and the opponent’s previous move j. The other element of the strategy
is the initial move m00.

In the experiments, we focus on IPD with n = 9 choices, which we found to
be much more demanding than 3-choice IPD used in some earlier coevolutionary
investigations [3]. Each strategy is a look-up table containing 9 × 9 + 1 = 82
choices and the size of search space is 982 ≈ 1.77× 1078.

Experimental Setup. We embed the objective compression algorithm in a typ-
ical two-population competitive coevolutionary setting (Section 2). The resulting
m × k matrix of derived objectives forms the input for the NSGA-II algorithm
[7] where they guide the selection process of candidate solutions. The role of
NSGA-II is to maintain a diverse front of well-performing candidate solutions
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Table 1. An exemplary payoff matrix for the 3-choice prisoner’s dilemma. Choice −1
is full defection, 1 is full cooperation. (pA, pB) denotes payoffs to players A and B,
respectively.

Player B
choice 1 0 −1

Player A
1 (4, 4) (2, 4.5) (0, 5)
0 (4.5, 2) (2.5, 2.5) (0.5, 3)

−1 (5, 0) (3, 0.5) (1, 1)

by Pareto-ranking the population and resolving ties on selection by means of
crowding distance.

In the population of tests, individuals are rewarded for making distinctions
[8] between candidate solutions. This fitness function promotes tests that differ-
entiate the candidate solutions and thus provide search gradient for them.

The objective compression algorithm (k-means in the following) is examined
in the presence of two control setups. In the first one, we replace the k-means
algorithm with a naive approach to clustering in which individuals are assigned
to clusters randomly (k-rand). This configuration is intended to control for the
relevance of clusters discovered by clustering. The second setup is an ordinary
two-population coevolutionary algorithm (cel, [14]), which is equivalent to 1-
means (see the discussion of algorithm properties at the end of Section 3).

All algorithms maintain populations of 50 candidate solutions and 50 tests.
However, because NSGA-II effectively merges parents and offspring prior to se-
lection (and in this sense features an internal archive), we set the candidate so-
lutions population size to 100 for cel. This provides for fair comparison between
the methods. As a result, in each generation of every method, 100× 50 = 5,000
IPD games are played, each of which consists of 150 PD episodes. Since each run
consists of 200 generations, it requires the total effort of 1,000,000 games.

Both populations use tournament selection with tournament size 5. The only
source of genetic variation is simple mutation which iterates over all elements of
the look-up table and with probability 0.2 replaces the original choice with one
of the remaining choices, selected at random. This operator has been found to
provide sufficient variation of behaviors for multiple-choice IPD [4].

Results. Algorithms that solve test-based problems do not rely on an objective
performance measure, so a candidate solution deemed good by an algorithm does
not have to be such in reality. In other words, fitness as defined in an algorithm (if
any) is subjective (internal) and may strongly differ from the true performance of
a candidate solution. To objectively (externally) assess the performance of a can-
didate solution, we estimate its expected utility by letting it play 50,000 games
against random opponents. Every random opponent is obtained independently
by filling the look-up table with random choices. This assessment, commonly
used with test-based problems, is external to a search algorithm and does not
affect its behavior. Below we report algorithm performance meant in this way.

We performed separate experiments for k = 2 . . . 5 clusters. Let us first dis-
cuss the search dynamics, illustrated in Fig. 2a, which reports the objective
performance of the best-of-generation candidate solutions, averaged over 120
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Fig. 2. The expected utility of best-of-generation individuals averaged over 120 runs
(top) and distributions of expected utilities of the best-of-runs individuals (bottom).
Violin plot legend: white dot: median, black box: interquartile range, line: 1.5 interquar-
tile range, black dots: outliers. Both plots use the same colors.

coevolutionary runs. For reference, we plot the best-of-generation players found
by standard coevolutionary search (cel). Clearly, compression of the interac-
tion outcomes allows k-means outperform cel for every k. In particular, k = 2
seems to be optimal, suggesting that this may be the required number of skills
to effectively play the 9-choice IPD. We speculate that the two discovered skills
correspond to full defection and full cooperation in IPD, since defecting is the
dominant strategy of the game, while mutual cooperation pays off the most in
the long term. This hypothesis requires, however, verification in the future.

Interestingly, we also observe certain positive influence of decomposing the
scalar fitness function by random clustering (rand). In this case however, improve-
ment over cel is noticeable only for k = 2 (2-rand). Apparently, merging ran-
domly selected tests into derived objectives cannot efficiently capture meaningful
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Table 2. Expected utilities and 95% confidence intervals of best-of-run individuals
obtained by the algorithms for 9-choice Iterated Prisoner’s Dilemma

Method Expected utility Method Expected utility
cel 81.48 ± 0.90
2-means 91.28 ± 0.73 2-rand 83.64 ± 1.21
3-means 89.27 ± 0.99 3-rand 82.21 ± 1.11
4-means 87.96 ± 1.16 4-rand 79.99 ± 1.23
5-means 85.96 ± 1.20 5-rand 79.49 ± 1.17

skills that would effectively guide the multiobjective learning process towards im-
proving the population of candidate solutions.

When it comes to comparing algorithms’ end-of-run outcome, Table 2 presents
the average performance of the best-of-run individuals for each algorithm, ac-
companied by 95% confidence intervals, while Fig. 2b the distributions as violin
plots. To compare these final performances of the algorithms, we applied Shapiro-
Wilk test, which indicated the performance distributions to be likely non-normal
(all p-values < 10−6). We then conducted the nonparametric Kruskal-Wallis
rank sum test, which revealed a statistically significant (χ2 = 158.7, p-value <
2.2× 10−16) difference between the results obtained by particular algorithms. A
post-hoc analysis using pairwise Wilcoxon rank sum test with Holm correction
indicated the following ranking among the configurations:

2-means > 3-means > 4-means = 5-means>2-rand = 3-rand = 4-rand=5-rand=cel

where ‘>’ denotes significant difference and ‘=’ means no statistical difference.
This ranking corroborates our earlier observations: meaningful grouping of tests
(and associated original objectives) and using the resulting derived objectives in
multiobjective setting makes coevolutionary search more effective.

5 Conclusions

In this paper we proposed a heuristic method that compresses the original in-
teraction outcomes into a few derived, implicit objectives in a lossy manner.
Even though the method does not guarantee to preserve the original dominance
structure, it succesfully maganges to produce a low number of objectives that
approximately capture the skills exhibited by the candidate solutions. Crucially,
our method avoids aggregating interaction outcomes into a scalar value, there-
fore allowing multiobjective approach to the problem. We demonstrated how this
compression, combined with the NSGA-II algorithm, can be applied to effectively
enhance the coevolutionary search.

The experiments with two-population coevolutionary algorithm demonstrate
that the implicit objectives discovered in interaction outcomes are indeed bet-
ter search drivers than the conventional, averaging fitness function. Our results
support the claim that it is enough to preserve only some information on domi-
nance to obtain a useful learning gradient. Applicability of this approach to other
interactive and non-interactive domains is to be verified in future research.
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